Answers to Earth System Science Questions— the Evolution of Informatics at the U.S. Geological Survey Data Discovery Map Servi

Total Page:16

File Type:pdf, Size:1020Kb

Answers to Earth System Science Questions— the Evolution of Informatics at the U.S. Geological Survey Data Discovery Map Servi 2 Geoinformatics 2008—Data to Knowledge This presentation will, drawing on national and interna- and Department of Interior bureaus that will contain searchable tional examples, explore these challenges and the issues they metadata on data and materials such as core, rock samples, well raise. logs, engineering data, and maps. Map Services Answers to Earth System Science Questions— The Evolution of Informatics at the U.S. The USGS has created (and is constantly revising and Geological Survey updating) national, regional, and topical map-based data in a wide range of scales and resolutions. The National Map (http:// By Linda C. Gundersen1 nationalmap.gov/) provides imagery from a variety of sources, elevation and hydrographic data, geographic names, and land- 1U.S. Geological Survey, Reston, Va. cover data. The Mineral Resources On-Line Spatial Data service (http://mrdata.usgs.gov/) provides access to national databases The U.S. Geological Survey’s (USGS’s) science strategy and maps of mines, historical mining, mineral occurrences, (U.S. Geological Survey, 2007) identified data integration as geochemistry of rocks and sediments, lithology, geology, and one of its crosscutting strategic science directions and states geophysics of the United States. Both the National Map and the the following: “The USGS will use its information resources Mineral Resources On-Line Spatial Data service include map to create a more integrated and accessible environment for its browsers, download sites, and Web services. vast resources of past and future data. It will invest in cyber- infrastructure, nurture and cultivate programs in Earth-system Integrated Science Applications science informatics, and participate in efforts to build a global integrated science and computing platform.” The PAGER (Prompt Assessment of Global Earthquakes USGS is constructing a service-oriented architecture for Response) system is an automated system developed by the (SOA) for all USGS data and science applications, which is a USGS (http://earthquake.usgs.gov/eqcenter/pager/) to integrate complex challenge for a 129-year-old institution that has been multiple data streams; rapidly assess the number of people, collecting earth science data since its inception. This effort cities, and regions exposed to severe shaking by an earthquake; requires operating on many aspects of architecture creation and inform emergency responders, government agencies, and simultaneously while dealing with extensive legacy analog the media about the scope of the potential damage. PAGER and digital data. Projects are underway that include everything monitors the National and Global Seismological Networks; from building a federated database warehouse, developing retrieves shaking intensities reported by people in the epicenter Web services for discovery of data, creating community- region via USGS’s online “Did You Feel It?” system; generates specific data models, and building integrated-earth-system a site-specific ground-motion amplification map; and computes scientific applications. The complex issues of governance, the population affected at each intensity level. Within 15 to 30 platforms, standards, and active engagement in international minutes, depending on the location and size of the earthquake, and national informatics efforts require the development of the PAGER produces regional ground shaking estimates using the SOA to be collaborative, iterative, and experimental. The fol- reported intensities, the site-specific ground-motion amplifica- lowing provides highlights of projects underway to create this tion map, and seismic-wave-attenuation equations that account service-oriented architecture for earth-system science. for the variations of seismic shaking intensity with magnitude, distance, and depth. Final information is distributed in multiple Data Discovery formats and through multiple media, including Google’s online map display services, automatic e-mail alerts, and community As a first step, USGS is engaged in evaluating the agency’s standard Extensible Mark-up Language (XML) format. data holdings and is creating a searchable, spatially enabled Two significant USGS collaborative efforts that bring database tentatively named the “National Digital Catalog global communities together to address global-scale societal (NDC)” This catalog will provide discovery tools, metadata, a issues are the Famine Early Warning Systems Network (FEWS geospatial interface, and other information related to the nature NET) and the Delta Research and Global Observation Network of the materials or data. A Web-based pilot was recently devel- (DRAGON). The FEWS NET grew out of an effort started by oped to test hardware and software technology. This pilot, the the U.S. Agency for International Development (USAID) in the Geospatial Management Information System (GMIS), provides wake of the devastating 1985 famine in Ethiopia. Today it is a one-stop access to different sources of USGS data, including modern network of multiple agencies supplying multiple data detailed information on the thousands of USGS science projects streams from both ground observations and satellite remote being conducted around the world. The system allows the user sensing. These data feed into a series of Web services and pro- to search information by topic and geographic area. Another grams to produce products ranging from key vegetation indexes part of the NDC under development is a catalog service for the to sophisticated daily flood models. The network identifies physical material collections of the State geological surveys and provides early warnings for famine in sub-Saharan Africa, Geoinformatics 2008—Data to Knowledge 3 Afghanistan, Central America, and Haiti. The USGS Earth pogenic driver, it becomes crucial to constantly monitor the Resources Observation and Science (EROS) Data Center (USGS world’s most climatically sensitive areas. Examples of such EDC) works in cooperation with USAID, the National Aeronau- areas include glaciers and ice sheets whose record melting tics and Space Administration (NASA), the National Oceanic is impacting communities on a global scale. In some cases, and Atmospheric Administration (NOAA), and Chemonics regions that rely upon glacial water as a principle source of International, Inc., to provide the data, information, and analyses fresh water are witnessing the rapid dwindling of resources. In needed to support the FEWS NET activity. NASA and NOAA other cases, rising sea level, to which the melting of glacier ice are responsible for the collection and processing of satellite contributes, is threatening low-lying communities. Unfortu- data that provide the spatial coverage and temporal frequency nately, as is the case with the Greenland ice sheet, many such necessary for monitoring both vegetation condition and rainfall. areas are remote and dangerous, making spatially and tem- Chemonics maintains a staff of field representatives responsible porally comprehensive field measurements cost prohibitive. for key field observations and monitoring regional and country- Hence, we must rely on remotely sensed measurements from specific conditions. USGS EDC provides end-to-end data aircraft and satellites in order to fill in our knowledge gaps left management, processing, and analyses; GIS and remote-sensing by sparse field measurements. technical support; crop and flood modeling; and long-term data The Multi-angle Imaging SpectroRadiometer (MISR) archive and distribution services. The Africa Data Dissemination instrument (operational since 2000) is on board the Earth Service (ADDS) provides additional Web services. Observing System (EOS) satellite, Terra, which is in a sun- DRAGON is an effort recently initiated by USGS to synchronous polar orbit. MISR is uniquely suited for studying create a global science framework for comparing, integrating, the poles because of the continuous, overlapping coverage of and predicting the key drivers and management practices in data taken by its nine pushbroom cameras that are arrayed at large delta ecosystems. Large delta ecosystems provide the fixed angles ranging from 0° to 70.5° (from nadir) and sym- habitat for a broad diversity of flora and fauna as well as life- metric about the nadir camera. Each camera has four filters: sustaining agriculture, commerce, and fisheries for hundreds red, green, and blue (in the visible), and a near-infrared (NIR) of millions of people. The project will require an extensive at 866 micrometer (µm) wavelength. The multi-angle views effort to (1) make large volumes of ecological, hydrological, in conjunction with the 275-meter (m) resolution (available at geological, and biogeochemical information interoperable; (2) the visible red wavelength on all nine cameras) can be used to create a common data and discovery portal; and (3) develop compute a proxy of surface roughness of the observed target community tools and models through a global “community on a scale that is comparable to that of the Moderate Resolu- of practice” in delta system management. The pilot program tion Imaging Spectroradiometer (MODIS) 250-m data (Nolin partners the USGS with the Chinese Qingdao Institute for and others, 2002). We have elected to use MISR’s red-filtered Marine Geology to develop the conceptual frameworks for the C-cameras (60.0° fore and aft) in order to define and inves- Lower Mississippi Valley simultaneously with those for the tigate a proxy for ice surface roughness based on forward Huang He River. The resulting joint comparative model
Recommended publications
  • Earth System Science and Policy (ESSP) - 1
    Earth System Science and Policy (ESSP) - 1 ESSP 420. Sustainable Energy. 3 Credits. Earth System Science This course is an interdisciplinary exploration of Sustainable Energy. The interdisciplinary exploration includes the analysis of renewable energy systems as well as the socio-economical, political, and environmental aspects and Policy (ESSP) of renewable energy. The course will specifically analyze the origin and dimensions of global energy issues and identify how renewable energy issues and policies are critical to the sustainable future of global environmental quality, Courses economic growth, social justice, and democracy. S, even years. ESSP 160. Sustainability & Society. 3 Credits. ESSP 450. Environmental and Natural Resource Economics. 3 Credits. Human interactions with the natural environment are often perceived as This course will cover the general topics in the field of environmental and conflicts between environmental protection and socio-economics. Sustainability natural resource economics: market failure, pollution regulation, the valuation attempts to redefine that world view by seeking balance between the 'three of environmental amenities, renewable and non-renewable resources Es' -environment, economy, equity. This course examines the concept of management, and the economics of biodiversity conservation, climate change sustainability, the theory behind it, and what it means for society. F. and sustainability. The course has a strong focus on the interaction between human society and natural environmental systems and the connection between ESSP 200. Sustainability Science. 3 Credits. market equilibrium and social sustainability. F, odd years. This course will provide an integrated, system-oriented introduction on the concepts, theories and issues surrounding a sustainable future for humans ESSP 460. Global Environmental Policy.
    [Show full text]
  • Accessing Earth System Science Data and Applications Through High-Bandwidth Networks
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Computer Science and Engineering, Department CSE Journal Articles of 6-1995 Accessing Earth System Science Data and Applications Through High-Bandwidth Networks R. Vetter IEE M. Ali University of North Dakota M. Daily IEE J. Gabrynowic University of North Dakota, Grand Forks, N Sunil G. Narumalani University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/csearticles Part of the Computer Sciences Commons Vetter, R.; Ali, M.; Daily, M.; Gabrynowic, J.; Narumalani, Sunil G.; Nygard, K.; Perrizo, W.; Ram, P.; Reichenbach, S.; Seielstad, G. A.; and White, W., "Accessing Earth System Science Data and Applications Through High-Bandwidth Networks" (1995). CSE Journal Articles. 7. https://digitalcommons.unl.edu/csearticles/7 This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors R. Vetter, M. Ali, M. Daily, J. Gabrynowic, Sunil G. Narumalani, K. Nygard, W. Perrizo, P. Ram, S. Reichenbach, G. A. Seielstad, and W. White This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ csearticles/7 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 13. NO. 5, JUNE 199.5 Accessing Earth System Science Data and Applications Through High-Bandwidth Networks R. Vetter, Member, IEEE, M. Ali, M. Daily, Member, IEEE, J. Gabrynowicz, S. Narumalani, K. Nygard, Member, IEEE, W.
    [Show full text]
  • Earth System Science Envst-Ua.340.1 Prof
    EARTH SYSTEM SCIENCE ENVST-UA.340.1 PROF. RAMPINO Spring 2020 Class meets Tuesday/Thursday, 3:30 to 4:45 PM in Room B07, 45 W. 4th St. Lectures: Prof. Michael R. Rampino (Departments of Biology and Environmental Studies). Office: 1157 Brown Bldg.; Office phone: 212-998-3743; Cell: 718-578-1442; e-mail: [email protected] Office Hours: 1 to 3 PM Tuesdays and Thursdays or contact me for an appointment. Earth System Science examines our current view of planet Earth as a complex system involving interactions among the atmosphere, oceans, solid earth, and life. Emphasis is placed on the dynamics and evolution of these systems over time, and predictions for the future. The subject matter includes observations from space; planetary habitability, the Goldilocks Problem; the Gaia Hypothesis; geophysics and plate tectonics; the rock cycle; the circulation of the oceans and atmosphere; cycles of elements essential for life; the co-evolution of climate and life on Earth. The course will include lectures, discussion and videos. _____________________________________________________________________ REQUIRED READING: 1 1) Skinner, B.J and Murck, B. W. The Blue Planet, 3rd edition. (Wiley, 2011). This book is expensive, and not in the bookstore. There are used copies available on Amazon. If you want to purchase the e-version, that is also OK. 2) Zalasiewicz, J. and Williams, M. The Goldilocks Planet (Oxford, 2012, paper). Order from Amazon. COURSE REQUIREMENTS: The grading in the course will be based on performance in three exams (2 quizzes and final quiz) and homework assignments (There will be homework assignments every week). A great deal of factual information and a number of new concepts will be introduced in this course; it is essential to keep up in the readings and to attend the lectures/discussions.
    [Show full text]
  • Introduction to Earth System Science Fall 2016 T and Th at 9:30 – 11:00 (And 1 Lab Section/Week) Davis Hall 534 Professor: Dr
    Geography 40: Introduction to Earth System Science Fall 2016 T and Th at 9:30 – 11:00 (and 1 lab section/week) Davis Hall 534 Professor: Dr. Laurel Larsen ([email protected]) 595 McCone Hall Office hrs: Tue 11:00 a.m-1:00 p.m. Graduate Student Instructors: Saalem Adera ([email protected]). 565 McCone Office Hrs: Tue 4:00 p.m.-6:00 p.m. Yi Jiao ([email protected]). 598 McCone Office Hrs: Friday 10:45 a.m.-12:45 p.m. Labs: lab attendance is mandatory. Meet in computer lab at 535 McCone Hall (1) Mon 3-5 p.m. GSI: Saalem Adera (2) Tue 2-4 p.m. GSI: Saalem Adera (3) Wed 2-4 p.m. GSI: Yi Jiao (4) Fri 8:30-10:30 a.m. GSI: Yi Jiao Labs start on the week of August 29. Course website – on b-courses, https://bcourses.berkeley.edu . Lecture slides will be posted on this site the night before the lecture (may be as late as midnight). Required Text: Environmental Geology: An earth systems science approach, 2nd Ed. by D. Merritts, K. Menking, and A. DeWet. Copies will be placed on 2-hr reserve in the Earth Science and Map Library (basement of McCone Hall) Grading (tentative, subject to change): Labs 36% 12 labs Midterm 20% Tuesday, October 18, 2016 in-class Final Exam 30% Exam Group 7: Tuesday, December 13, 3-6 pm Journal article synopsis 4% Due Thursday, November 17, 2016 in class In-class participation 10% PLEASE NOTE: • Taking both the midterm and final is required in order to pass the course.
    [Show full text]
  • Holism in Deep Ecology and Gaia-Theory: a Contribution to Eco-Geological
    M. Katičić Holism in Deep Ecology and Gaia-Theory: A Contribution to Eco-Geological... ISSN 1848-0071 UDC 171+179.3=111 Recieved: 2013-02-25 Accepted: 2013-03-25 Original scientific paper HOLISM IN DEEP ECOLOGY AND GAIA-THEORY: A CONTRIBUTION TO ECO-GEOLOGICAL SCIENCE, A PHILOSOPHY OF LIFE OR A NEW AGE STREAM? MARINA KATINIĆ Faculty of Humanities and Social Sciences, University of Zagreb, Croatia e-mail: [email protected] In the second half of 20th century three approaches to phenomenon of life and environmental crisis relying to a holistic method arose: ecosophy that gave impetus to the deep ecology movement, Gaia-hypothesis that evolved into an acceptable scientific theory and gaianism as one of the New Age spiritual streams. All of this approaches have had different methodologies, but came to analogous conclusions on relation man-ecosystem. The goal of the paper is to introduce the three approaches' theoretical and practical outcomes, compare them and evaluate their potency to stranghten responsibility of man towards Earth ecosystem which is a self-regulating whole which humanity is part of. Key words: holism, ecosophy, deep ecology movement, gaia-theory, new age, responsibility. Holizam u dubinskoj ekologiji i teoriji Geje: doprinos ekogeološkoj znanosti, filozofija života ili struja New agea? U drugoj polovici 20. stoljeća pojavila su se tri pristupa fenomenu života i ekološkoj krizi s osloncem u holističkoj metodi: ekozofija koja je dala poticaj razvoju pokreta dubinske ekologije, hipoteza Geje koja se razvila u prihvatljivu znanstvenu teoriju i gajanizam kao jedna od New Age duhovnih struja. Ova su se tri pristupa služila različitim metodama, no došla su do analognih zaključaka o odnosu čovjek-ekosustav.
    [Show full text]
  • Earth Science Education As a Key Component of Education for Sustainability
    sustainability Review Earth Science Education as a Key Component of Education for Sustainability Clara Vasconcelos 1,* and Nir Orion 2,* 1 Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Science Teaching Unit (UEC) & Department of Geosciences, Environment and Spatial Planning (DGAOT), Faculty of Sciences (FCUP), University of Porto, 4169-007 Porto, Portugal 2 Science Teaching Department, Weizmann Institute of Science, Rehovot 7610001, Israel * Correspondence: [email protected] (C.V.); [email protected] (N.O.); Tel.: +97-289-344-043 (C.V.); +220-402-462 (N.O.) Abstract: Environmental insight has emerged as a new scientific concept which incorporates the understanding that the Earth is made up of interworking subsystems and the acceptance that humans must act in harmony with the Earth’s dynamic balanced cycle. This Earth system competency represents the highest level of knowing and understanding in the geosciences community. Humans have an important role as participative beings in the Earth’s subsystems, and they must therefore acknowledge that life on Earth depends on a geoethically responsible management of the Earth system. Yet, the world is far from achieving sustainable development, making the role of the Earth science education in promoting education for sustainability even more relevant. The Earth system approach to education is designed to be an effective learning tool for the development of the innovative concept of environmental insight. Through a holistic view of planet Earth, students realize that humans have the ability to enjoy a sustainable life on our planet while minimising detrimental environmental impacts. There is growing evidence that citizens value science and need to be informed about Earth system problems such as climate change, resource efficiency, pandemics, sustainable use of water resources, and how to protect bio-geodiversity.
    [Show full text]
  • Earth System Science (EARTHSS) 1
    Earth System Science (EARTHSS) 1 Earth System Science (EARTHSS) Courses EARTHSS 1. Introduction to Earth System Science. 4 Units. Covers the origin and evolution of the Earth, its atmosphere, and oceans, from the perspective of biogeochemical cycles, energy use, and human impacts on the Earth system. (II and VA ). EARTHSS 3. Oceanography. 4 Units. Examines circulation of the world oceans and ocean chemistry as it relates to river, hydrothermal vent, and atmospheric inputs. Geological features, the wide variety of biological organisms, and global climate changes, such as greenhouse warming, are also studied. (II, Va) EARTHSS 5. The Atmosphere. 4 Units. The composition and circulation of the atmosphere with a focus on explaining the fundamentals of weather and climate. Topics include solar and terrestrial radiation, clouds, and weather patterns. (II and VA ). EARTHSS 7. Physical Geology. 4 Units. Introduction to Earth materials and processes. Topics include rocks and minerals, plate tectonics, volcanoes, earthquakes, Earth surface processes, Earth resources, geologic time, and Earth history. Laboratory work involves hands-on study of geologic materials, maps, and exercises pertaining to geologic processes. Materials fee. (II and VA ). EARTHSS 15. Introduction to Global Climate Change. 4 Units. Introduction of scientific, technological, environmental, economic, and social aspects underlying the threat and understanding of global climate change. Human and natural drivers of climate. Impacts of climate on natural, managed, and human systems, including their vulnerability and ability to adapt. (II and (VA or VIII) ). EARTHSS 17. Hurricanes, Tsunamis, and Other Catastrophes. 4 Units. Introduction to the basic science and state of predictability of various natural catastrophic events including earthquakes, volcanic eruptions, tsunamis, landslides, floods, hurricanes, fires, and asteroid impacts and their interactions and implications with human society in the U.S.
    [Show full text]
  • Observation and Integrated Earth-System Science: a Roadmap for 2016€“2025
    Available online at www.sciencedirect.com ScienceDirect Advances in Space Research xxx (2016) xxx–xxx www.elsevier.com/locate/asr Review Observation and integrated Earth-system science: A roadmap for 2016–2025 Adrian Simmons a,⇑, Jean-Louis Fellous b, Venkatachalam Ramaswamy c, Kevin Trenberth d, and fellow contributors from a Study Team of the Committee on Space Research: Ghassem Asrar (Univ. of Maryland), Magdalena Balmaseda (ECMWF), John P. Burrows (Univ. of Bremen), Philippe Ciais (IPSL/LSCE) Mark Drinkwater (ESA/ESTEC), Pierre Friedlingstein (Univ. of Exeter), Nadine Gobron (EC/JRC), Eric Guilyardi (IPSL/LOCEAN), David Halpern (NASA/JPL), Martin Heimann (MPI for Biogeochemistry), Johnny Johannessen (NERSC), Pieternel F. Levelt (KNMI and Univ. of Technology Delft), Ernesto Lopez-Baeza (Univ. of Valencia), Joyce Penner (Univ. of Michigan), Robert Scholes (Univ. of the Witwatersrand), Ted Shepherd (Univ. of Reading) a European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, UK b Committee on Space Research, 2 Place Maurice Quentin, 75039 Paris Cedex 01, France c Geophysical Fluid Dynamics Laboratory/NOAA, Princeton, NJ 08540-6649, USA d National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA Received 12 December 2015; received in revised form 29 February 2016; accepted 4 March 2016 Abstract This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on time- scales out to a century or so.
    [Show full text]
  • Time to Act: Understanding Earth System Governance and the Crisis of Modernity
    Time to act: understanding earth system governance and the crisis of modernity Roberto Pereira Guimarães, Yuna Souza dos Reis da Fontoura and Glória Runte December 2011 2 | EARTH System governance working paper No. 19 Citation & Contact This paper can be cited as: Guimarães, Roberto Pereira, Yuna Souza dos Reis da Fontoura and Glória Runte. 2011. Time to act: Understanding earth system governance and the crisis of modernity. Earth System Governance Working Paper No. 19. Lund and Amsterdam: Earth System Governance Project. All rights remain with the authors. Authors' Contact: Roberto Pereira Guimarães, [email protected] Working Paper Series Editor Ruben Zondervan Executive Director Earth System Governance Project ([email protected]) Abstract Despite the frequent calls for action, decisions and agreements made at successive international conferences, the levels of socio-environmental unsustainability have increased considerably over the past decades. The changes in the global environment have reached a point at which they seriously threaten human security and the ecological and social pillars of modern civilization. In short, the globalization of the environmental crisis compels us to acknowledge that the history of humankind is in fact inexorably entwined with the history of its relationships with nature. We, therefore, analyzed the human dimensions associated with global environmental change in order to propose a new paradigm for the current society. We also demonstrate the main factors described by Jared Diamond (2006) that the past societies used to overcome the negative tendencies and threats that had put these communities’ very survival at risk. After this, we associate them with the new ethical- political challenges that the financial crisis in the first decade of the 21st century has brought to the international agenda and its relationship with the institutions’ inability to act regarding global environmental change.
    [Show full text]
  • Integration of Terrestrial Observational Networks: Opportunity for Advancing Earth System Dynamics Modelling Roland Baatz1, Pamela L
    Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-94 Manuscript under review for journal Earth Syst. Dynam. Discussion started: 6 November 2017 c Author(s) 2017. CC BY 4.0 License. Integration of terrestrial observational networks: opportunity for advancing Earth system dynamics modelling Roland Baatz1, Pamela L. Sullivan2, Li Li3, Samantha Weintraub4, Henry W. Loescher4,5, Michael Mirtl6, Peter M. Groffman7, Diana H. Wall8,9, Michael Young10,19, Tim White11,12, Hang Wen3, Steffen 5 Zacharias13, Ingolf Kühn14, Jianwu Tang15, Jérôme Gaillardet16, Isabelle Braud17, Alejandro N. Flores18, Praveen Kumar19, Henry Lin20, Teamrat Ghezzehei21, Henry L. Gholz4, Harry Vereecken1,22, and Kris Van Looy1,22 1 Agrosphere, Institute of Bio and Geosciences, Forschungszentrum Jülich, D-52425 Jülich, Germany 10 2 Department of Geography and Atmospheric Science, University of Kansas 3 Department of Civil and Environmental Engineering, The Pennsylvania State University 4Battelle, National Ecological Observatory Network (NEON), Boulder, CO USA 80301 5Institute of Alpine and Arctic Research, University of Colorado, Boulder, CO USA 80301 6 Environment Agency Austria – EAA, Dept. Ecosystem Research, Spittelauer Lände 5, 1090 Vienna, Austria 15 7 City University of New York Advanced Science Research Center at the Graduate Center, New York, NY 10031 USA 8 Department of Biology and School of Global Environmental Sustainability, Fort Collins, CO USA 80523-1036 9 Scientific Chair Global Soil Biodiversity Initiative, https://globalsoilbiodiversity.org 10 Bureau of Economic Geology, University of Texas at Austin, Austin, TX, USA 11 Earth and Environmental Systems Institute, The Pennsylvania State University 20 12 CZO National Office, US NSF Critical Zone Observatory (CZO) program 13 Helmholtz Centre for Environmental Research – UFZ, Dept.
    [Show full text]
  • Stratigraphic and Earth System Approaches to Defining The
    Earth’s Future REVIEW Stratigraphic and Earth System approaches to defining the 10.1002/2016EF000379 Anthropocene Will Steffen1,2, Reinhold Leinfelder3, Jan Zalasiewicz4, Colin N. Waters5, Mark Williams4, Colin Key Points: Summerhayes6, Anthony D. Barnosky7, Alejandro Cearreta8, Paul Crutzen9, Matt Edgeworth10,Erle • Stratigraphy and Earth System 11 12 13 14 15 science have built a multidisciplinary C. Ellis , Ian J. Fairchild , Agnieszka Galuszka , Jacques Grinevald , Alan Haywood , Juliana Ivar approach for understanding Earth do Sul16, Catherine Jeandel17, J.R. McNeill18, Eric Odada19, Naomi Oreskes20, Andrew Revkin21, evolution, including the advent of Daniel deB. Richter22, James Syvitski23, Davor Vidas24, Michael Wagreich25,ScottL.Wing26, the Anthropocene. 27 28 • Both approaches provide strong Alexander P.Wolfe , and H.J. Schellnhuber evidence that human activities have 1 2 pushed the Earth into the Fenner School of Environment and Society, The Australian National University, Acton, Australia, Stockholm Resilience Anthropocene, starting from the Centre, Stockholm University, Stockholm, Sweden, 3Department of Geological Sciences, Freie Universität Berlin, Berlin, mid-20th century. Germany, 4Department of Geology, University of Leicester, Leicester, UK, 5British Geological Survey, Nottingham, UK, • Potential scenarios for the future 6Scott Polar Research Institute, Cambridge University, Cambridge, UK, 7Jasper Ridge Biological Preserve, Stanford Anthropocene range from more 8 intense interglacial conditions to a University, Stanford,
    [Show full text]
  • Alexander Von Humboldt's Legacy in Earth System Science
    EGU21-16439 https://doi.org/10.5194/egusphere-egu21-16439 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Alexander von Humboldt’s legacy in Earth System Science Manfred R. Strecker University of Potsdam, Structural Geology, Potsdam, Germany ([email protected]) In this lecture I will first review some of Alexander von Humboldt’s studies on the importance of vertical and latitudinal temperature gradients and surface processes in the context of mountain building and thereby highlight his seminal contributions to Earth System Science. In a second step I will briefly comment on his influence beyond science, including public outreach and the general public’s Earth science literacy – in the face of fake news and distrust in scientific method and discourse, an issue more timely than ever. The past decades have witnessed a radical shift in human perception of Earth and nature; climate change and increased competition for natural resources combined with human vulnerability to natural hazards have moved environmentalism from the fringes of public awareness to governmental policies. This shift in awareness was presaged by paradigmatic shifts in Earth Science leading to the modern view of Earth as a dynamic system of interactive physical, chemical and biological processes, and ultimately to establishment of the integrative field of Earth System Science. To a certain extent, this point of view and the realization that research across disciplinary boundaries is important and necessary to understand geoprocesses at a variety of time and length scales and in the context of linkages between the different spheres was already the fundament of Humboldt’s thinking and research philosophy during the first half of the 19th century: "The principal impulse by which I was directed was the earnest endeavor to comprehend the phenomena of physical objects in their general connection, and to represent nature as one great whole." Alexander von Humboldt, Kosmos, I, ch.
    [Show full text]