The Invention and Development of the Radiosonde

Total Page:16

File Type:pdf, Size:1020Kb

The Invention and Development of the Radiosonde The Invention and Development of the Radiosonde with A Catalog of Upper-Atmospheric Telemetering Probes in the National Museum of American History, Smithsonian Institution JOHN L. DUBOIS, ROBERT P. MULTHAUF, and CHARLES A. ZIEGLER SMITHSONIAN INSTITUTION PRESS SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. Press requirements for manuscript and art preparation are outlined on the inside back cover. Lawrence M. Small Secretary Smithsonian Institution SMITHSONIAN STUDIES IN HISTORY AND TECHNOLOGY • NUMBER 53 The Invention and Development of the Radiosonde, with a Catalog of Upper-Atmospheric Telemetering Probes in the National Museum of American History, Smithsonian Institution John L. DuBois, Robert P. Multhauf, and Charles A. Ziegler Smithsonian Institution Press Washington, D.C. 2002 ABSTRACT DuBois, John L., Robert P. Multhauf, and Charles A. Ziegler. The Invention and Develop­ ment of the Radiosonde, with a Catalog of Upper-Atmospheric Telemetering Probes in the National Museum of American History, Smithsonian Institution. Smithsonian Studies in His­ tory and Technology, number 53, 78 pages, 60 figures, 2002.—From a historical perspective, the radiosonde is one of the more significant technological innovations of the twentieth cen­ tury, not only because its widespread use greatly enhanced the accuracy of weather forecasting, but also because some features of its basic design became the foundation of all modern analog telemetry systems. This study examines the way in which advances in the technology of non- telemetering balloonsondes and radio in the nineteenth and twentieth centuries culminated in the invention of the radiosonde in 1929. The subsequent development of radiosondes in Europe and the United States from 1929 to 1940 is traced in detail, when the basic design of this instru­ ment achieved its modern form. An overview of significant modifications in radiosonde design after 1940 also is provided because the instruments have remained an essential meteorological tool in the twenty-first century. This monograph also includes a catalog of radiosondes in the Smithsonian Institution's National Museum of American History. Photographs of instruments in this unique collection that graphically depict the development stages of the radiosonde are presented. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Annals of the Smithsonian Institution. COVER DESIGN: The first true radio­ sonde, which was flown by Robert Bureau in 1929. Library of Congress Cataloging-in-Publication Data DuBois, John L. The invention and development of the radiosonde : with a catalog of upper-atmospheric telemetering probes in the National Museum of American History, Smithsonian Institution / John L. DuBois, Robert P. Multhauf, and Charles A. Ziegler. p. cm.—(Smithsonian studies in history and technology ; no. 53) Includes bibliographical references. 1. Radiosondes—History—19th Century. 2. Radiosondes—History—20th century. 3. Radiosondes— Catalogs. 4. National Museum of American History (U.S.)—Catalogs. I. Multhauf, Robert P. II. Ziegler, Charles A. (Charles Albert), 1927- III. Title. IV. Series. QC879.25.D83 2002 551.63'52—dc21 2002030658 © The paper used in this publication meets the minimum requirements of the American National Standard for Permanence of Paper for Printed Library Materials Z39.48—1984. Contents Page Preface iv Introduction 1 I. THE PROBLEM OF HIGH-ALTITUDE METEOROLOGY AND THE TECHNOLOGY THAT LED TO THE RADIOSONDE 1. Nontelemetering Balloonsondes, 1892-1929 3 2. Preradio Telemetering, 1842-1894 15 3. Radio Telemetry, 1895-1929 19 II. THE RADIOSONDE: DEVELOPMENT AND APPLICATION 4. The Early Years, 1921-1928 26 5. The Prototypes, 1929-1930 30 6. Maturity, 1931-1940 41 7. The Radiosonde after 1940 59 8. Conclusion 67 III. CATALOG OF UPPER-ATMOSPHERIC TELEMETERING PROBES AND RELATED ARTIFACTS IN THE NATIONAL MUSEUM OF AMERICAN HISTORY, SMITHSONIAN INSTITUTION Notes 73 Appendix: Selected United States Patents Related to Radiosondes 75 Literature Cited 76 in Preface "Radiosonde" is a balloon-borne instrument that transmits atmospheric data, usually temperature, pressure, and humidity, to a receiver-recorder on the ground. The contribu­ tions of this relatively simple device to the late twentieth-century way of life can hardly be exaggerated. No other factor contributed more to the systematization of weather observa­ tions, which is beneficial to all who depend upon meteorological prediction. The utiliza­ tion of the radiosonde directly affected agriculture and aeronautics, and its more sophisti­ cated offspring made possible many of the marvels of the space age. The collection of instruments on which this study is based was assembled throughout a decade and a half, 1955-1970, as part of the program of the Smithsonian Institution to es­ tablish a new museum of the history of science and technology and of the political and so­ cial history of the United States. A museum rarely exhibits its entire collection in any field at one time, and objects not exhibited are retained for reference purposes. In the latter function, nothing is more useful than a printed catalog. Because of the variety of museum collections, the production of such catalogs is only occasionally realized. Such a document is most important when the collection in question is uncommon, or even unique. This may be the case with the collec­ tion described herein. Because "old" scientific instruments often are unfamiliar even to those who use modem instruments serving the same, or similar, purposes, some guidance in their construction and functions is useful. It also is important to understand that the history of a scientific in­ strument is a case history in the process of invention. For these reasons, this publication includes a capsule history of the development of the radiosonde based upon the instru­ ments themselves and upon the original literature connected with their development. We are particularly indebted to Robert Wright of the Instrument Division of the United States Weather Bureau, who thought old instruments worth collecting, and to Christon Harmantas, who knew what they were. George A. Norton, Jr., assisted greatly with the cat­ alog of specimens. We also gratefully acknowledge the help of William Blair, Jr., who kindly supplied us with copies of selected published and unpublished documents from the collected papers of his father, Colonel William Blair. Thanks also are due H.C. McBrair who alerted us to the importance of Colonel Blair's research to the early history of the radiosonde and who shared with us his reminiscences of radiosonde development at Wallace and Tiernan Inc., an early manufacturer of radiosonde equipment. At the opposite end of the time-span with which we are concerned, we are indebted for the support of the following historians at the Smithsonian Institution: David Devorkin of the National Air and Space Museum and Deb­ orah Warner of the National Museum of American History. Robert P. Multhauf Director Emeritus National Museum of American History Smithsonian Institution IV The Invention and Development of the Radiosonde, with a Catalog of Upper-Atmospheric Telemetering Probes in the National Museum of American History, Smithsonian Institution John L. DuBois, Robert P. Multhauf, and Charles A. Ziegler Introduction The collection and transmission of data is as old as the hu­ made to develop meteorological instruments that automatically man species. Information about the weather may have first recorded their readings. Steady improvements were made in achieved "scientific" status when sensible observation (e.g., the data collection process, but it soon was recognized that it coldest winter in the memory of the oldest resident) of meteo­ was even more important to devise some speedy method for rological data was augmented by instruments
Recommended publications
  • Frequency Plan, 2004
    BOTSWANA RADIO FREQUENCY PLAN, 2004 . Botswana Radio Frequency Plan, 2004 Published on 16 April 2004. TABLE OF CONTENTS Part 1 PRELIMINARY 1. Introduction. 2. Definitions. 3. Interpretation of Table of Frequency Allocations. Part II TABLE OF FREQUENCY ALLOCATIONS 4. Table of Frequency Allocations. 5. ITU Radio Regulations Footnotes National Radio Frequency Plan 2004 Page 1 BOTSWANA RADIO FREQUENCY PLAN, 2004 . PART 1 - PRELIMINARY 1. Introduction The basis for the Botswana Radio Frequency Band Plan is Section 43 of the Telecommunications Act, 1996 [No. 15 of 1996] and Article 5 of the International Telecommunication Union (ITU) Radio Regulations. The ITU Radio Regulations are annexed to the ITU Convention and are revised by the ITU World Radiocommunication Conference, normally held every three years. The Botswana frequency allocations are broadly in consonance with the ITU requirements for Region 1, within which Botswana falls under 2. Definitions In these regulations, unless the context otherwise requires, “Act” refers to the Telecommunications Act No. 15 of 1996. “Administration” means a government or public authority of a country that is responsible for giving effect to the obligations of the country as a member of International Telecommunications Union (ITU). Botswana Telecommunication Authority (BTA) is the Botswana administration. “Additional Allocation” means an allocation, in the form of Footnote, which is added in this area or in this country to the services or services which are indicated in Table of Frequency allocation. “Aeronautical Mobile Service” a mobile service between aeronautical stations and aircraft stations, or between aircraft stations, in which survival craft stations may participate; emergency position-indicating radiobeacon stations may also participate in this service on designated distress and emergency frequencies.
    [Show full text]
  • Imet-4 Radiosonde 403 Mhz GPS Synoptic
    iMet-4 Radiosonde 403 MHz GPS Synoptic Technical Data Sheet Temperature and Humidity Radiosonde Data Transmission The iMet-4 measures air temperature with a The iMet-4 radiosonde can transmit to an small glass bead thermistor. Its small size effective range of over 250 km*. minimizes effects caused by long and short- wave radiation and ensures fast response times. A 6 kHz peak-to-peak FM transmission maximizes efficiency and makes more channels The humidity sensor is a thin-film capacitive available for operational use. Seven frequency polymer that responds directly to relative selections are pre-programmed - with custom humidity. The sensor incorporates a temperature programming available. sensor to minimize errors caused by solar heating. Calibration Pressure and Height The iMet-4’s temperature and humidity sensors are calibrated using NIST traceable references to As recommended by GRUAN3, the iMet-4 is yield the highest data quality. equipped with a pressure sensor to calculate height at lower levels in the atmosphere. Once Benefits the radiosonde reaches the optimal height, pressure is derived using GPS altitude combined • Superior PTU performance with temperature and humidity data. • Lightweight, compact design • No assembly or recalibration required The pressure sensor facilitates the use of the • GRUAN3 qualified (pending) sonde in field campaigns where a calibrated • Status LED indicates transmit frequency barometer is not available to establish an selection and 3-D GPS solution accurate ground observation for GPS-derived • Simple one-button user interface pressure. For synoptic use, the sensor is bias adjusted at ground level. Winds Data from the radiosonde's GPS receiver is used to calculate wind speed and direction.
    [Show full text]
  • Comparison Between GPS Radio Occultation and Radiosonde Sounding Data
    Comparison Between GPS Radio Occultation and Radiosonde Sounding Data Dione Rossiter Academic Affiliation, Fall 2003: Senior University of California, Berkeley SOARS® Summer 2003 Science Research Mentors: Christian Rocken, Bill Kuo, and Bill Schreiner Writing and Communications Mentor: David Gochis Community Mentor: Annette Lampert Peer Mentor: Pauline Datulayta ABSTRACT Global Positioning System (GPS) Radio Occultation (RO) is a new technique for obtaining profiles of atmospheric properties, specifically: refractivity, temperature, pressure, water vapor pressure in the neutral atmosphere, and electron density in the ionosphere. The data received from GPS RO contribute significant amounts of information to a range of fields including meteorology, climate, ionospheric research, geodesy, and gravity. Low-Earth orbiting satellites, equipped with a GPS receiver, track GPS radio signals as they set or rise behind the Earth. Since GPS signals are refracted (delayed and bent) by the Earth's atmosphere, these data are used to infer information about atmospheric refractivity. Before the GPS RO data are used for research and operations, it is essential to assess their accuracy. Therefore, this research provided quantitative estimates of the accuracy of GPS RO when compared with measurements of known accuracy. Profile statistics (mean, standard deviation, standard error) were computed as a function of altitude to quantify the errors. Comparing RO data with nearby (300km; 2hr) radiosonde data yielded small mean error for all of the statistical plots generated, affirming that the RO technique is accurate for measuring atmospheric properties. Comparison of RO data with sounding data from different radiosonde systems showed that the RO technique was of high enough accuracy to differentiate differences in performance of various types of radiosonde systems.
    [Show full text]
  • GPS-Based Measurement of Height and Pressure with Vaisala Radiosonde RS41
    GPS-Based Measurement of Height and Pressure with Vaisala Radiosonde RS41 WHITE PAPER Table of Contents CHAPTER 1 Introduction ................................................................................................................................................. 4 Executive Summary of Measurement Performance ............................................................................. 5 CHAPTER 2 GPS Technology in the Vaisala Radiosonde RS41 ........................................................................................... 6 Radiosonde GPS Receiver .................................................................................................................. 6 Local GPS Receiver .......................................................................................................................... 6 Calculation Algorithms ..................................................................................................................... 6 CHAPTER 3 GPS-Based Measurement Methods ............................................................................................................... 7 Height Measurement ......................................................................................................................... 7 Pressure Measurement ..................................................................................................................... 7 Measurement Accuracy..................................................................................................................... 8 CHAPTER
    [Show full text]
  • Suborbital Platforms and Range Services (SPARS)
    Suborbital Capabilities for Science & Technology Small Missions Workshop @ Johns Hopkins University June 10, 2019 Mike Hitch, Giovanni Rosanova Goddard Space Introduction Flight Center AGENDAWASP OPIS ▪ Purpose ▪ History & Importance of Suborbital Carriers to Science ▪ Suborbital Platforms ▪ Sounding Rockets ▪ Balloons (brief) ▪ Aircraft ▪ SmallSats ▪ WFF Engineering ▪ Q & A P-3 Maintenance 12-Jun-19 Competition Sensitive – Do Not Distribute 2 Goddard Space Purpose of the Meeting Flight Center Define theWASP OPISutility of Suborbital Carriers & “Small” Missions ▪ Sounding rockets, balloons and aircraft (manned and unmanned) provide a unique capability to scientists and engineers to: ▪ Allow PIs to enhance and advance technology readiness levels of instruments and components for very low relative cost ▪ Provide PIs actual science flight opportunities as a “piggy-back” on a planned mission flight at low relative cost ▪ Increase experience for young and mid-career scientists and engineers by allowing them to get their “feet wet” on a suborbital mission prior to tackling the much larger and more complex orbital endeavors ▪ The Suborbital/Smallsat Platforms And Range Services (SPARS) Line Of Business (LOB) can facilitate prospective PIs with taking advantage of potential suborbital flight opportunities P-3 Maintenance 12-Jun-19 Competition Sensitive – Do Not Distribute 3 Goddard Space Value of Suborbital Research – What’s Different? Flight Center WASP OPIS Different Risk/Mission Assurance Strategy • Payloads are recovered and refurbished. • Re-flights are inexpensive (<$1M for a balloon or sounding rocket vs >$10M - 100M for a ELV) • Instrumentation can be simple and have a large science impact! • Frequent flight opportunities (e.g. “piggyback”) • Development of precursor instrument concepts and mature TRLs • While Suborbital missions fully comply with all Agency Safety policies, the program is designed to take Higher Programmatic Risk – Lower cost – Faster migration of new technology – Smaller more focused efforts, enable Tiger Team/incubator experiences.
    [Show full text]
  • Measurements of Auroral Particles by Means of Sounding Rockets of Mother-Daughter Type A
    MEASUREMENTS OF AURORAL PARTICLES BY MEANS OF SOUNDING ROCKETS OF MOTHER-DAUGHTER TYPE A. Falck KGI REPORT 192 NOVEMBER 1985 KIRUNA U-OI'HYSICAL INSTITITK MKINA N\X|1>I\ MEASUREMENTS OF AURORAL PARTICLES BY MEANS OF SOUNDING ROCKETS OF MOTHER-DAUGHTER TYPE by A. Falck Kiruna Geophysical Institute P.O. Box 704, S-981 27 KIRUNA, Sweden KGI Report 192 November 1985 Printed in Sweden Kiruna Geophysical Institute Kiruna 19^5 ISSN 034/-f 405 Contents Page 1. Presentation of the S17 payioads 3 1.1 The scientific objective of the sounding rockets S17 3 1.2 S17 experiments 3 1.3 Physical characteristics of the payioads 3 1.4 Physical characteristics of the Nike-Tomahawk rocket 5 1.5 Nominal characteristics of flight events 7 1.6 Attitude measurements 8 1.7 Separation of the two payload units 20 1.8 Telemetry and data analyzing technique 33 2. Description of the instrumentation for the particle experiments in the S17 payioads 38 2.1 General theory of CEM - detectors 38 2.2 Calibration of th* CEM - detectors 42 2.3 Solid state detectors in SI7 payioads 44 2.4 Mounting of the detectors 48 2.5 The efficiency of channel multipliers 48 3. Review of the geophysical conditions during the SI7 flights and presentation of some supporting observations 51 j.1 The auroral situation during S17 flights 51 :• 2 Magnetic activity 51 .'.3 Other supporting observations 56 .4 The lowlightlevel-TV-system 56 'K Particle fluxes and electric currents coupling the magnetosphere and the ionosphere during a magnetospheric substorm 66 4.1 Review of some substorm terminology and definitions 66 4.2 Reference and comparisons of SI7-2 measure- ments with the results of the IMS-study 75 4.3 Comparison of simultaneous particle observa- tions at low ionospheric altitude (S17-1) and at the magnetic equatorial region (ATS-6) 91 4.4 Summary and conclusions 99 5.
    [Show full text]
  • ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
    ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.
    [Show full text]
  • Colorado Space Grant Consortium
    CO_FY16_Year2_APD Colorado Space Grant Consortium Lead Institution: University of Colorado Boulder Director: Chris Koehler Telephone Number: 303.492.3141 Consortium URL: http://spacegrant.colorado.edu Grant Number: NNX15AK04H Lines of Business (LOBs): NASA Internships, Fellowships, and Scholarships; Stem Engagement; Institutional Engagement; Educator Professional Development A. PROGRAM DESCRIPTION The National Space Grant College and Fellowship Program consists of 52 state-based, university- led Space Grant Consortia in each of the 50 states plus the District of Columbia and the Commonwealth of Puerto Rico. Annually, each consortium receives funds to develop and implement student fellowships and scholarships programs; interdisciplinary space-related research infrastructure, education, and public service programs; and cooperative initiatives with industry, research laboratories, and state, local, and other governments. Space Grant operates at the intersection of NASA’s interest as implemented by alignment with the Mission Directorates and the state’s interests. Although it is primarily a higher education program, Space Grant programs encompass the entire length of the education pipeline, including elementary/secondary and informal education. The Colorado Space Grant Consortium is a Designated Consortium funded at a level of $760,000 for fiscal year 2016. B. PROGRAM GOALS • Population of students engaged in COSGC hands-on programs (awardees and non- awardees) will be at least 40% women and 23.7% from ethnic minority populations underrepresented in STEM fields. • Maintain student hands-on programs at all 8 COSGC Minority Serving Institutions and engaged at least 30 students on MSI campuses. • 30% of COSGC NASA funds will be awarded directly to students. • Award 80 scholarships to support students working on hands-on projects.
    [Show full text]
  • Coastal Weather Program
    Commandant 2100 Second Street, S.W. United States Coast Guard Washington, DC 20593-0001 (202) 267-1450 COMDTINST 3140.3D 13 JAN 1988 COMMANDANT INSTRUCTION 3140.3D Subj: Coastal Weather Program 1. PURPOSE. To set forth policy for weather observation, reporting, and dissemination from Coast Guard shore units and offshore light stations; and, to direct the coordination with the National Weather Service (NWS) for these activities. 2. DIRECTIVES AFFECTED. Commandant Instruction 3140.3C is canceled. 3. PROGRAM OBJECTIVES. To support the National Weather Service in conducting its federally-mandated weather forecasting and dissemination program by: a. Designating those stations and units required to report weather observations. b. Ensuring that weather reports are made in the suitable format as prescribed by the NWS. c. Ensuring that uniform and timely communication procedures and methods are used to convey this information to the NWS. d. Providing procedures for units not participating in a regular weather reporting program which may be required to make weather observations in support of NWS special programs. 4. POLICY. Title 14 Section 147 of the U.S. Code authorizes the Commandant to procure, maintain, and make available facilities and assistance for observing, investigating, and communicating weather phenomena and for disseminating weather data, forecasts and warnings in cooperation with the Director of the National Weather Service. To this end the Commandant supports a program to ensure the high quality and quantity of weather observations for NWS marine weather forecasts. The Coast Guard, as a user, depends upon high quality forecasts for our missions in the marine environment. COMDTINST 3140.3D 13 JAN 1988 5.
    [Show full text]
  • Allianz Risk Barometer
    ALLIANZ GLOBAL CORPORATE & SPECIALTY ALLIANZ RISK BAROMETER IDENTIFYING THE MAJOR BUSINESS RISKS FOR 2021 The most important corporate perils for the next 12 months and beyond, based on the insight of 2,769 risk management experts from 92 countries and territories. About Allianz Global Corporate & Specialty Allianz Global Corporate & Specialty (AGCS) is a leading global corporate insurance carrier and a key business unit of Allianz Group. We provide risk consultancy, Property-Casualty insurance solutions and alternative risk transfer for a wide spectrum of commercial, corporate and specialty risks across 10 dedicated lines of business. Our customers are as diverse as business can be, ranging from Fortune Global 500 companies to small businesses, and private individuals. Among them are not only the world’s largest consumer brands, tech companies and the global aviation and shipping industry, but also wineries, satellite operators or Hollywood film productions. They all look to AGCS for smart answers to their largest and most complex risks in a dynamic, multinational business environment and trust us to deliver an outstanding claims experience. Worldwide, AGCS operates with its own teams in 31 countries and through the Allianz Group network and partners in over 200 countries and territories, employing over 4,450 people. As one of the largest Property-Casualty units of Allianz Group, we are backed by strong and stable financial ratings. In 2019, AGCS generated a total of €9.1 billion gross premium globally. www.agcs.allianz.com/about-us/about-agcs.html METHODOLOGY CONTENTS The 10th Allianz Risk Barometer is the biggest yet, incorporating the views of a record 2,769 respondents from 92 countries and territories.
    [Show full text]
  • Methods of Oabservation at Sea Meteorological Soundings in The
    WORLD METEOROLOGICAL ORGANIZATION WORLD METEOROLOGICAL ORGANIZATION TECHNICAL NOTE No. 2 TECHNICAL NOTE No. 60 METHODS OF OABSERVATION AT SEA METEOROLOGICAL SOUNDINGS IN THE PARTUPPER I – SEA SURFACEATMOSPHERE TEMPERATURE by W.W. KELLOGG WMO-No.WMO-No. 153. 26. TP. 738 Secretariat of the World Meteorological Organization – Geneva – Switzerland THE WMO The WOTld :Meteol'ological Organization (Wl\IO) is a specialized agency of the United Nations of which 125 States and Territories arc Members. It was created: to facilitate international co~operation in the establishment of networks of stations and centres to provide meteorological services and observationsI to promote the establishment and maintenance of systems for the rapid exchange of meteorological information, to promote standardization of meteorological observations and ensure the uniform publication of observations and statistics. to further the application of rneteol'ology to Rviatioll, shipping, agricultul"C1 and other human activities. to encourage research and training in meteorology. The machinery of the Organization consists of: The World Nleteorological Congress, the supreme body of the o.rganization, brings together the delegates of all Members once every four years to determine general policies for the fulfilment of the purposes of the Organization, to adopt Technical Regulations relating to international meteorological practice and to determine the WMO programme, The Executive Committee is composed of 21 dil'cetors of national meteorological services and meets at least once a yeae to conduct the activities of the Organization and to implement the decisions taken by its Members in Congress, to study and make recommendations Oll matters affecting international meteorology and the opel'ation of meteorological services.
    [Show full text]
  • Importance Oi Thermistor Mount Configuration to Meteorological
    James F. Morrissey importance oi and Andrew S. Carten, Jr. thermistor mount configuration A. F. Cambridge Research Laboratories to meteorological rocket Bedford, Mass. temperature measurements Abstract tions. Thus, we are receiving more data than ever be- A description is given of the original rocketsonde ther- fore—thanks to more successful firings and improved mistor mount, consisting of a 10-mil bead suspended signal reception—but data quality has stayed at a low between two metal posts. The difficulties encountered to medium level. Recent evidence, described later in this with this mount and the subsequent development of article, confirms our belief that caution is in order. the superior "thin-film" mount are also described. The Today's rocketsonde is, for the most part, a more uncertainties associated with the use of the latter mount rugged version of the standard radiosonde. This is only are outlined along with their effect on data acceptance. natural, considering both the effort which has gone into A different approach to the original problem is de- refining radiosonde and associated ground equipment scribed, which employs longer leads for dissipation of design and the success which has crowned that effort. heat conducted to the bead. The uncertainty associated In choosing a sensor for the rocketsonde, it was recog- with the long lead is shown to be minimal. Preliminary nized that the small bead thermistor has the necessary results of a series of 10 rocket flights are presented. response time to provide useful measurements to about These results tend to confirm the advantages of the 60 km. A 10-mil diameter bead, aluminized to minimize long lead mount.
    [Show full text]