Dynamics of the Jovian Magnetosphere

Total Page:16

File Type:pdf, Size:1020Kb

Dynamics of the Jovian Magnetosphere 25 Dynamics of the Jovian Magnetosphere N. Krupp, V.M. Vasyli¯unas, J. Woch, A. Lagg Max-Planck-Institut f¨ur Aeronomie, Katlenburg-Lindau K.K. Khurana, M.G. Kivelson IGPP and Dept. Earth & Space Sciences, University of California, Los Angeles B.H. Mauk, E.C. Roelof, D.J. Williams, S.M. Krimigis The Johns Hopkins University Applied Physics Laboratory W.S. Kurth, L.A. Frank, W.R. Paterson Dept. of Physics & Astronomy, University of Iowa 25.1 INTRODUCTION bit around Jupiter for almost 8 years (1995-2003), Galileo has collected in-situ data of the jovian system over an ex- Understanding the dynamic processes in the largest magne- tended duration and has for the first time made possible tosphere of our solar system is one of the outstanding goals the study of Jupiter on time scales of weeks, months, and of magnetospheric physics. These processes are associated even years, using the same instrumentation. New regions of with temporal and/or spatial variations of the global config- the jovian magnetosphere have been explored, especially the uration. Their time scales range from several 10s of minutes jovian magnetotail which was not visited by any of the previ- to sizeable fractions of the planetary rotation period to long- ous spacecraft (except, to a very minor extent, by Voyager term variations which take several days to develop. They oc- 2). Additional inputs have become available from ground- cur on both local and global spatial scales, out to dimensions based and Earth-orbit-based measurements and from ad- representing a large fraction of the magnetosphere. vanced global magnetohydrodynamic (MHD) simulations of Early indications of a “living”, varying jovian magneto- the jovian magnetosphere. Ideally, of course, all such re- sphere came from ground-based observations of jovian radio sources should be combined together. The dual spacecraft emissions. It was found that some of the jovian decametric constellation of Galileo and Cassini in and near the jovian emissions are correlated with changes in solar wind param- system at the end of 2000 and the beginning of 2001, to- et al. eters (see e.g., Teresawa 1978), and in addition there gether with a simultaneous observational campaign from was evidence of solar wind influence on hectometric radio Earth, provided a partial opportunity for such a combined et al. emissions and on jovian aurora (Baron 1996, Gurnett study, from which transient processes on a wide range of et al. 2002). Most of the information we have today, however, temporal and spatial scales could be identified and their about dynamical processes at Jupiter has come from in-situ physical nature disentangled at least in part. spacecraft observations. Of the seven spacecraft that have visited the gas giant over the last 30 years, six only flew past A comparison of the dynamical plasma processes be- the planet and hence provided only snapshots, each lasting tween Jupiter and Earth reveals both similarities and dif- a few days or a week at most, of the state of the magne- ferences (Russell 2001, e.g.,). Within the magnetospheres of tosphere. These flyby missions —Pioneer 10 (1973) and 11 both planets, plasma and energetic particles undergo large- (1974), Voyager 1 and 2 (both in 1979), Ulysses (1992), and scale flows, there are identifiable sources that supply the Cassini (2000/2001) — offered very limited possibilities to plasma, and large amounts of energy are transported and observe and investigate transient processes, because of the dissipated. At Earth, the primary flow is a large-scale cir- short duration of the flyby and the inability to distinguish culation, called magnetospheric convection, driven primar- between temporal and spatial variations. The state of knowl- ily by the solar wind. Furthermore, the solar wind consti- edge derived from the early flyby missions has been summa- tutes the major source for the magnetospheric plasma con- rized in the books by Gehrels (1976) and Dessler (1983) for tent (although the contribution of Earth’s ionosphere is also Pioneer and Voyager and in a series of special journal is- significant) and provides almost all of the energy that is sues (Science Vol. 257, Planet. Space Science Vol. 41 and J. stored and dissipated in the magnetosphere-ionosphere sys- Geophys. Res., Vol. 98) for Ulysses. tem. The energy flow is strongly modulated by solar-wind A whole new dimension in studying Jupiter’s magne- parameters (especially the angle between the interplane- tosphere became possible with Galileo, the first orbiting tary magnetic field and Earth’s dipole) and is highly un- spacecraft in the magnetosphere of an outer planet. In or- steady, with prolonged periods of enhanced activity (mag- 2 Krupp et al. D D A: interchange events D B: flow bursts Dusk C C: electron bursts D: upstream events ? massMass x x outflow ? x ? ? x x ? x x x x x ? A x x Sun x x x Radial x ? B ? ? ? inward ? diffusion Planetary D wind D Dawn ? ? ? ? ? Sun ? ? ? Distant Galileo X-line at r=60–80Corotation R breakdownMagnetopauseBow shock X-line measurements end at r=150 R J J Figure 25.1. Sketch of the jovian magnetosphere in the equatorial plane (top) and a noon-midnight meridional cut (bottom). Question marks indicate regions where no data are available as yet. Black arrows represent the particle flow directions, grey arrows the mass outflow and the inward diffusion. The x-symbols show the location of a magnetic x-line in the jovian magnetotail, and the letters A-D mark the positions where various dynamic features have been inferred from in-situ data. During the two spacecraft (Galileo and Cassini) measurements in 2000/2001 there was evidence for wavy structure of the dusk magnetopause as indicated. The spatial extent of these unstable boundaries, however, is not fully known and may be as prevalent (or more so) on the dawn side. Dotted lines are drawn to separate magnetospheric regions. The solid and dashed lines in the bottom sketch represent magnetic field lines; the dashed portions lie beyond the distances reached by Galileo. The fat grey bar indicates the equatorial current/plasma sheet. netic storms) and with sudden global re-configurations of mass source, which may not be negligible and may well drive the magnetosphere probably connected with internal insta- or at least trigger some internal processes or disturbances. bilities (magnetospheric substorms, originally thought to be However, there are internal sources of energy and mass that just sub-units of magnetic storms but now recognized as a are much more important than those from the solar wind, distinct phenomenon). At Jupiter the situation is more com- unlike the case at Earth. The average plasma flow is driven plex. The solar wind still constitutes an external energy and primarily by the rotation of the planet throughout most of 25 Dynamics of Magnetosphere 3 the jovian magnetosphere (see Chapter 24 and e.g. Hill and moving predominantly in the corotation direction but with Dessler 1991). The plasma in the jovian magnetosphere is velocities around 200-400 km/s, less than the rigid corota- supplied mainly by internal sources, predominantly Io (see tion speed. The flow is larger at dawn than at dusk (see Chapter 23). Planetary rotation is also the dominant source Chapter 24). Beyond a comparable distance the magnetic of energy for much of jovian magnetospheric dynamics. We field becomes too weak to exert a radial inward force suf- may therefore expect magnetospheric transient processes at ficient to balance the centripetal acceleration of a rigidly Jupiter to be significally different from those at Earth. There corotating plasma, although it does balance the acceleration is evidence that reconfigurations, possibly involving large- of the actual sub-corotating plasma flow. scale instabilities and resembling terrestrial substorms in Dynamic processes in the jovian magnetosphere are ev- some ways, occur at Jupiter. The mechanism, however, may idenced by deviations from the average configuration. The involve energy extracted by torques on the rotating planet letters A-D in Figure 25.1 indicate the typical locations, in- and stresses exerted by rotating mass-loaded flux tubes, in side and outside the magnetosphere, where such deviations place of stresses from solar wind flow. Similarities with Earth (to be discussed in more detail below) have been observed. may be related in part to the common role of magnetic field The magnetopause is often unstable to surface waves at the line reconnection. boundary. During the two spacecraft (Galileo and Cassini) Although Jupiter’s magnetosphere is the second best- measurements in 2000/2001 there was evidence for wavy mo- known of all explored magnetospheres, it still ranks far be- tion of the magnetopause on the dusk flank of the magneto- hind Earth’s in this respect, and only a tiny fraction of it sphere as indicated in Figure 25.1. The spatial extent of sur- has already been explored with in-situ measurements. If one face waves, however, is not fully known and the dawn mag- scales all positions by the normal stand-off distance of the netopause surface could well be less stable. The planetary or magnetopause (10 REat Earth and 60-90 RJ at Jupiter), magnetospheric wind as inferred from Voyager observations ≈ the most distant measurements taken onboard Galileo in (Krimigis et al. 1981) is shown at distances beyond 130RJ Jupiter’s magnetotail (150 RJ ) correspond to only about in the predawn section of the magnetosphere. 20-25 RE in the Earth’ case (Woch et al. 2003). In fact, In this chapter we will focus on the observational ev- there is evidence that the jovian magnetotail may extend as idence and possible explanations for these various devia- far out as 5 AU, to the orbit of Saturn, thereby influencing tions from the average state of the jovian magnetosphere.
Recommended publications
  • Science Objectives May Be Summarized As Follows
    MAGNETOSPHERE IMAGING INSTRUMENT (MIMI) 9 ON THE CASSINI MISSION TO SATURN/TITAN 2. Scientific Objectives MIMI science objectives may be summarized as follows: Saturn • Determine the global configuration and dynamics of hot plasma in the magneto- sphere of Saturn through energetic neutral particle imaging of ring current, radia- tion belts, and neutral clouds. • Study the sources of plasmas and energetic ions through in situ measurements of energetic ion composition, spectra, charge state, and angular distributions. • Search for, monitor, and analyze magnetospheric substorm-like activity at Saturn. • Determine through the imaging and composition studies the magnetosphere– satellite interactions at Saturn and understand the formation of clouds of neutral hydrogen, nitrogen, and water products. •Investigate the modification of satellite surfaces and atmospheres through plasma and radiation bombardment. • Study Titan’s cometary interaction with Saturn’s magnetosphere (and the solar wind) via high-resolution imaging and in situ ion and electron measurements. • Measure the high energy (Ee > 1 MeV, Ep > 15 MeV) particle component in the inner (L < 5 RS) magnetosphere to assess cosmic ray albedo neutron decay (CRAND) source characteristics. •Investigate the absorption of energetic ions and electrons by the satellites and rings in order to determine particle losses and diffusion processes within the mag- netosphere. • Study magnetosphere–ionosphere coupling through remote sensing of aurora and in situ measurements of precipitating energetic ions and electrons. Jupiter • Study ring current(s), plasma sheet, and neutral clouds in the magnetosphere and magnetotail of Jupiter during Cassini flyby, using global imaging and in situ mea- surements. S. M. KRIMIGIS ET AL. 10 Interplanetary • Determine elemental and isotopic composition of local interstellar medium through measurements of interstellar pickup ions.
    [Show full text]
  • Ejecta Event Associated with a Two&Hyphen;Step Geomagnetic Storm
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, A11104, doi:10.1029/2006JA011893, 2006 A two-ejecta event associated with a two-step geomagnetic storm C. J. Farrugia,1 V. K. Jordanova,1,2 M. F. Thomsen,2 G. Lu,3 S. W. H. Cowley,4 and K. W. Ogilvie5 Received 2 June 2006; revised 1 September 2006; accepted 12 September 2006; published 16 November 2006. [1] A new view on how large disturbances in the magnetosphere may be prolonged and intensified further emerges from a recently discovered interplanetary process: the collision/merger of interplanetary (IP) coronal mass ejections (ICMEs; ejecta) within 1 AU. As shown in a recent pilot study, the merging process changes IP parameters dramatically with respect to values in isolated ejecta. The resulting geoeffects of the coalesced (‘‘complex’’) ejecta reflect a superposition of IP triggers which may result in, for example, two-step, major geomagnetic storms. In a case study, we isolate the effects on ring current enhancement when two coalescing ejecta reached Earth on 31 March 2001. The magnetosphere ‘‘senses’’ the presence of the two ejecta and responds with a reactivation of the ring current soon after it started to recover from the passage of the first ejection, giving rise to a double-dip (DD) great storm (each min Dst < À250 nT). A drift-loss global kinetic model of ring current buildup shows that in this case the major factor determining the intensity of the storm activity is the very high (up to 10 cmÀ3) plasma sheet density. The plasma sheet density, in turn, is found to correlate well with the very high solar wind density, suggesting the compression of the leading ejecta as the source of the hot, superdense plasma sheet in this case.
    [Show full text]
  • Mechanisms of Formation of Multiple Current Sheets in the Heliospheric Plasma Sheet
    EGU2020-3945 https://doi.org/10.5194/egusphere-egu2020-3945 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Mechanisms of formation of multiple current sheets in the heliospheric plasma sheet Evgeniy Maiewski1, Helmi Malova2,3, Roman Kislov3,4, Victor Popov5, Anatoly Petrukovich3, and Lev Zelenyi3 1National Research University”Higher School of Economics”, Moscow, Russian Federation ([email protected]) 2Scobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia ([email protected]) 3Space Research Institute of the Russian Academy of Science, Moscow, Russia 4Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow, Russia 5Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia When spacecraft cross the heliospheric plasma sheet (HPS) that separates large-scale magnetic sectors of the opposite direction in the solar wind, multiple rapid fluctuations of a sign of the radial magnetic field component are observed very often, indicating the presence of multiple current sheets occurring within the HPS. Possible mechanisms of formation of these structures in the solar wind are proposed. Taking into accout that the streamer belt in the solar corona is believed to be the main source of the slow solar wind in the heliosphere, we suggest that the effect of the multi-layered HPS is determined by the extension of many streamer-belt-borne thin current sheets oriented along the neutral line of the interplanetary magnetic field. Within the framework of a proposed MHD model, self-consistent distributions of the key solar wind characteristics which depend on streamer propreties are investigated.
    [Show full text]
  • Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E
    Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, E. Yordanova, S. Good, M. M. H. Kalliokoski, E. Lumme, A. Osmane, et al. To cite this version: E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, et al.. Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence. Space Weather: The International Journal of Research and Applications, American Geophysical Union (AGU), 2019, 17 (8), pp.1257-1280. 10.1029/2019SW002217. hal-03087107 HAL Id: hal-03087107 https://hal.archives-ouvertes.fr/hal-03087107 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Solar Wind Properties and Geospace Impact of Coronal 10.1029/2019SW002217 Mass Ejection-Driven Sheath Regions: Variation and Key Points: Driver Dependence • Variation of interplanetary properties and geoeffectiveness of CME-driven sheaths and their dependence on the E. K. J. Kilpua1 , D. Fontaine2 , C. Moissard2 , M. Ala-Lahti1 , E. Palmerio1 , ejecta properties are determined E.
    [Show full text]
  • “Phobos Events”—Signatures of Solar Wind Interaction with a Gas Torus?
    Earth Planets Space, 50, 453–462, 1998 “Phobos events”—Signatures of solar wind interaction with a gas torus? K. Baumgärtel1,7, K. Sauer2,7, E. Dubinin2,3,7, V. Tarrasov4,5,7, and M. Dougherty6 1Astrophysikalisches Institut Potsdam, 14482 Potsdam, Germany 2Max-Planck-Institut für Aeronomie, 37191 Katlenburg-Lindau, Germany 3Institute of Space Research, 117810 Moscow, Russia 4Centre d’Etude des Environments Terrestre et Planetaires, 78140 Velizy, France 5Lviv Centre of the Institute of Space Research, 290601 Lviv, Ukraine 6Space and Atmospheric Physics, Imperial College, London SW72AZ, U.K. 7International Space Science Institute (ISSI), 3012 Bern, Switzerland (Received August 28, 1997; Revised January 30, 1998; Accepted February 20, 1998) Following recent simulations of the Phobos dust belt formation (Krivov and Hamilton, 1997), the effective dust- induced charge density as estimated is too small to account for the significant solar wind (sw) plasma and magnetic field perturbations observed by the Phobos-2 spacecraft in 1989 near the crossings of the Phobos orbit. In this paper the sw interaction with the Phobos neutral gas torus is re-investigated in a two-ion plasma model in which the newly created ions are treated as unmagnetized, forming a beam (not a ring beam) in the sw frame. A linear instability analysis based on both a cold fluid and a kinetic approach shows that electromagnetic ion beam waves in the whistler range of frequencies, driven most unstable at oblique propagation and appearing as almost purely growing waves in the beam frame, aquire high growth rates and provide a likely mechanism to cause the observed events.
    [Show full text]
  • The Magnetosphere-Ionosphere Observatory (MIO)
    1 The Magnetosphere-Ionosphere Observatory (MIO) …a mission concept to answer the question “What Drives Auroral Arcs” ♥ Get inside the aurora in the magnetosphere ♥ Know you’re inside the aurora ♥ Measure critical gradients writeup by: Joe Borovsky Los Alamos National Laboratory [email protected] (505)667-8368 updated April 4, 2002 Abstract: The MIO mission concept involves a tight swarm of satellites in geosynchronous orbit that are magnetically connected to a ground-based observatory, with a satellite-based electron beam establishing the precise connection to the ionosphere. The aspect of this mission that enables it to solve the outstanding auroral problem is “being in the right place at the right time – and knowing it”. Each of the many auroral-arc-generator mechanisms that have been hypothesized has a characteristic gradient in the magnetosphere as its fingerprint. The MIO mission is focused on (1) getting inside the auroral generator in the magnetosphere, (2) knowing you are inside, and (3) measuring critical gradients inside the generator. The decisive gradient measurements are performed in the magnetosphere with satellite separations of 100’s of km. The magnetic footpoint of the swarm is marked in the ionosphere with an electron gun firing into the loss cone from one satellite. The beamspot is detected from the ground optically and/or by HF radar, and ground-based auroral imagers and radar provide the auroral context of the satellite swarm. With the satellites in geosynchronous orbit, a single ground observatory can spot the beam image and monitor the aurora, with full-time conjunctions between the satellites and the aurora.
    [Show full text]
  • Dust Clouds and Plasmoids in Saturn's Magnetosphere
    Dust clouds and plasmoids in Saturn’s Magnetosphere as seen with four Cassini instruments Emil Khalisi1 Max-Planck-Institute for Nuclear Physics, Saupfercheckweg 1, D–69117 Heidelberg, Germany Abstract We revisit the evidence for a ”dust cloud” observed by the Cassini space- craft at Saturn in 2006. The data of four instruments are simultaneously compared to interpret the signatures of a coherent swarm of dust that would have remained near the equatorial plane for as long as six weeks. The con- spicuous pattern, as seen in the dust counters of the Cosmic Dust Analyser (CDA), clearly repeats on three consecutive revolutions of the spacecraft. That particular cloud is estimated to about 1.36 Saturnian radii in size, and probably broadening. We also present a reconnection event from the magnetic field data (MAG) that leave behind several plasmoids like those reported from the Voyager flybys in the early 1980s. That magnetic bubbles happened at the dawn side of Saturn’s magnetosphere. At their nascency, the magnetic field showed a switchover of its alignment, disruption of flux tubes and a recovery on a time scale of about 30 days. However, we cannot rule out that different events might have taken place. Empirical evidence is shown at another occasion when a plasmoid was carrying a cloud of tiny dust particles such that a connection between plasmoids and coherent dust clouds is probable. Keywords: Dust clouds, Saturn, Cassini mission, Cosmic Dust Analyser, arXiv:1702.01579v1 [astro-ph.EP] 6 Feb 2017 Magnetosphere URL: DOI: http://dx.doi.org/10.1016/j.asr.2016.12.030 (Emil Khalisi) 1Corresponding author: [email protected] Preprint accepted by Advances in Space Research [JASR13029] 7th February 2017 1.
    [Show full text]
  • Cold and Dense Plasma Sheet Caused by Solar Wind Entry: Direct Evidence
    atmosphere Case Report Cold and Dense Plasma Sheet Caused by Solar Wind Entry: Direct Evidence Yue Yu 1,2, Zuzheng Chen 1,2,* and Fang Chen 1,2 1 School of Space and Environment, Beihang University, Beijing 100089, China; [email protected] (Y.Y.); [email protected] (F.C.) 2 Key Laboratory of Space Environment Monitoring and Information Processing, Ministry of Industry and Information Technology, Beijing 100089, China * Correspondence: [email protected] Received: 12 June 2020; Accepted: 2 August 2020; Published: 7 August 2020 Abstract: We present a coordinated observation with the Magnetospheric Multiscale (MMS) mission, located in the Earth’s magnetotail plasma sheet, and the Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS) mission, located in the solar wind, in order to understand the formation mechanism of the cold and dense plasma sheet (CDPS). MMS detected two CDPSs composed of two ion populations with different energies, where the energy of the cold ion population is the same as that of the solar wind measured by ARTEMIS. This feature directly indicates that the CDPSs are caused by the solar wind entry. In addition, He+ was observed 3 3 in the CDPSs. The plasma density in these two CDPSs are ~1.8 cm− and ~10 cm− , respectively, roughly 4–30 times the average value of a plasma sheet. We performed a cross-correlation analysis on the ion density of the CDPS and the solar wind, and we found that it takes 3.7–5.9 h for the solar wind to enter the plasma sheet.
    [Show full text]
  • 3 the Magnetosphere 3-1 Formation of the Magnetosphere and Magnetospheric Plasma Regime
    3 The Magnetosphere 3-1 Formation of the Magnetosphere and Magnetospheric Plasma Regime OBARA Takahiro The Earth's magnetosphere is formed by the plasma flow from the Sun; i.e. solar wind. This solar wind particle can enter the magnetosphere through non-MHD processes and pro- duces specific regions of plasma. This is due to the convection motion seen in the magne- tosphere. An enhancement of the magnetospheric convection causes storms and sub- storms in the magnetosphere. Highly energetic particles can be produced through very effi- cient acceleration processes during the storms. In this paper we describe the fundamental physics of the magnetosphere, aiming a transition of researches to the Space Weather fore- cast. Keywords Magnetosphere, Plasma, Magnetospheric convection, Storms and substorms, Ener- getic particles 1 Outline of the Formation of the in the southern hemisphere. Magnetosphere and the Mag- There is an influx of solar wind plasma netospheric Plasma Structure particles in the lobe region. The area of the lobe near the magnetopause is referred to as The magnetosphere is a distinct region in the mantle. The magnetic field intensity is space surrounding the Earth, and its structure low near the equatorial plane, where the north- has been the subject of numerous detailed ern and southern lobes meet. Hot plasma satellite observations. Fig.1 shows a represen- accumulates in this region, referred to as the tation of this structure, with the upper front plasma sheet. Characteristic plasma regimes quarter removed to show the interior. The are present near the Earth, with plasma with Earth is at the center, and the solar wind flows higher energies relative to the plasma sheet.
    [Show full text]
  • Impact of Io's Volcanic Activity to Environment and Dynamics in the Jovian Magnetosphere : from HISAKI Results
    Impact of Io's volcanic activity to environment and dynamics in the Jovian magnetosphere : from HISAKI results F. Tsuchiya(1) , K. Yoshioka(2), T. Kimura(1), G. Murakami(3), A. Yamazaki(3), M. Kagitani(1), C. Tao(4), H. Kita(3), R. Koga(1), F. Suzuki(2), R. Hikida(2), Y. Kasaba(1), H. Misawa(1), and T. Sakanoi(1), I. Yoshikawa(2) (1)Tohoku Univ., (2)Univ. Tokyo, (3)ISAS/JAXA, (4)NICT - Launch : Sep 14, 2013, The Hisaki satellite - Size:1m×1m×4m - Orbit:950km×1150km (LEO) EUV spectrograph (EXCEED): Major specifications - Inclination: 30 deg - Wavelength range: 55-145nm - Orbital period : 106 min - Spectral resolution: 0.4-1.0nm Difficult to observe a moon itself - Spatial coverage ~370 arc-sec But designed to observed plasma - Spatial resolution : 17 arc-sec torus and aurora simultaneously Allowed transition lines of FUV/EUV aurora S,O ions (satellite origin) H2 Lyman & Werner bands Mission periods Aurora & gas torus slit Energy flow from outer to inner part of magnetosphere (Primary) 2013-09 - 2014-11 (Extended 1) 2014-12 - 2017-03 (Extended 2) 2017-04 - 2020-03 Yoshioka et al. 2013, Yoshikawa et al. 2014, Yamazaki et al. 2014 2 Summary of the HISAKI findings • Jupiter 1. Internally driven energy release process & inward transport of the energy Yoshioka et al. 2014, Kimura et al. 2015, Badman et al. 2015, Yoshikawa et al. 2016, 2017, Suzuki et al. 2018 2. Solar wind influence on the magnetosphere (plasma torus, radiation belt, and aurora) Kimura et al. 2016, Tao et al. 2016a, 2016b, Kita et al.
    [Show full text]
  • Space Physics Handout 2 : the Earth's Magnetosphere And
    Space Physics Handout 2 : The Earth’s magnetosphere and ionosphere The previous handout discussed the highly conducting plasma which the Sun emits, known as the solar wind. This highly conducting plasma travels at supersonic speeds of about 500 km/s as a result of the supersonic expansion of the solar corona. As a result of this plasma being highly conductive, the solar wind magnetic field is frozen into the plasma (something we will discuss and derive in the lectures). The implication of this is that when the solar wind encounters the dipolar magnetic field of the Earth, that it simply cannot penetrate through it and what happens is that it is slowed down and to a large extent deflected around it. Since the solar wind hits the obstacle (the Earth’s magnetic field) at supersonic speeds, a shock wave is formed, which is known as the bow shock. At this bow shock the solar wind plasma is slowed down and a substantial fraction of the kinetic energy of the particles is converted into thermal energy. The region of thermalised subsonic plasma behind the bow shock is called the magnetosheath. The magnetosheath plasma is denser and hotter than the solar wind plasma and the magnetic field values are higher in this region compared to out in the solar wind. The shocked solar wind plasma in the magnetosheath cannot easily penetrate the Earth’s magnetic field and is deflected around it. The boundary separating the two different regions is called the magnetopause and the cavity generated by the solar wind interaction with the Earth’s magnetic field is known as the magnetosphere.
    [Show full text]
  • Temperature Variations in the Dayside Magnetosheath and Their
    Journal of Geophysical Research: Space Physics RESEARCH ARTICLE Temperature variations in the dayside magnetosheath 10.1002/2016JA023729 and their dependence on ion-scale magnetic structures: Key Points: THEMIS statistics and measurements by MMS • A positive correlation exists between the amplitude of magnetic fluctuations and temperature A. P. Dimmock1 , A. Osmane1 , T. I. Pulkkinen1 , K. Nykyri2 , and E. Kilpua3 variation • Temperature fluctuations are strongly 1 associated with larger local in Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, Finland, 2 ion-scale magnetic structures than Centre for Space and Atmospheric Research, Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA, the fluid input at the shock 3Department of Physics, University of Helsinki, Helsinki, Finland • The amplitude of ion gyroscale fluctuations and in situ temperature variations are favored by the Abstract The magnetosheath contains an array of waves, instabilities, and nonlinear magnetic dawn flank structures which modify global plasma properties by means of various wave-particle interactions. The present work demonstrates that ion-scale magnetic field structures (∼0.2–0.5 Hz) observed in the dayside Correspondence to: A. P. Dimmock, magnetosheath are statistically correlated to ion temperature changes on orders 10–20% of the andrew.dimmock@aalto.fi background value. In addition, our statistical analysis implies that larger temperature changes are in equipartition to larger amplitude magnetic structures. This effect was more pronounced behind the Citation: quasi-parallel bow shock and during faster solar wind speeds. The study of two separate intervals suggests Dimmock, A. P., A. Osmane, that this effect can result from both local and external drivers.
    [Show full text]