Electric Drive Bus Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Minibus Or Coach Module 4 Driver CPC Questions and Answers
Minibus or coach Module 4 Driver CPC questions and answers The Initial Driver CPC qualification was introduced into the bus and coach industry on September 10th 2008. Exactly one year before Driver CPC came into force for the commercial goods (HGV) industry (September 10th 2009). Part of acquiring the PCV Initial Driver CPC qualification means having to pass the module 4 examination. Module 4 is the practical associated knowledge test that is carried out at a DSA approved test centre. There is no driving required (suffice for the rolling brake check.) Students will need a DSA approved vehicle to demonstrate their answers. This test is all about scenarios a professional PCV driver may encounter in his or her working life. It includes PCV drivers legal obligations (vehicles checks, not overloading, pre-use checking), as well as checking for illegal immigrants, dealing with emergency situations etc. The Module 4 exam will last approximately 20-30 minutes and the DSA examiner will ask approximately 5-6 questions. To be successful you must attain at least 75% for each question and at least 80% overall. This post looks at the possible questions you may be given for your minibus or coach Driver CPC module 4 examination. If you need HGV Module 4 questions and answers we recommend your visit our Module 4 HGV Driver CPC page. Module 4 requires competence of skills and knowledge in the following areas. Carrying passengers with due regard for safety rules and proper vehicle use. Ensuring passenger, comfort, safety and security. Preventing criminality and trafficking of illegal immigrants Assessing emergency situations Preventing physical risk The following should be used as a guide only. -
March 2020 After 28 Years of Service with the Company, Fifteen of Which As CFO
NFI GROUP INC. Annual Information Form March 16, 2020 TABLE OF CONTENTS BUSINESS OF THE COMPANY ............................................................................................................................... 2 CORPORATE STRUCTURE ..................................................................................................................................... 3 GENERAL DEVELOPMENT OF THE BUSINESS .................................................................................................. 4 Recent Developments ........................................................................................................................................... 4 DESCRIPTION OF THE BUSINESS ......................................................................................................................... 7 Industry Overview ................................................................................................................................................ 7 Company History ............................................................................................................................................... 10 Business Strengths .............................................................................................................................................. 10 Corporate Mission, Vision and Strategy ............................................................................................................. 13 Environmental, Social and Governance Focus .................................................................................................. -
Alternative Fuels in Public Transit: a Match Made on the Road
U.S. DEPARTMENT of ENERGY, March 2002 OFFICE of ENERGY EFFICIENCY and RENEWABLE ENERGY Alternative Fuels in Public Transit: A Match Made on the Road As alternative fuels compete with conventional fuels for Transit agencies across the nation operate approximately a place in public awareness and acceptance, one of their 75,000 buses. As shown in the table, transit buses con- most visible applications is in public transportation. sume more fuel per vehicle annually than some other Vehicles, particularly buses and shuttles, that carry niche market vehicles on average, although the fuel use people in large numbers, stand to gain much from using of individual buses varies widely. (Source: Charting the alternative fuels. Such high-demand fuel users can help Course for AFV Market Development and Sustainable sustain a fueling infrastructure that supports private Clean Cities Coalitions, Clean Cities, March 2001; see autos and other smaller vehicles. www.ccities.doe.gov/pdfs/ccstrategic.pdf.) Buses are the most visible Public transit operations are well suited to alternative Percentage of Vehicles fuel use. Transit vehicles often travel on contained transit vehicles and in Transit Fleets by Type routes with centralized fueling, they are serviced by account for 58% of the a team of technicians who can be trained consistently, transit vehicle miles trav- and they are part of fleets that travel many miles, so eled, but transit agencies economies of scale can be favorable. Transit agencies operate a variety of other also typically operate in urban areas that may have air vehicles that can also use quality concerns. Alternative fuel transit vehicles offer alternative fuels. -
90929 CEC Hydrogen Technology Workshop Subset
DOCKET 09-ALT-1 DATE 9/29/2009 RECD. 9/30/2009 Hydrogen fueled Heavy Duty Transport Paul B. Scott, CSO, ISE Corporation, Poway, CA pscott @isecorp.com Presentation to CEC Investment Plan Staff Workshop 29 September 2009 1 Preview: • Five introductory slides on the Company, ISE • Some hard facts…. • Hydrogen transportation technology assessment • Critical challenges • Money: cost & volume estimates • Closing suggestions in summary 2 ISE has pioneered in electric drive transit vehicle development 3 ISE Detail: • Focused exclusively on electric drive heavy duty vehicles and components therefor, Clean Vehicles for a Clean Planet, since 1995 • 140 employees, most in Poway, CA, designing & fabricating drive system assemblies to be installed by bus manufacturers • Approaching 300 vehicles in revenue service every day, cumulative mileage in excess of 10 million miles, • Privately held Long Beach Transit operated New Flyer Gasoline Hybrid – “x-ray vision” reveals ultra-capacitors, cooling atop, generator & engine below 4 What does ISE do? ISEISE’s’s Partners Partners && ISE:ISE: LeaderLeader inin IntegratedIntegrated HybridHybrid DriveDrive SystemsSystems CustomersCustomers && SuppliersSuppliers MarketsMarkets ISE designs, integrates, installs and services its own energy management ISE sources complementary systems, accessories and control software with third party components into a ISE systems are designed into components from complete series hybrid-electric drive system optimized for heavy duty vehicles and sold with the platforms of market-leading -
A-1 Electric Bus & Fleet Transition Planning
A Proterra model battery electric powered bus (photo credit: Proterra, May 2021). 52 | page A-1 Electric Bus & Fleet Transition Planning Initiative: Assess the feasibility of transitioning Pace’s fleet toward battery electric and additional CNG technologies, as well as develop a transition plan for operations and facilities. Study other emerging technologies that can improve Pace’s environmental impact. Supports Goals: Responsiveness, Safety, Adaptability, Collaboration, Environmental Stewardship, Fiscal Solvency, and Integrity ACTION ITEM 1 Investigate and Plan for Battery Electric Bus (BEB) Pace is committed to the goals of environmental stewardship and economic sustainability, and recognizes how interest to electrify vehicles across private industry and US federal, state, and local governments has been intensifying throughout 2020-2021. Looking ahead, the agency will holistically evaluate a transition path to converting its fleet to battery electric buses (BEB). As a first step, Action Item 2 of the A-2 Capital Improvement Projects initiative describes Pace’s forthcoming Facilities Plan. This effort will include an investigation of the prerequisites that BEB technology requires to successfully operate. Once established, Pace will further plan what next steps and actions to take in pursuit of this vehicle propulsion system. A Union of Concerned Scientists 2017 study3 indicates that BEB’s have 70 percent lower global warming emissions than CNG or diesel hybrid buses even when considering the lifecycle emissions required to generate the necessary electricity. Similarly, a 2018 US PIRG Education Fund Study4 indicates that implementing BEB’s lower operational costs yields fuel and maintenance savings over a vehicle’s life cycle. Pace praises the efforts of many other transit agencies across the nation and world who are investing heavily in transitioning their fleets to BEB and other green, renewable, and environmentally-cognizant sources of vehicle propulsion. -
Fuel Cell Transit Buses: Thunderpower Bus Evaluation at Sunline Transit Agency
Hydrogen, Fuel Cells & Infrastructure Technologies Program Fuel Cell Transit Buses ThunderPower Bus Evaluation at SunLine Transit Agency A Strong Energy Portfolio for a Strong America Energy effi ciency and clean, renewable energy will mean a stronger economy, a cleaner en- vironment, and greater energy independence for America. By investing in technology break- throughs today, our nation can look forward to a more resilient economy and secure future. Far-reaching technology changes will be essential to America’s energy future. Working with a wide array of state, community, industry, and university partners, the U.S. Department of Energy’s Offi ce of Energy Effi ciency and Renewable Energy invests in a portfolio of energy technologies that will: • Conserve energy in the residential, commercial, industrial, government, and transportation sectors • Increase and diversify energy supply, with a focus on renewable domestic sources • Upgrade our national energy infrastructure • Facilitate the emergence of hydrogen technologies as vital new “energy carriers.” The Opportunities Biomass Program Hydrogen, Fuel Cells & Infrastructure Using domestic, plant-derived resources to Technologies Program meet our fuel, power, and chemical needs Paving the way toward a hydrogen econo- my and net-zero carbon energy future Building Technologies Program Homes, schools, and businesses that Industrial Technologies Program use less energy, cost less to operate, and Boosting the productivity and competi- ultimately, generate as much power as tiveness of U.S. industry -
The Influence of Passenger Load, Driving Cycle, Fuel Price and Different
Transportation https://doi.org/10.1007/s11116-018-9925-0 The infuence of passenger load, driving cycle, fuel price and diferent types of buses on the cost of transport service in the BRT system in Curitiba, Brazil Dennis Dreier1 · Semida Silveira1 · Dilip Khatiwada1 · Keiko V. O. Fonseca2 · Rafael Nieweglowski3 · Renan Schepanski3 © The Author(s) 2018 Abstract This study analyses the infuence of passenger load, driving cycle, fuel price and four diferent types of buses on the cost of transport service for one bus rapid transit (BRT) route in Curitiba, Brazil. First, the energy use is estimated for diferent passenger loads and driving cycles for a conventional bi-articulated bus (ConvBi), a hybrid-electric two- axle bus (HybTw), a hybrid-electric articulated bus (HybAr) and a plug-in hybrid-electric two-axle bus (PlugTw). Then, the fuel cost and uncertainty are estimated considering the fuel price trends in the past. Based on this and additional cost data, replacement scenarios for the currently operated ConvBi feet are determined using a techno-economic optimisa- tion model. The lowest fuel cost ranges for the passenger load are estimated for PlugTw amounting to (0.198–0.289) USD/km, followed by (0.255–0.315) USD/km for HybTw, (0.298–0.375) USD/km for HybAr and (0.552–0.809) USD/km for ConvBi. In contrast, C the coefcient of variation ( v ) of the combined standard uncertainty is the highest for C PlugTw ( v : 15–17%) due to stronger sensitivity to varying bus driver behaviour, whereas C it is the least for ConvBi ( v : 8%). -
The Route to Cleaner Buses a Guide to Operating Cleaner, Low Carbon Buses Preface
The Route to Cleaner Buses A guide to operating cleaner, low carbon buses Preface Over recent years, concerns have grown over the contribution TransportEnergy is funded by the Department for Transport of emissions from road vehicles to local air quality problems and the Scottish executive to reduce the impact of road and to increasing greenhouse gas emissions that contribute to transport through the following sustainable transport climate change. One result of this is a wider interest in cleaner programmes: PowerShift, CleanUp, BestPractice and the vehicle fuels and technologies.The Cleaner Bus Working New Vehicle Technology Fund.These programmes provide Group was formed by the Clear Zones initiative and the advice, information and grant funding to help organisations Energy Saving Trust TransportEnergy programme. Its overall in both the public and private sector switch to cleaner, aim is to help stimulate the market for clean bus technologies more efficient fleets. and products. Comprising representatives of the private and CATCH is a collaborative demonstration project co- public sectors, it has brought together users and suppliers in financed by the European Commission's an effort to gain a better understanding of the needs and LIFE-ENVIRONMENT Programme. CATCH is co-ordinated requirements of each party and to identify, and help overcome, by Merseytravel, with Liverpool City Council,Transport & the legal and procurement barriers. Travel Research Ltd,ARRIVA North West & Wales Ltd, This guide is one output from the Cleaner Bus Working -
Financial Analysis of Battery Electric Transit Buses (PDF)
Financial Analysis of Battery Electric Transit Buses Caley Johnson, Erin Nobler, Leslie Eudy, and Matthew Jeffers National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5400-74832 Operated by the Alliance for Sustainable Energy, LLC June 2020 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Financial Analysis of Battery Electric Transit Buses Caley Johnson, Erin Nobler, Leslie Eudy, and Matthew Jeffers National Renewable Energy Laboratory Suggested Citation Johnson, Caley, Erin Nobler, Leslie Eudy, and Matthew Jeffers. 2020. Financial Analysis of Battery Electric Transit Buses. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5400-74832. https://www.nrel.gov/docs/fy20osti/74832.pdf NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5400-74832 Operated by the Alliance for Sustainable Energy, LLC June 2020 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Golden, CO 80401 Contract No. DE-AC36-08GO28308 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Vehicle Technologies Office. -
Totaltrack Holds the Line for Action Distribution Warehouse
Top Transport Vehicle Manufacturer Uses Intelligent Video to Prevent Intrusion and Scrap Metal Theft ioimage intelligent-video system installed to upgrade existing indoor and outdoor security at the Merkavim Merkavim Metal Works Ltd. Description: Transport & Bus Manufacturer founded in 1946 Cesarea Plant Employees: Approx. 300 Produces: Entire range of mini-buses, low-floor and articulated The theft and removal of items low-floor city buses, inter-city buses, tourist coaches, armored from outdoor sites that store and prisoner buses and other specialized passenger transport materials and equipment for solutions. Central Distribution Center: Production facility, covering over manufacturing and building 100,000 sqm, is located in Central Israel construction is becoming more widespread. Most often the damage far exceeded The assembly plant is located in the street or scrap value of the items an area that is surrounded by Worldwide equipment and scrap stolen farmland and open field areas. metal theft is costing billions of dollars and there are few ways Merkavim found that thieves were Thieves can easily scale to prevent these crimes or catch taking parts from busses and doing landscape walls and commercial these criminals. considerable damage in the process. wrought iron fences that protect Most often the damage far exceeded the the site. Just beyond the semi- The common reasons for the street or scrap value of the items stolen. decorative fences are access outbreak is an inability to watch On several occasions component steel roads, main streets and rail lines over expansive areas, absence used for manufacturing was stolen by that provide thieves access to the of security, or patchy traditional scrap metal thieves from the outdoor property as well as offer a means security that is too labor storage areas. -
Page 1 of 32 VEHICLE RECALLS by MANUFACTURER, 2000 Report Prepared 1/16/2008
Page 1 of 32 VEHICLE RECALLS BY MANUFACTURER, 2000 Report Prepared 1/16/2008 MANUFACTURER RECALLS VEHICLES ACCUBUIL T, INC 1 8 AM GENERAL CORPORATION 1 980 AMERICAN EAGLE MOTORCYCLE CO 1 14 AMERICAN HONDA MOTOR CO 8 212,212 AMERICAN SUNDIRO MOTORCYCLE 1 2,183 AMERICAN SUZUKI MOTOR CORP. 4 25,023 AMERICAN TRANSPORTATION CORP. 5 1,441 APRILIA USA INC. 2 409 ASTON MARTIN 2 666 ATHEY PRODUCTS CORP. 3 304 B. FOSTER & COMPANY, INC. 1 422 BAYERISCHE MOTOREN WERKE 11 28,738 BLUE BIRD BODY COMPANY 12 62,692 BUELL MOTORCYCLE CO 4 12,230 CABOT COACH BUILDERS, INC. 1 818 CARPENTER INDUSTRIES, INC. 2 6,838 CLASSIC LIMOUSINE 1 492 CLASSIC MANUFACTURING, INC. 1 8 COACHMEN INDUSTRIES, INC. 8 5,271 COACHMEN RV COMPANY 1 576 COLLINS BUS CORPORATION 1 286 COUNTRY COACH INC 6 519 CRANE CARRIER COMPANY 1 138 DABRYAN COACH BUILDERS 1 723 DAIMLERCHRYSLER CORPORATION 30 6,700,752 DAMON CORPORATION 3 824 DAVINCI COACHWORKS, INC 1 144 D'ELEGANT CONVERSIONS, INC. 1 34 DORSEY TRAILERS, INC. 1 210 DUTCHMEN MANUFACTURING, INC 1 105 ELDORADO NATIONAL 1 173 ELECTRIC TRANSIT, INC. 1 54 ELGIN SWEEPER COMPANY 1 40 E-ONE, INC. 1 3 EUROPA INTERNATIONAL, INC. 2 242 EXECUTIVE COACH BUILDERS 1 702 FEATHERLITE LUXURY COACHES 1 83 FEATHERLITE, INC. 2 3,235 FEDERAL COACH, LLC 1 230 FERRARI NORTH AMERICA 8 1,601 FLEETWOOD ENT., INC. 5 12, 119 FORD MOTOR COMPANY 60 7,485,466 FOREST RIVER, INC. 1 115 FORETRAVEL, INC. 3 478 FOURWINNS 2 2,276 FREIGHTLINER CORPORATION 27 233,032 FREIGHTLINER LLC 1 803 GENERAL MOTORS CORP. -
An Attractive Value Proposition for Zero-Emission Buses in Denmark
Fuel Cell Electric Buses An attractive Value Proposition for Zero-Emission Buses In Denmark - April 2020 - Photo: An Attractive Line Bloch Value Klostergaard, Proposition North for Denmark Zero-Emission Region Buses. in Denmark Executive Summary Seeking alternatives to diesel buses are crucial for realizing the Danish zero Zero–Emission Fuel Cell emission reduction agenda in public transport by 2050. In Denmark alone, public transport and road-transport of cargo account for ap- proximately 25 per cent of the Danish CO2 emissions. Thus, the deployment of zero emission fuel cell electric buses (FCEBs) will be an important contribution Electric Buses for Denmark. to the Danish climate law committed to reaching 70 per cent below the CO2 emissions by 2030 and a total carbon neutrality by 2050. In line with the 2050 climate goals, Danish transit agencies and operators are being called to implement ways to improve air quality in their municipalities while maintaining quality of service. This can be achieved with the deployment of FCEBs and without compromising on range, route flexibility and operability. As a result, FCEBs are now also being included as one of the solutions in coming zero emission bus route tenders Denmark. Danish municipalities play an important role in establishing the public transport system of the future, however it is also essential that commercial players join forces to realize the deployment of zero-emission buses. In order to push the de- velopment forward, several leading players in the hydrogen fuel cell value chain have teamed up and formed the H2BusEurope consortium committed to support the FCEB infrastructure.