Watson Machine Learning for Z/OS — Jamar Smith Data Scientist, North America Z Hybrid Cloud [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Watson Machine Learning for Z/OS — Jamar Smith Data Scientist, North America Z Hybrid Cloud Jamar.Smith@Ibm.Com Watson Machine Learning for z/OS — Jamar Smith Data Scientist, North America z Hybrid Cloud [email protected] 1 Goal Demonstrate the value of enterprise analytics on the IBM Z platform. 2 Agenda Enterprise Analytics Strategy Machine Learning Overview Value of Analytics in Place IBM Cloud Pak 4 Data 3 Enterprise Analytics Strategy 4 Current trends in analytics The need for Pervasive Analytics is increasing in almost every industry Real time or near real time analytic results are necessary Need to leverage all relevant data sources available for insight Ease demands on highly sought-after analytic skill base Embrace rapid pace of innovation 5 Data gravity key to enterprise analytics Performance matters Core transactional for variety of data on systems of record are and off IBM Z on IBM Z Predominance of data Real-time / near real- originates on IBM Z, time insights are z/OS (transactions, valuable member info, …) Data volume is large, distilling data Data Security / data privacy provides operational needs to be preserved efficiencies Gravity Podcast: http://www.ibmbigdatahub.com/podcast/making-data-simple-what-data-gravity 6 IBM Z Analytics Keep your data in place – a different approach to enterprise analytics • Keep data in place for analytics • Keep data in place, encrypted and secure • Minimize latency, cost and complexity of data movement • Transform data on platform • Improve data quality and governance • Apply the same resiliency to analytics as your operational applications • Combine insight from structured & unstructured data from z and non-z data sources • Leverage existing people, processes and infrastructure 7 Machine Learning Overview 8 What is Machine Learning? Computers that learn without being explicitly programmed. Provide Data Perform Analysis Actionable Insight Hint: It’s just a bunch of math. 9 Traditional decision process Loan Application Approve or Reject House Data Appraise Home Value Warranty Resolution Predict Causality Customer Satisfaction Churn 10 Decision process with ML Mathematical Function f(x) Loan Application Represents a pattern Approve or Reject House Data with a Mathematical Appraise Home Value Warranty Resolution Function Predict Causality Customer Satisfaction Churn 11 What’s involved in Machine Learning Machine learning prep Clearly define business problem Select data set to address business problem Transform Data Model Management Machine learning process Monitor models performance Build a model using a subset over time of the data Retrain model if Deploy the model to score performance has degraded against new data 12 Why Machine Learning? Tap into the rich value of historical data Discover insights and generate predictive models make better decisions Don’t just generate reports, use predictive analytics Predictive analytics in the future means things like: • Fraud detection The value of machine learning is rooted in • Optimization of resources its ability to create accurate models to • Infinite others all meant to increase guide future actions and to discover revenue or provide savings patterns that we’ve never seen before 13 Value of Analytics in Place 14 QMF: Move Towards ML with BI Start with the Data! QMF, the BI tool on IBM Z for the first Create stories with the data that influence step in a data driven enterprise questions about the business Analytics Stack on IBM Z Driven by Data Gravity IBM Z Operations Db2 AI for z/OS Analytics ML based Anti-Fraud (Db2ZAI) (IZOA, formerly IOAz) Solutions MACHINE LEARNING SOLUTIONS Machine Learning for z/OS MACHINE LEARNING PLATFORM Open Data Analytics for z/OS Spark Cluster Spark Cluster Spark Loader Anaconda Optimized Data Spark Cluster Data Warehouse Engine Access Layer Db2 Analytics Accelerator (IDAA) z/OS Distributed Platform ANALYTICS ENGINE Data Virtualization Manager (DVM) Transactions HTAP News Merchants Transactions User Behavior Twitter Merchants Client Data Db2 Analytics Accelerator (IDAA) z/OS Distributed Platform DATA 16 Open Source at its Core IBM Machine Learning for z/OS Business Govern, Manage, Algorithm Assist… Data ML Applications Data Prep Algo Model Deploy Predict Monitor, Feedback Distilled Distilled Insight Insight Query Analytic Result Acceleration Sets IBM Open Data Analytics for z/OS Python Optimized Data Integration Layer Merchant Transaction Customer Pauselss GC Distributed Apache New SIMD instructions Pervasive Spark 32 TB Memory Encryption Federate analytics leveraging data in place for more current insights at scale, optimized security, privacy and reduced costs 17 Full Lifecycle Machine Learning Platform Explore & Data Train & Evaluate Go Live: Predict Ingest Deploy Visualize Preparation Models and Monitor Data Engineers Data Application Production Scientists Developers Engineers Platform agnostic model development Leverage open source software Real-time insight with transactions Insight incorporated from any platform Industry leading encryption, security, reliability & availability 18 Tools for Both Coders and Non-Coders • Visual productivity tool around data science • Open-Source data science tools (Python, Spark, Jupyter Notebooks) • Quicker time to value • Inclusion of full-fledged data preparation and many machine learning algorithms VISUAL PROGRAMMATIC • Commercial tools (SPSS) • Trained using open source • Line of business/solution or self-taught focused • Works within a start-up, technology • Trained in data mining/ analytic firm, CIO office or dedicated methodology • Background in mathematics, • Background in social sciences, computer science economics, mathematics • Uses programming languages, APIs and avoids packages Better Together 19 Utilities to accelerate every stage of Machine Learning Auto data preparation Auto feature Auto modelling (ADP) engineering Automatically analyzes input Cognitive assistant for data scientists Automatically recommends data and prepares (CADS) feature set which can it for training • Select the best algorithm with the produce model with best • Fills missing values best performance from a set of accuracy • Encodes/decodes candidates • Join multiple tables and categorical data automatically select Hyperparameter optimization (HPO) • Index string data relevant features • • Group all numeric types into Select the hyperparameter with the • Feature selection based best performance from a set of vectors on underlying candidates given a specific algorithm • Normalize data correlation analysis CADS and HPO use the performance of models on small data sets to predict performance on large data sets. They use ML to facility ML 20 Data visualization of SPSS Modeler in ML for z/OS Chart themes 21 ML for z/OS Fraud detection solution templates Sample the records Tree based sampling for skewed data in every leaf node • Data for fraud detection are generally skewed, e.g. 1/5000 fraud ratio – Leads to biased model • Random sampling method may lead to information loss and unstable model performance • Tree based sampling method to populate training data set • Goal/Results – Amplify probability of discovering fraud from the data data – Minimize false positives and maximize finding truly positive fraud 22 Db2 Health Tree - using IBM WML for z/OS § Leverages machine learning and data science § Ingests SMF data for model training and scoring § Analyzes, monitors, and visualizes large amount of operational data • Builds a hierarchy health tree to represent the health status of the Db2 sub-systems, transactions and individual KPIs • Monitors the changes in health status over time § Highlights abnormal KPIs in a timeline to assist root cause diagnosis § Uses ML for z/OS functionalities to provide module life cycle management § Provides real-time scoring capability by adopting SMF real-time interface 23 IBM Cloud Pak 4 Data 24 The building blocks of data and analytics IBM Cloud Pak for Data (ICP4D) 1. Services Ecosystem Services Layer 1 With a click, access and deploy an ecosystem of 45+ analytics services and templates from IBM and third parties. 2 2. Data Virtualization Quickly and easily query across multiple data Platform sources without moving your data Interface Layer 3. Platform Interface 3 Speed time-to-value with a single user experience that integrates data management, 4 data governance and analysis for greater Kubernetes efficiency and improved use of resources Layer 4. Red Hat OPENSHIFT® Leverage the leading hybrid cloud, enterprise On- container platform for an innovative and fast Infrastructure deployment strategy Premises Layer 5. Any Cloud 5 Avoid lock-in and leverage all cloud infrastructures with our multi-cloud approach ICP4D Use Case with WMLz - Get Access to Data on and off IBM Z - Deploy ML models into production at the speed of your business 27 Summary • Train anywhere, deploy anywhere Leveraging WMLz for in-transaction scoring • Data gravity Limiting data movement via coexistence of WMLz with ICP4D • Several coexistence scenarios Generating benefits of both WMLz and ICP4D • IBM Db2 Analytics Accelerator Access IDAA directly from WMLz and ICP4D • Data virtualization On- Premises Provision Z data to ICP4D via IBM Data Virtualization Manager for z/OS Thank you Jamar Smith Data Scientist, North America z Hybrid Cloud [email protected] 29 Appendix 30 More resources Machine Learning and z Systems https://www.youtube.com/watch?v=T2HtyNX7aHc Machine Learning Launch Event interview https://www.youtube.com/watch?v=WHenFAa6iPw&feature=youtu.be&list=PLenh213llmca-QogcjfSW9RHPtNye9N_p Machine Learning and z Systems https://www.youtube.com/watch?v=T2HtyNX7aHc Machine Learning Launch
Recommended publications
  • History of AI at IBM and How IBM Is Leveraging Watson for Intellectual Property
    History of AI at IBM and How IBM is Leveraging Watson for Intellectual Property 2019 ECC Conference June 9-11 at Marist College IBM Intellectual Property Management Solutions 1 IBM Intellectual Property Management Solutions © 2017-2019 IBM Corporation Who are We? At IBM for 37 years I currently work in the Technology and Intellectual Property organization, a combination of CHQ and Research. I have worked as an engineer in Procurement, Testing, MLC Packaging, and now T&IP. Currently Lead Architect on IP Advisor with Watson, a Watson based Patent and Intellectual Property Analytics tool. • Master Inventor • Number of patents filed ~ 24+ • Number of submissions in progress ~ 4+ • Consult/Educate outside companies on all things IP (from strategy to commercialization, including IP 101) • Technical background: Semiconductors, Computers, Programming/Software, Tom Fleischman Intellectual Property and Analytics [email protected] Is the manager of the Intellectual Property Management Solutions team in CHQ under the Technology and Intellectual Property group. Current OM for IP Advisor with Watson application, used internally and externally. Past Global Business Services in the PLM and Supply Chain practices. • Number of patents filed – 2 (2018) • Number of submissions in progress - 2 • Consult/Educate outside companies on all things IP (from strategy to commercialization, including IP 101) • Schaumburg SLE Sue Hallen • Technical background: Registered Professional Engineer in Illinois, Structural Engineer by [email protected] degree, lots of software development and implementation for PLM clients 2 IBM Intellectual Property Management Solutions © 2017-2019 IBM Corporation How does IBM define AI? IBM refers to it as Augmented Intelligence…. • Not artificial or meant to replace Human Thinking…augments your work AI Terminology Machine Learning • Provides computers with the ability to continuing learning without being pre-programmed.
    [Show full text]
  • Big Blue in the Bottomless Pit: the Early Years of IBM Chile
    Big Blue in the Bottomless Pit: The Early Years of IBM Chile Eden Medina Indiana University In examining the history of IBM in Chile, this article asks how IBM came to dominate Chile’s computer market and, to address this question, emphasizes the importance of studying both IBM corporate strategy and Chilean national history. The article also examines how IBM reproduced its corporate culture in Latin America and used it to accommodate the region’s political and economic changes. Thomas J. Watson Jr. was skeptical when he The history of IBM has been documented first heard his father’s plan to create an from a number of perspectives. Former em- international subsidiary. ‘‘We had endless ployees, management experts, journalists, and opportunityandlittleriskintheUS,’’he historians of business, technology, and com- wrote, ‘‘while it was hard to imagine us getting puting have all made important contributions anywhere abroad. Latin America, for example to our understanding of IBM’s past.3 Some seemed like a bottomless pit.’’1 However, the works have explored company operations senior Watson had a different sense of the outside the US in detail.4 However, most of potential for profit within the world market these studies do not address company activi- and believed that one day IBM’s sales abroad ties in regions of the developing world, such as would surpass its growing domestic business. Latin America.5 Chile, a slender South Amer- In 1949, he created the IBM World Trade ican country bordered by the Pacific Ocean on Corporation to coordinate the company’s one side and the Andean cordillera on the activities outside the US and appointed his other, offers a rich site for studying IBM younger son, Arthur K.
    [Show full text]
  • The Evolution of Ibm Research Looking Back at 50 Years of Scientific Achievements and Innovations
    FEATURES THE EVOLUTION OF IBM RESEARCH LOOKING BACK AT 50 YEARS OF SCIENTIFIC ACHIEVEMENTS AND INNOVATIONS l Chris Sciacca and Christophe Rossel – IBM Research – Zurich, Switzerland – DOI: 10.1051/epn/2014201 By the mid-1950s IBM had established laboratories in New York City and in San Jose, California, with San Jose being the first one apart from headquarters. This provided considerable freedom to the scientists and with its success IBM executives gained the confidence they needed to look beyond the United States for a third lab. The choice wasn’t easy, but Switzerland was eventually selected based on the same blend of talent, skills and academia that IBM uses today — most recently for its decision to open new labs in Ireland, Brazil and Australia. 16 EPN 45/2 Article available at http://www.europhysicsnews.org or http://dx.doi.org/10.1051/epn/2014201 THE evolution OF IBM RESEARCH FEATURES he Computing-Tabulating-Recording Com- sorting and disseminating information was going to pany (C-T-R), the precursor to IBM, was be a big business, requiring investment in research founded on 16 June 1911. It was initially a and development. Tmerger of three manufacturing businesses, He began hiring the country’s top engineers, led which were eventually molded into the $100 billion in- by one of world’s most prolific inventors at the time: novator in technology, science, management and culture James Wares Bryce. Bryce was given the task to in- known as IBM. vent and build the best tabulating, sorting and key- With the success of C-T-R after World War I came punch machines.
    [Show full text]
  • Treatment and Differential Diagnosis Insights for the Physician's
    Treatment and differential diagnosis insights for the physician’s consideration in the moments that matter most The role of medical imaging in global health systems is literally fundamental. Like labs, medical images are used at one point or another in almost every high cost, high value episode of care. Echocardiograms, CT scans, mammograms, and x-rays, for example, “atlas” the body and help chart a course forward for a patient’s care team. Imaging precision has improved as a result of technological advancements and breakthroughs in related medical research. Those advancements also bring with them exponential growth in medical imaging data. The capabilities referenced throughout this document are in the research and development phase and are not available for any use, commercial or non-commercial. Any statements and claims related to the capabilities referenced are aspirational only. There were roughly 800 million multi-slice exams performed in the United States in 2015 alone. Those studies generated approximately 60 billion medical images. At those volumes, each of the roughly 31,000 radiologists in the U.S. would have to view an image every two seconds of every working day for an entire year in order to extract potentially life-saving information from a handful of images hidden in a sea of data. 31K 800MM 60B radiologists exams medical images What’s worse, medical images remain largely disconnected from the rest of the relevant data (lab results, patient-similar cases, medical research) inside medical records (and beyond them), making it difficult for physicians to place medical imaging in the context of patient histories that may unlock clues to previously unconsidered treatment pathways.
    [Show full text]
  • Cell Broadband Engine Spencer Dennis Nicholas Barlow the Cell Processor
    Cell Broadband Engine Spencer Dennis Nicholas Barlow The Cell Processor ◦ Objective: “[to bring] supercomputer power to everyday life” ◦ Bridge the gap between conventional CPU’s and high performance GPU’s History Original patent application in 2002 Generations ◦ 90 nm - 2005 ◦ 65 nm - 2007 (PowerXCell 8i) ◦ 45 nm - 2009 Cost $400 Million to develop Team of 400 engineers STI Design Center ◦ Sony ◦ Toshiba ◦ IBM Design PS3 Employed as CPU ◦ Clocked at 3.2 GHz ◦ theoretical maximum performance of 23.04 GFLOPS Utilized alongside NVIDIA RSX 'Reality Synthesizer' GPU ◦ Complimented graphical performance ◦ 8 Synergistic Processing Elements (SPE) ◦ Single Dual Issue Power Processing Element (PPE) ◦ Memory IO Controller (MIC) ◦ Element Interconnect Bus (EIB) ◦ Memory IO Controller (MIC) ◦ Bus Interface Controller (BIC) Architecture Overview SPU/SPE Synergistic Processing Unit/Element SXU - Synergistic Execution Unit LS - Local Store SMF - Synergistic Memory Frontend EIB - Element Interconnect Bus PPE - Power Processing Element MIC - Memory IO Controller BIC - Bus Interface Controller Synergistic Processing Element (SPE) 128-bit dual-issue SIMD dataflow ○ “Single Instruction Multiple Data” ○ Optimized for data-level parallelism ○ Designed for vectorized floating point calculations. ◦ Workhorses of the Processor ◦ Handle most of the computational workload ◦ Each contains its own Instruction + Data Memory ◦ “Local Store” ▫ Embedded SRAM SPE Continued Responsible for governing SPEs ◦ “Extensions” of the PPE Shares main memory with SPE ◦ can initiate
    [Show full text]
  • Cheryl Watson's
    Cheryl Watson’s 1998, No. 6 TUNING Letter A PRACTICAL JOURNAL OF S/390 TUNING AND MEASUREMENT ADVICE Inside this issue... This Issue: My heart attack is important news, at least from my point of view. See page 2. But I'm feeling really great these days, thanks to A Note From Cheryl & Tom .2 modern medicine. Management Issues #20 ......3 Class Schedule .....................4 Upgrading a processor is the focus of this issue. How to size, S/390 News how to understand the difference between speed and capacity, and GRS Star .............................5 how to avoid typical problems after an upgrade are all covered MXG & CA-MICS.................5 starting on page 14. CMOS & Compression ......5 Y2K ......................................6 Java and Component Broker are featured in two articles pro- Java .....................................6 vided by Glenn Anderson of IBM Education (page 6). Component Broker ............7 LE.........................................9 IBM is now recommending that multi-system sites be at WSC Flashes ....................10 OS/390 R5 before freezing systems for Y2K. See WSC Flash The Net..............................11 98044 on page 10 for this important item. Pubs & APARs .................12 Focus: Processor Upgrades A known integrity exposure in ISPF has existed for the five Sizing Processors............14 years since ISPF V4, but new customers keep running into the Migration Issues...............23 problem. See page 29. Upgrade Problems...........26 Cheryl's Updates New Web links and important new manuals and books are Most Common Q&As.......28 listed in our S/390 News starting on page 12. TCP/IP................................28 ISPF Exposure..................29 Don't go to OS/390 R5 without checking with your TCP/IP WLM Update .....................30 vendors or you could be in serious trouble.
    [Show full text]
  • An Introduction to the Cell Broadband Engine Architecture
    IBM Systems & Technology Group An Introduction to the Cell Broadband Engine Architecture Owen Callanan IBM Ireland, Dublin Software Lab. Email: [email protected] 1 Cell Programming Workshop 5/7/2009 © 2009 IBM Corporation IBM Systems & Technology Group Agenda About IBM Ireland development Cell Introduction Cell Architecture Programming the Cell – SPE programming – Controlling data movement – Tips and tricks Trademarks – Cell Broadband Engine and Cell Broadband Engine Architecture are trademarks of Sony Computer Entertainment, Inc. 2 Cell Programming Workshop 5/7/2009 © 2009 IBM Corporation IBM Systems & Technology Group Introduction - Development in IBM Ireland Lotus Software Research Tivoli Industry Assets & Models RFID Center of Competence High Performance Computing 3 Cell Programming Workshop 5/7/2009 © 2009 IBM Corporation IBM Systems & Technology Group Introduction – HPC in IBM Dublin Lab Blue Gene team Deep Computing Visualization (DCV) Dynamic Application Virtualization (DAV) Other areas also – E.g. RDMA communications systems 4 Cell Programming Workshop 5/7/2009 © 2009 IBM Corporation IBM Systems & Technology Group Cell Introduction 5 Cell Programming Workshop 5/7/2009 © 2009 IBM Corporation IBM Systems & Technology Group Cell Broadband Engine History IBM, SCEI/Sony, Toshiba Alliance formed in 2000 Design Center opens March 2001 ~$400M Investment, 5 years, 600 people February 7, 2005: First technical disclosures January 12, 2006: Alliance extended 5 additional years YKT, EFK, BURLINGTON, ENDICOTT ROCHESTER
    [Show full text]
  • Watson Health Intro 170612
    Empowering Heroes, Transforming Health Introduction to Watson Health IBM's statements regarding its plans, directions and intent are subject to change or withdrawal without notice at IBM's sole discretion. Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a purchasing decision. The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Information about potential future products may not be incorporated into any contract. The development, release, and timing of any future features or functionality described for our products remains at our sole discretion. Watson Health © IBM Corporation 2017 2 Time matters in healthcare, cognitive technologies, and machine learning. Watson Health © IBM Corporation 2017 3 IBM Leadership in Augmented Intelligence and Health: Over a Decade in Development 7,000 employees IBM enables an 10,000+ “evidence-based clients & partners Healthcare Memorial Sloan eco-system” Kettering Cancer Center Mayo Clinic Cognitive test Cleveland Clinic case results in creation of Watson 2005 2008 2010 2011 2012 2014 2014 2015 2016 Watson Health © IBM Corporation 2017 4 Global Shifts Drive Momentum R&D, Access, Delivery & Engagement Data Dynamic Value vs Efficient, Explosion Delivery Volume Effective R&D 150+ exabytes 50% $47 trillion 1 in 10 of healthcare Expected alternative payments Estimated global economic clinical Trials in cancer data today1 from Centers of Medicare & impact of chronic disease by are shut down from lack of Medicaid by 20184 20307 participation10 Over 230K 75%+ $3 trillion $2B active clinical trials2 of patients expected to use Estimated U.S.
    [Show full text]
  • Predictive Analytics in Value-Based Healthcare
    White paper Predictive Analytics in Value-Based Healthcare: Forecasting Risk, Utilization, and Outcomes Delivering effective value-based healthcare requires identifying Consider a model predicting the chance of a hospital and mitigating risk by anticipating and preventing adverse readmission. The input training dataset might contain events and outcomes. Predictive models have been a part of thousands of hospitalization events. Each hospital admission healthcare practice for decades. However, more advanced would include the information on a patient’s medical history, analytics have started to take shape to provide better visibility like chronic conditions and prior utilization. The dataset into characterizing a patient’s current state and future risk. would also contain the “answer” as to whether that particular With the use of big data, it is possible to build models around hospitalization resulted in a readmission within 30 days. predicting future events and outcomes, utilization, and overall Data scientists typically use specialized software (or write risk. These predictive models can be: their own) to build models that “learn” from the results of a – incorporated into a clinical workflow to facilitate care readmission to improve predictive accuracy. The model is then management and identify individuals at risk evaluated using the testing dataset, where a similar set of data – used to perform risk adjustment on quality measures is provided without the “answer” and the model’s prediction to account for patient severity is compared to the correct result (whether the patient was – employed to understand the treatment pathway with truly readmitted or not). The accuracy of a model on a testing the greatest chance of success dataset is typically what is presented as the true performance Predictive models have many potential uses, but no of the model.
    [Show full text]
  • IBM Db2 on Cloud Solution Brief
    Hybrid Data Management IBM Db2 on Cloud A fully-managed, relational database on IBM Cloud and Amazon Web Services with elastic scaling and autonomous failover 1 IBM® Db2® on Cloud is a fully-managed, SQL cloud database that can be provisioned on IBM Cloud™ and Amazon Web Services, eliminating the time and expense of hardware set up, software installation, and general maintenance. Db2 on Cloud provides seamless compatibility, integration, and licensing with the greater Db2 family, making your data highly portable and extremely flexible. Through the Db2 offering ecosystem, businesses are able to desegregate systems of record and gain true analytical insight regardless of data source or type. Db2 on Cloud and the greater Db2 family support hybrid, multicloud architectures, providing access to intelligent analytics at the data source, insights across the business, and flexibility to support changing workloads and consumptions cases. Whether you’re looking to build cloud-native applications, transition to a fully-managed instance of Db2, or offload certain workloads for disaster recovery, Db2 on Cloud provides the flexibility and agility needed to run fast queries and support enterprise-grade applications. Features and benefits of Db2 on Cloud Security and disaster recovery Cloud databases must provide technology to secure applications and run on a platform that provides functional, infrastructure, operational, network, and physical security. IBM Db2 on Cloud accomplishes this by encrypting data both at rest and in flight, so that data is better protected across its lifecycle. IBM Db2 on Cloud helps restrict data use to only approved parties with user authentication for platform services and resource access control.
    [Show full text]
  • POV – Watson Privacy, Compliance, & Security
    POV – Watson Privacy, Compliance, & Security “Every organization that develops or uses AI, or hosts or processes data, must do so responsibly and transparently. Companies are being judged not just by how we use data, but by whether we are trusted stewards of other people’s data. Society will decide which companies it trusts.” -Ginni Rometty, IBM Chairman, President, and CEO Table of contents: • Scope • Introduction • Data privacy: What is it and how to do it • Compliance & regulations • Security • Frequently asked questions Scope The scope of this document is the IBM Watson services running on IBM Cloud. The document does not address other IBM or client offerings with Watson in their names (e.g., Watson Health), or services that are not in the AI part of the IBM Cloud catalog. Nor does it address any third-party services showing up under AI in the IBM Catalog. Introduction The ability of artificial intelligence (AI) to transform vast amounts of complex, ambiguous information into insights has the potential to reveal long-held secrets and solve some of the world’s most enduring problems. It can help doctors treat disease, predict the weather, and manage the global economy. It is an undeniably powerful tool. And like all powerful tools, great care must be taken in its development and deployment. To reap the societal benefits of artificial intelligence, we will first need to trust it. We have created a system of best practices that guide the management of Watson; a system that includes contracts and disclosures that help foster full transparency; a strategy that reflects our compliance efforts with existing legislation and policy; third-party certifications and security testing by third parties to validate the best practices; and a framework that provides for privacy and personal data protection.
    [Show full text]
  • 2018 Forrester the Total Economic Impact™ of IBM Watson Studio and Watson Knowledge Catalog
    A Forrester Total Economic Impact™ Study Commissioned By IBM July 2018 The Total Economic Impact™ Of IBM Watson Studio And Watson Knowledge Catalog Cost Savings And Business Benefits Enabled By Watson Studio And Watson Knowledge Catalog Table Of Contents Executive Summary 1 Key Findings 1 TEI Framework and Methodology 3 The Watson Studio And Watson Knowledge Catalog Customer Journey 4 Interviewed Organization 4 Surveyed Organizations 4 Key Challenges 5 Key Results 6 Composite Organization 8 Analysis Of Benefits 9 Business Impact 9 Improved Data-Scientist Productivity 10 Improved Administrator Productivity 12 Improved Security And Compliance 13 Cost Savings 13 Flexibility 14 Analysis Of Costs 15 IBM License Costs 15 Implementation And Training 16 Financial Summary 17 IBM Watson Studio And Watson Knowledge Catalog: Overview 18 Appendix A: Total Economic Impact 19 Project Director: ABOUT FORRESTER CONSULTING Sarah Musto Forrester Consulting provides independent and objective research-based consulting to help leaders succeed in their organizations. Ranging in scope from a short strategy session to custom projects, Forrester’s Consulting services connect you directly with research analysts who apply expert insight to your specific business challenges. For more information, visit forrester.com/consulting. © 2018, Forrester Research, Inc. All rights reserved. Unauthorized reproduction is strictly prohibited. Information is based on best available resources. Opinions reflect judgment at the time and are subject to change. Forrester®, Technographics®, Forrester Wave, RoleView, TechRadar, and Total Economic Impact are trademarks of Forrester Research, Inc. All other trademarks are the property of their respective companies. For additional information, go to forrester.com. Executive Summary Key Benefits Businesses today are generating a lot of data about their customers, suppliers, products, and services.
    [Show full text]