Structural Characterization of Two Different F- Actin Cross-Linking Proteins by Electron Microscopy Cheri M

Total Page:16

File Type:pdf, Size:1020Kb

Structural Characterization of Two Different F- Actin Cross-Linking Proteins by Electron Microscopy Cheri M Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2006 Reading Between the Filaments: Structural Characterization of Two Different F- Actin Cross-Linking Proteins by Electron Microscopy Cheri M. Hampton Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES READING BETWEEN THE FILAMENTS: STRUCTURAL CHARACTERIZATION OF TWO DIFFERENT F-ACTIN CROSS-LINKING PROTEINS BY ELECTRON MICROSCOPY By CHERI M. HAMPTON A Dissertation submitted to the Institute of Molecular Biophysics in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Fall Semester, 2006 The members of the Committee approve the Dissertation of Cheri M. Hampton defended on August 11th, 2006. _________________________ Kenneth A. Taylor Professor Directing Dissertation _________________________ Charles Ouimet Outside Committee Member _________________________ P. Bryant Chase Committee Member _________________________ Piotr Fajer Committee Member _________________________ Hong Li Committee Member Approved: _________________________ Timothy M Logan, Director, Institute of Molecular Biophysics The Office of Graduate Studies has verified and approved the above named committee members. ii TABLE OF CONTENTS List of Tables .................................................................................... vi List of Figures .................................................................................... vii Abstract .......................................................................................... x 1. Introduction to Actin Cross-linking Proteins and EM.......................... 1 1.1 The Cytoskeleton is a Cellular Scaffold................................... 1 1.1.1 Actin Filaments in the Cytoskeleton ................................. 1 1.1.2 Cell Structure and Tension .............................................. 2 1.1.3 Cell Structure and Signaling............................................. 3 1.2 Actin, Function and Structure .................................................. 6 1.2.1 Actin is the Most Highly Conserved Protein ..................... 6 1.2.2 Actin Function .................................................................. 6 1.2.3 Actin Structure ................................................................. 7 1.3 The Spectrin Repeat Family, Function and Structure.............. 10 1.3.1 Spectrin Repeat Family.................................................... 10 1.3.2 α-Actinin Function ............................................................ 14 1.3.3 α-Actinin Structure ........................................................... 17 1.4 The Gelsolin Family, Function and Structure .......................... 19 1.4.1 Actin Filament Severing, Capping, Nucleating,................ and Bundling Proteins....................................................... 19 1.4.2 Villin Found Primarily in Microvilli..................................... 19 1.4.3 Villin is Structurally Similar to Gelsolin ............................. 20 1.4.4 Gelsolin is Regulated by Calcium .................................... 26 1.5 Electron Microscopy, Electron Tomography,........................... And Image Analysis ................................................................. 28 1.5.1 Electron Microscopy and Image Formation...................... 28 1.5.2 The Fourier Transform ..................................................... 29 1.5.3 The Contrast Transfer Function ....................................... 30 1.5.4 Tomography and the Projection Theorem........................ 31 1.5.5 Averaging and Classification............................................ 32 2. α-Actinin is a Variable-Length Actin Cross-linker .............................. 34 2.1 Background ............................................................................. 34 iii 2.2 Results .................................................................................... 37 2.2.1 Alignment and Correspondence Analysis ........................ 37 2.2.2 Distribution of Cross-Link Angles and Lengths ................ 44 2.2.3 α-Actinin Binds to a Single Actin Filament ....................... 49 2.3 Discussion............................................................................... 51 2.3.1 α-Actinin-Membrane Interactions ..................................... 52 2.3.2 Variability of Bipolar Cross-Links ..................................... 53 2.3.3 Significance of “Monofilament Binding”............................ 54 2.3.4 Significance of Variable Length of Cross-Link.................. 56 2.4 Materials and Methods............................................................ 57 2.4.1 Protein Purification........................................................... 57 2.4.2 EM Data Collection .......................................................... 58 2.4.3 Image Processing ............................................................ 58 2.4.4 Classification.................................................................... 58 2.2.5 Modeling .......................................................................... 59 3. α-Actinin Interacting Proteins ............................................................ 61 3.1 The Alliance for Cellular Signaling........................................... 61 3.2 Molecule Page Navigation....................................................... 62 3.3 α-Actinin-1 Molecule Pages .................................................... 68 3.3.1 α-Actinin-1 Overview........................................................ 68 3.3.1 α-Actinin-1 Mini Molecule Page ....................................... 73 3.4 α-Actinin-2 Molecule Pages .................................................... 77 3.4.1 α-Actinin-2 Overview........................................................ 77 3.4.2 α-Actinin-2 Summary ....................................................... 79 3.4.3 α-Actinin-2 Network Map ................................................. 93 3.4.4 α-Actinin-2 States ............................................................ 94 3.4.5 α-Actinin-2 Transitions ..................................................... 96 3.5 α-Actinin-3 Molecule Pages .................................................... 98 3.5.1 α-Actinin-3 Overview........................................................ 98 3.5.2 α-Actinin-3 Summary ....................................................... 100 3.5.3 α-Actinin-3 Network Map ................................................. 104 3.5.4 α-Actinin-3 States ............................................................ 105 iv 3.5.5 α-Actinin-3 Transitions ..................................................... 106 3.6 α-Actinin-4 Molecule Pages .................................................... 107 3.6.1 α-Actinin-4 Overview........................................................ 107 3.6.2 α-Actinin-4 Summary ....................................................... 109 3.6.3 α-Actinin-4 Network Map ................................................. 118 3.6.4 α-Actinin-4 States ............................................................ 119 3.6.5 α-Actinin-4 Transitions ..................................................... 121 3.7 α-Actinin Interacting Proteins .................................................. 123 4. Villin in an Unusual Suspect in F-actin Cross-Linking ....................... 135 4.1 Background ............................................................................. 135 4.2 Results .................................................................................... 138 4.2.1 Image Alignment and Volume Classification.................... 138 4.2.2 Models ............................................................................. 143 4.3 Discussion............................................................................... 146 4.3.1 A Tool for Studying Actin: Actin-binding Protein Interactions 147 4.3.2 Significance of Villin-Actin Interaction Sites ..................... 147 4.3.3 Indication for Multiple Modes of F-actin Binding............... 148 4.4 Materials and Methods............................................................ 149 4.4.1 Protein Purification and Array Formation ......................... 149 4.4.2 EM Data Collection .......................................................... 149 4.4.3 Image Processing ............................................................ 150 4.4.4 Classification.................................................................... 150 4.4.5 Modeling .......................................................................... 150 5. Summary and Future Directions........................................................ 152 REFERENCES .................................................................................... 154 BIOGRAPHICAL SKETCH .................................................................... 171 v LIST OF TABLES Table 2.2.1.1: Assessment of Classification Accuracy ........................... 43 Table 3.7.1: α-Actinin Interacting Proteins ............................................. 123 vi LIST OF FIGURES Figure 1.1.1.1: Z Disc Architecture ........................................................ 2 Figure 1.1.2:1: The Cytoskeletal Network ............................................. 3 Figure 1.1.3:1: The Focal Adhesion is a Site for Force-Regulated Cell Signaling .................................. 5 Figure 1.1.3.2: Schematic of Protein Interactions Emanating from the Z Disc
Recommended publications
  • FLNC Missense Variants in Familial Noncompaction Cardiomyopathy
    Cardiogenetics 2019; volume 9:8181 FLNC missense variants than 2 according to current echocardio- in familial noncompaction graphic criteria, or 2.3 on CMR.1,2 Correspondence: Jaap I. van Waning, Approximately 10% of patients diagnosed Department of Clinical Genetics, EE 2038, cardiomyopathy with NCCM have concurrent congenital Erasmus MC, POB 2040, 3000CA Rotterdam, heart defects (CHD).3,4 the Netherlands. Tel.: +3107038388 - Fax: +3107043072. Jaap I. van Waning,1 In 30-40% of cases diagnosed with E-mail: [email protected] Yvonne M. Hoedemaekers,2 NCCM a pathogenic variant can be identi- 2,3 4 Wouter P. te Rijdt, Arne I. Jpma, fied. Around 80% of these pathogenic vari- Acknowledgements: JVW was supported by a Daphne Heijsman,4 Kadir Caliskan,5 ants involve the same sarcomere genes, that grant from the Jaap Schouten Foundation. Elke S. Hoendermis,6 are the major causes for hypertrophic car- WPTR was supported by a Young Talent Program (CVON PREDICT) grant 2017T001 Tineke P. Willems,7 diomyopathy (HCM) and dilated cardiomy- - Dutch Heart Foundation. 8 opathy (DCM), in particular MYH7, Arthur van den Wijngaard, 5,6 3 MYBPC3 and TTN. Filamin C (FLNC) Albert Suurmeijer, Conflict of interest: the authors declare no plays a central role in muscle functioning Marjon A. van Slegtenhorst,1 potential conflict of interest. by maintaining the structural integrity of the Jan D.H. Jongbloed,2 muscle fibers. Pathogenic variants in FLNC Received for publication: 20 March 2019. Danielle F. Majoor-Krakauer,1 2 were found to be associated with a wide Revision received: 29 July 2019. Paul A.
    [Show full text]
  • RNA Sequencing Reveals a Slow to Fast Muscle Fiber Type Transition After Olanzapine Infusion in Rats
    RESEARCH ARTICLE RNA Sequencing Reveals a Slow to Fast Muscle Fiber Type Transition after Olanzapine Infusion in Rats Christopher J. Lynch1*, Yuping Xu1, Andras Hajnal2, Anna C. Salzberg3, Yuka Imamura Kawasawa4,5,6 1 Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, Hershey, Pennsylvania, 17033, United States of America, 2 Department of Neural and Behavioral Sciences, College of Medicine, Penn State University, Hershey, Pennsylvania, 17033, United States of America, 3 Department a11111 of Public Health Sciences, College of Medicine, Penn State University, Hershey, Pennsylvania, 17033, United States of America, 4 Department of Pharmacology, College of Medicine, Penn State University, Hershey, Pennsylvania, 17033, United States of America, 5 Department of Biochemistry and Molecular Biology, College of Medicine, Penn State University, Hershey, Pennsylvania, 17033, United States of America, 6 The Institute for Personalized Medicine, College of Medicine, Penn State University, Hershey, Pennsylvania, 17033, United States of America * [email protected] OPEN ACCESS Citation: Lynch CJ, Xu Y, Hajnal A, Salzberg AC, Kawasawa YI (2015) RNA Sequencing Reveals a Abstract Slow to Fast Muscle Fiber Type Transition after Olanzapine Infusion in Rats. PLoS ONE 10(4): Second generation antipsychotics (SGAs), like olanzapine, exhibit acute metabolic side ef- e0123966. doi:10.1371/journal.pone.0123966 fects leading to metabolic inflexibility, hyperglycemia, adiposity and diabetes. Understand- Academic Editor: Guillermo López Lluch, ing how SGAs affect the skeletal muscle transcriptome could elucidate approaches for Universidad Pablo de Olavide, Centro Andaluz de mitigating these side effects. Male Sprague-Dawley rats were infused intravenously with ve- Biología del Desarrollo-CSIC, SPAIN hicle or olanzapine for 24h using a dose leading to a mild hyperglycemia.
    [Show full text]
  • Desmin Forms Toxic, Seeding-Competent Amyloid Aggregates That Persist in Muscle Fibers
    Desmin forms toxic, seeding-competent amyloid aggregates that persist in muscle fibers Niraja Kediaa, Khalid Arhzaouyb, Sara K. Pittmanb, Yuanzi Sunc,d, Mark Batchelord, Conrad C. Weihlb,1, and Jan Bieschkea,d,1 aDepartment of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130; bDepartment of Neurology, Washington University School of Medicine, St. Louis, MO 63110; cDepartment of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130; and dUniversity College London Institute of Prion Diseases/Medical Research Council Prion Unit, University College London, London W1W 7FF, United Kingdom Edited by Nancy M. Bonini, University of Pennsylvania, Philadelphia, PA, and approved July 10, 2019 (received for review May 16, 2019) Desmin-associated myofibrillar myopathy (MFM) has pathologic Desmin is a 470-amino acid protein, and more than 70 disease- similarities to neurodegeneration-associated protein aggregate dis- associated mutations have been reported that span the entire eases. Desmin is an abundant muscle-specific intermediate filament, protein (3). The formation of desmin IFs occurs via sequentially and disease mutations lead to its aggregation in cells, animals, and ordered steps that include dimer and tetramer formation, unit- patients. We reasoned that similar to neurodegeneration-associated length filament formation, and filament elongation (5). Some proteins, desmin itself may form amyloid. Desmin peptides corre- disease mutations affect IF assembly in vitro and in vivo, resulting sponding to putative amyloidogenic regions formed seeding- in cytosolic inclusions (5, 6). Similarly, disease mutations in the competent amyloid fibrils. Amyloid formation was increased when small heat shock protein αB crystallin affect its ability to facili- disease-associated mutations were made within the peptide, and tate desmin filament formation, resulting in desmin aggregation this conversion was inhibited by the anti-amyloid compound (7).
    [Show full text]
  • Nebulette Is a Powerful Cytolinker Organizing Desmin and Actin in Mouse Hearts
    M BoC | ARTICLE Nebulette is a powerful cytolinker organizing desmin and actin in mouse hearts Daniel A. Hernandeza,†, Christina M. Bennetta,†, Lyubov Dunina-Barkovskayaa, Tatjana Wedigb, Yassemi Capetanakic, Harald Herrmannb,d, and Gloria M. Conovera,* aDepartment of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-3474; bDivision of Molecular Genetics, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; cCenter of Basic Research, Biomedi- cal Research Foundation Academy of Athens, Athens 11527, Greece; dInstitute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany ABSTRACT In the hearts of patients bearing nebulette mutations, a severe general disorgani- Monitoring Editor zation in cardiomyocytes of the extrasarcomeric desmin intermediate filament system is fre- Robert D. Goldman quently observed. However, the molecular and functional relationship between the desmin Northwestern University cytoskeleton and nebulette-containing sarcomeres is still unclear. Here we report a high-affinity Received: Apr 18, 2016 in vitro interaction between nebulette and desmin filaments. A major interaction site has been Revised: Aug 31, 2016 mapped to the desmin α-helical rod domain, indicating that the filament core is directly in- Accepted: Oct 5, 2016 volved in the binding of nebulette. The disease-mutant desmin variants E245D and T453I ex- hibited increased binding affinity for nebulette, delayed filament assembly kinetics, and caused significant weakening of networks. In isolated chick cardiomyocytes and sections from canine heart, we revealed by ground-state depletion and confocal microscopies that module 5 of nebulette extends outward from Z-disk–associated desmin filaments toward the center of the sarcomere. Accordingly, in the myocardium of Des−/− mice, elevated levels of cardiac actin cor- related with alterations in the distribution of nebulette.
    [Show full text]
  • The Role of Z-Disc Proteins in Myopathy and Cardiomyopathy
    International Journal of Molecular Sciences Review The Role of Z-disc Proteins in Myopathy and Cardiomyopathy Kirsty Wadmore 1,†, Amar J. Azad 1,† and Katja Gehmlich 1,2,* 1 Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; [email protected] (K.W.); [email protected] (A.J.A.) 2 Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK * Correspondence: [email protected]; Tel.: +44-121-414-8259 † These authors contributed equally. Abstract: The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
    [Show full text]
  • Alpha Actinin 4: an Intergral Component of Transcriptional
    ALPHA ACTININ 4: AN INTERGRAL COMPONENT OF TRANSCRIPTIONAL PROGRAM REGULATED BY NUCLEAR HORMONE RECEPTORS By SIMRAN KHURANA Submitted in partial fulfillment of the requirements for the degree of doctor of philosophy Thesis Advisor: Dr. Hung-Ying Kao Department of Biochemistry CASE WESTERN RESERVE UNIVERSITY August, 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of SIMRAN KHURANA ______________________________________________________ PhD candidate for the ________________________________degree *. Dr. David Samols (signed)_______________________________________________ (chair of the committee) Dr. Hung-Ying Kao ________________________________________________ Dr. Edward Stavnezer ________________________________________________ Dr. Leslie Bruggeman ________________________________________________ Dr. Colleen Croniger ________________________________________________ ________________________________________________ May 2011 (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. TABLE OF CONTENTS LIST OF TABLES vii LIST OF FIGURES viii ACKNOWLEDEMENTS xii LIST OF ABBREVIATIONS xiii ABSTRACT 1 CHAPTER 1: INTRODUCTION Family of Nuclear Receptors 3 Mechanism of transcriptional regulation by co-repressors and co-activators 8 Importance of LXXLL motif of co-activators in NR mediated transcription 12 Cyclic recruitment of co-regulators on the target promoters 15 Actin and actin related proteins (ABPs) in transcription
    [Show full text]
  • The N-Cadherin Interactome in Primary Cardiomyocytes As Defined Using Quantitative Proximity Proteomics Yang Li1,*, Chelsea D
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs221606. doi:10.1242/jcs.221606 TOOLS AND RESOURCES The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics Yang Li1,*, Chelsea D. Merkel1,*, Xuemei Zeng2, Jonathon A. Heier1, Pamela S. Cantrell2, Mai Sun2, Donna B. Stolz1, Simon C. Watkins1, Nathan A. Yates1,2,3 and Adam V. Kwiatkowski1,‡ ABSTRACT requires multiple adhesion, cytoskeletal and signaling proteins, The junctional complexes that couple cardiomyocytes must transmit and mutations in these proteins can cause cardiomyopathies (Ehler, the mechanical forces of contraction while maintaining adhesive 2018). However, the molecular composition of ICD junctional homeostasis. The adherens junction (AJ) connects the actomyosin complexes remains poorly defined. – networks of neighboring cardiomyocytes and is required for proper The core of the AJ is the cadherin catenin complex (Halbleib and heart function. Yet little is known about the molecular composition of the Nelson, 2006; Ratheesh and Yap, 2012). Classical cadherins are cardiomyocyte AJ or how it is organized to function under mechanical single-pass transmembrane proteins with an extracellular domain that load. Here, we define the architecture, dynamics and proteome of mediates calcium-dependent homotypic interactions. The adhesive the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble properties of classical cadherins are driven by the recruitment of stable AJs along intercellular contacts with organizational and cytosolic catenin proteins to the cadherin tail, with p120-catenin β structural hallmarks similar to mature contacts. We combine (CTNND1) binding to the juxta-membrane domain and -catenin β quantitative mass spectrometry with proximity labeling to identify the (CTNNB1) binding to the distal part of the tail.
    [Show full text]
  • List of Genes Associated with Sudden Cardiac Death (Scdgseta) Gene
    List of genes associated with sudden cardiac death (SCDgseta) mRNA expression in normal human heart Entrez_I Gene symbol Gene name Uniprot ID Uniprot name fromb D GTEx BioGPS SAGE c d e ATP-binding cassette subfamily B ABCB1 P08183 MDR1_HUMAN 5243 √ √ member 1 ATP-binding cassette subfamily C ABCC9 O60706 ABCC9_HUMAN 10060 √ √ member 9 ACE Angiotensin I–converting enzyme P12821 ACE_HUMAN 1636 √ √ ACE2 Angiotensin I–converting enzyme 2 Q9BYF1 ACE2_HUMAN 59272 √ √ Acetylcholinesterase (Cartwright ACHE P22303 ACES_HUMAN 43 √ √ blood group) ACTC1 Actin, alpha, cardiac muscle 1 P68032 ACTC_HUMAN 70 √ √ ACTN2 Actinin alpha 2 P35609 ACTN2_HUMAN 88 √ √ √ ACTN4 Actinin alpha 4 O43707 ACTN4_HUMAN 81 √ √ √ ADRA2B Adrenoceptor alpha 2B P18089 ADA2B_HUMAN 151 √ √ AGT Angiotensinogen P01019 ANGT_HUMAN 183 √ √ √ AGTR1 Angiotensin II receptor type 1 P30556 AGTR1_HUMAN 185 √ √ AGTR2 Angiotensin II receptor type 2 P50052 AGTR2_HUMAN 186 √ √ AKAP9 A-kinase anchoring protein 9 Q99996 AKAP9_HUMAN 10142 √ √ √ ANK2/ANKB/ANKYRI Ankyrin 2 Q01484 ANK2_HUMAN 287 √ √ √ N B ANKRD1 Ankyrin repeat domain 1 Q15327 ANKR1_HUMAN 27063 √ √ √ ANKRD9 Ankyrin repeat domain 9 Q96BM1 ANKR9_HUMAN 122416 √ √ ARHGAP24 Rho GTPase–activating protein 24 Q8N264 RHG24_HUMAN 83478 √ √ ATPase Na+/K+–transporting ATP1B1 P05026 AT1B1_HUMAN 481 √ √ √ subunit beta 1 ATPase sarcoplasmic/endoplasmic ATP2A2 P16615 AT2A2_HUMAN 488 √ √ √ reticulum Ca2+ transporting 2 AZIN1 Antizyme inhibitor 1 O14977 AZIN1_HUMAN 51582 √ √ √ UDP-GlcNAc: betaGal B3GNT7 beta-1,3-N-acetylglucosaminyltransfe Q8NFL0
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Daam2 Couples Translocation and Clustering of Wnt Receptor Signalosomes Through Rac1 Carlo D
    © 2021. Published by The Company of Biologists Ltd | Journal of Cell Science (2021) 134, jcs251140. doi:10.1242/jcs.251140 RESEARCH ARTICLE Daam2 couples translocation and clustering of Wnt receptor signalosomes through Rac1 Carlo D. Cristobal1,QiYe2, Juyeon Jo2, Xiaoyun Ding3, Chih-Yen Wang2, Diego Cortes2, Zheng Chen4 and Hyun Kyoung Lee1,3,5,* ABSTRACT Dynamic polymerization of the Dishevelled proteins functions at Wnt signaling plays a critical role in development across species and the core of the Wnt signalosome by interacting with both the is dysregulated in a host of human diseases. A key step in signal Frizzled Wnt receptors and low-density lipoprotein receptor-related transduction is the formation of Wnt receptor signalosomes, during protein 5/6 (LRP5/6), leading to recruitment of Axin proteins β which a large number of components translocate to the membrane, from the -catenin destruction complex (MacDonald et al., 2009; cluster together and amplify downstream signaling. However, the Schwarz-Romond et al., 2007). However, the exact composition molecular processes that coordinate these events remain poorly and mechanisms of signalosome assembly at the plasma membrane defined. Here, we show that Daam2 regulates canonical Wnt remain unclear. signaling via the PIP –PIP5K axis through its association with Rac1. The hallmark of canonical Wnt signaling is the accumulation and 2 β Clustering of Daam2-mediated Wnt receptor complexes requires both translocation of -catenin into the nucleus for gene transcription, β Rac1 and PIP5K, and PIP5K promotes membrane localization of these whereas non-canonical Wnt signaling is -catenin independent and complexes in a Rac1-dependent manner. Importantly, the localization involves assembly/disassembly of the actin cytoskeleton, polarized of Daam2 complexes and Daam2-mediated canonical Wnt signaling is cell shape changes and cell migration (Niehrs, 2012; Schlessinger dependent upon actin polymerization.
    [Show full text]
  • Research Article Characterization of the Equine Skeletal Muscle
    McGivney et al. BMC Genomics 2010, 11:398 http://www.biomedcentral.com/1471-2164/11/398 RESEARCH ARTICLE Open Access CharacterizationResearch article of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training Beatrice A McGivney1, Paul A McGettigan1, John A Browne1, Alexander CO Evans1,3, Rita G Fonseca2, Brendan J Loftus3, Amanda Lohan3, David E MacHugh1,3, Barbara A Murphy1, Lisa M Katz2 and Emmeline W Hill*1 Abstract Background: Digital gene expression profiling was used to characterize the assembly of genes expressed in equine skeletal muscle and to identify the subset of genes that were differentially expressed following a ten-month period of exercise training. The study cohort comprised seven Thoroughbred racehorses from a single training yard. Skeletal muscle biopsies were collected at rest from the gluteus medius at two time points: T1 - untrained, (9 ± 0.5 months old) and T2 - trained (20 ± 0.7 months old). Results: The most abundant mRNA transcripts in the muscle transcriptome were those involved in muscle contraction, aerobic respiration and mitochondrial function. A previously unreported over-representation of genes related to RNA processing, the stress response and proteolysis was observed. Following training 92 tags were differentially expressed of which 74 were annotated. Sixteen genes showed increased expression, including the mitochondrial genes ACADVL, MRPS21 and SLC25A29 encoded by the nuclear genome. Among the 58 genes with decreased expression, MSTN, a negative regulator of muscle growth, had the greatest decrease. Functional analysis of all expressed genes using FatiScan revealed an asymmetric distribution of 482 Gene Ontology (GO) groups and 18 KEGG pathways.
    [Show full text]
  • Nesprins: from the Nuclear Envelope and Beyond
    expert reviews http://www.expertreviews.org/ in molecular medicine Nesprins: from the nuclear envelope and beyond Dipen Rajgor and Catherine M. Shanahan* Nuclear envelope spectrin-repeat proteins (Nesprins), are a novel family of nuclear and cytoskeletal proteins with rapidly expanding roles as intracellular scaffolds and linkers. Originally described as proteins that localise to the nuclear envelope (NE) and establish nuclear-cytoskeletal connections, nesprins have now been found to comprise a diverse spectrum of tissue specific isoforms that localise to multiple sub-cellular compartments. Here, we describe how nesprins are necessary in maintaining cellular architecture by acting as essential scaffolds and linkers at both the NE and other sub-cellular domains. More importantly, we speculate how nesprin mutations may disrupt tissue specific nesprin scaffolds and explain the tissue specific nature of many nesprin-associated diseases, including laminopathies. The eukaryotic cytoplasm contains three major composed of three α-helical bundles with a left- types of cytoskeletal filaments: Filamentous- handed twist, and its primary function is to actin (F-actin), microtubules (MTs) and provide docking sites for proteins and other intermediate filaments (IFs). These components higher order complexes (Refs 3, 4). Although are organised in a manner that provides the cell most SR proteins contain CHDs, some possess with an internal framework fundamental for motifs which can interact with other cytoskeletal many processes, such as controlling cellular components, allowing linkage of SR-associated shape, polarity, adhesion and migration, complexes to filamentous structures other than cytokinesis, inter- and intracellular F-actin. In addition, these motifs allow cross- Nesprins: from the nuclear envelope and beyond communication and trafficking of organelles, linking between different filaments and dynamic vesicles, proteins and RNA (Refs 1, 2).
    [Show full text]