CONIFERS for CENTRAL FLORIDA Part Two of a Two-Part Series

Total Page:16

File Type:pdf, Size:1020Kb

CONIFERS for CENTRAL FLORIDA Part Two of a Two-Part Series CONIFERS FOR CENTRAL FLORIDA Part Two of a Two-Part Series A nother tree with an interesting have been developed. These are usually in horticulture but not much cultivated history and also a “living fossil” is slower growing. ‘Gold Rush’, also in central Florida. It is an evergreen tree Metasequoia glyptostroboides, the Dawn known as ‘Ogon’, has golden foliage growing 40-60 feet tall. It likes sun or Redwood. Fossils of a Metasequoia were that fades to green in summer heat. light shade and moist soil. Dozens of discovered and named in 1941. The ‘Jack Frost’ has white markings on the cultivars of this tree have been developed fossils dated back to the Cretaceous foliage that will eventually fade during and introduced. These are variable in period. Also in 1941, an unknown grove summer. ‘Miss Grace’ is a smaller growing height and appearance; many are dwarfs of trees was discovered in south-central tree with a weeping habit. ‘Waasland’ is suitable for smaller landscapes. China. In 1945, they were determined a columnar growing form with dark, ‘Araucaroides’ grows 10-15 feet tall. It to be living Metasequoia specimens. In almost black colored bark. ‘White Spot’ has an open and symmetrical habit of 1948, the first seeds were sent to the also has some white markings on the growth and resembles an Araucaria. United States. Since that time, Dawn foliage and a slighty weeping habit. ‘Black Dragon’ is a dwarf form growing Redwood has become a common tree Metasequoia is a member of the 3-5 feet tall. The foliage is dense and dark used in temperate areas. It is a deciduous Cupressaceae Family. green. ‘Cristata’ has flat, cockscomb-like conifer with ferny foliage and is similar The Cupressaceae Family contains other foliage. ‘Gyokruya’ is another dwarf form to our native Bald Cypress (Taxodium members which grow well in central with very dark green foliage. ‘Spiralis’ is distichum). In central Florida, it has a Florida. Chinese Cypress, Glyptostrobus an upright form with twisted and moderate rate of growth and can reach pensilis, is native to southeastern China spiraled foliage. ‘Yoshino’ has bright 80-100 feet tall. Dawn Redwood has a and northern Vietnam. It is another green foliage with a dense growth habit. deciduous conifer It develops a columnar form. C. japonica similar to Bald var. sinensis is a form native to southern Cypress. It has China. It is a vigorous grower with an bright green open growth habit. foliage and grows Cunninghamiana lanceolata, China 70-90 feet tall. Fir is native to southern China, Taiwan Chinese Cypress and northern Vietnam. It is an evergreen likes moist soil tree growing 40-60 feet tall. It has dark and can also grow green, spiny foliage and resembles an in shallow water Araucaria. Older trees shed their lower where it will branches. ‘Glauca’ is an attractive form produce “knees”. with silvery-blue foliage and usually Chamaecyparis doesn’t get as tall. C. konishii, Taiwan Fir, thyoides var. is native to Taiwan. It has smaller leaves henryae, Southern than those of C. lanceolata and is darker Afrocarpus gracilior White Cedar is a green. ‘Little Leo’ is a dwarf form that southeastern U.S. only grows 2-3 feet tall. C. unicanaliculata very straight trunk with a pyramidal native that extends into central Florida. is a species that is now lumped into C. growth habit. The trunk has reddish This evergreen tree has bluish green lanceolata. It is a distinct form that has brown bark that is fissured and older foliage and can grow 40-50 feet tall. It is larger, triangular leaves that are not as trees often develop a buttress. The a dense grower. Southern White Cedar spiny. foliage usually turns a nice orange or likes moist soil and it will even grow in Species that belong to the genus reddish coloring in fall before dropping. boggy, wet soil. ‘Shiva’ is a dwarf cultivar Cupressus are the “true” Cypress. Cupressus It needs moist soil and can even grow in growing 3-5 feet tall with ferny foliage. arizonica var. glabra, Arizona Cypress, is wet locations but not in standing water. Cryptomeria japonica, Japanese Cedar, a conifer that has become more common Since its introduction, several cultivars is a conifer that has long been popular in local landscapes in recent years. This Harry P. Leu GardensG ar denView is an attractive evergreen tree that grows is an evergreen conifer that is 20-30 feet tall. The foliage is a blue green heat tolerant and a good or even silvery green in some cultivars. substitute for the Yews (Taxus) The trunks also have attractive peeling that are common in northern bark that is reddish brown. It needs full landscapes. It is a large shrub sun and is very drought tolerant once it or tree growing 20-25 feet tall is established. Several cultivars are available with soft, dark green linear including ‘Blue Ice’, ‘Blue Pyramid’, leaves. It can tolerate morning ‘Carolina Sapphire’ and ‘Glauca’. It is sun but needs at least a light originally native to southern Arizona . filtered shade in afternoon. It Cupressus sempervirens, the Italian Cypress, tolerates pruning and can be is an evergreen conifer with a narrow, kept as a large shrub or screen. horizontal growth habit. It can grow 40- A couple smaller cultivars are 50 feet tall and has a formal look. Italian useful in smaller gardens. Cypress needs full sun and a well-drained ‘Duke Gardens’ is a dwarf soil. Older trees are susceptible to fungus growing 3-4 feet tall. It has a in our humid climate. It is native to the dense growth habit and makes eastern Mediterranean region. an excellent hedge. ‘Prostrata’ Nageia nagi Fokienia hodginsii, Fujian Cypress, is is a low growing form that only an evergreen tree that grows over 50 feet reaches 1-2 feet tall and has a spreading is the tree that held up best during the tall in habitat but reaches 20-25 feet in habit. There is also var. drupacea that three hurricanes that struck in 2004. cultivation. It is native to southeastern grows to about 20 feet tall but has shorter The Nagi trees suffered no damage, China and northern Laos and Vietnam. needles and drooping branches. C. few leaves were blown off the trees. N. The foliage is soft and dark green with harringtonia is native from northeastern nagi is native to southern China, white banding on the undersides. It India to China, Taiwan and Japan. Two southern Japan, and Taiwan. grows in a flattened pattern along the other species from southern China, C. Podocarpus macrophyllus, Japanese branches. The tree has a columnar form. fortunei and C. sinensis, show good Podocarpus, is one of the most This is a rare conifer but is an excellent potential for our climate. commonly seen conifers used in this grower for subtropical gardens. The Podocarpaceae Family contains area. It is native to southern Japan and Taiwania cryptomerioides, Taiwania, is several members that are common in Taiwan and is an evergreen tree that an evergreen tree from Taiwan, southern Florida gardens. Afrocarpus gracilior, Fern can grow 30-40 feet tall. It has an China, and northern Myanmar. In or Weeping Podocarpus, is common in excellent tolerance for pruning and can habitat, these trees grow over 100 feet southern Florida and the warmer areas of be used as a hedge, screen or for tall; however, in cultivation they will central Florida. It is an evergreen tree topiaries. It is rarely grown as a tree but reach 30-50 feet. The tree has a conical growing 40-50 feet tall. It tolerates pruning makes an excellent specimen. ‘Maki’ is shape with horizontal branches. The well and can be used as a hedge or screen. a cultivar that only grows 8-10 feet tall. foliage is stiff and blue green in color. The foliage is narrow, soft and bright It has a dense growth habit and shorter This is an attractive tree that is little green. It is native to mountainous regions leaves. This is the form that is usually cultivated but an excellent specimen for of eastern Africa. It was formerly known as encountered in local landscapes. ‘Dwarf subtropical gardens. Podocarpus garcilor. Nageia nagi, is known Pringles’ is a dwarf form growing 3-4 The Cephalotaxaceae Family contains as the Nagi or Broadleaf Podocarpus. It is feet tall. ‘Variegata’ has white makings the genus an evergreen tree reaching 30-40 feet tall. on the leaves. P. elongatus is from Cephalotaxus which It was formerly named Podocarpus nagi. South Africa and is called Yellowwood. has several species This tree was common decades ago but It has soft foliage and resembles that grow well in has become difficult to locate in nurseries Afrocarpus gracilior but is hardier to central Florida. now days. It has broad, leathery foliage cold. It also tolerates pruning and makes Cephalotaxus that is dark green. It will grow in full sun a good screen, hedge, or specimen tree. harringtonia, or deep shade and also tolerates pruning ‘Icee Blue’ is a cultivar that has new Japanese Plum-Yew, well. Nagi is also very wind resistant. This growth with a silvery blue coloring. – Eric Schmidt Metasequoia glyptostroboides fall color.
Recommended publications
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • Spatial Distribution and Historical Dynamics of Threatened Conifers of the Dalat Plateau, Vietnam
    SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM A thesis Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Arts By TRANG THI THU TRAN Dr. C. Mark Cowell, Thesis Supervisor MAY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM Presented by Trang Thi Thu Tran A candidate for the degree of Master of Arts of Geography And hereby certify that, in their opinion, it is worthy of acceptance. Professor C. Mark Cowell Professor Cuizhen (Susan) Wang Professor Mark Morgan ACKNOWLEDGEMENTS This research project would not have been possible without the support of many people. The author wishes to express gratitude to her supervisor, Prof. Dr. Mark Cowell who was abundantly helpful and offered invaluable assistance, support, and guidance. My heartfelt thanks also go to the members of supervisory committees, Assoc. Prof. Dr. Cuizhen (Susan) Wang and Prof. Mark Morgan without their knowledge and assistance this study would not have been successful. I also wish to thank the staff of the Vietnam Initiatives Group, particularly to Prof. Joseph Hobbs, Prof. Jerry Nelson, and Sang S. Kim for their encouragement and support through the duration of my studies. I also extend thanks to the Conservation Leadership Programme (aka BP Conservation Programme) and Rufford Small Grands for their financial support for the field work. Deepest gratitude is also due to Sub-Institute of Ecology Resources and Environmental Studies (SIERES) of the Institute of Tropical Biology (ITB) Vietnam, particularly to Prof.
    [Show full text]
  • Chromosome Numbers in Gymnosperms - an Update
    Rastogi and Ohri . Silvae Genetica (2020) 69, 13 - 19 13 Chromosome Numbers in Gymnosperms - An Update Shubhi Rastogi and Deepak Ohri Amity Institute of Biotechnology, Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Malhaur (Near Railway Station), P.O. Chinhat, Luc know-226028 (U.P.) * Corresponding author: Deepak Ohri, E mail: [email protected], [email protected] Abstract still some controversy with regard to a monophyletic or para- phyletic origin of the gymnosperms (Hill 2005). Recently they The present report is based on a cytological data base on 614 have been classified into four subclasses Cycadidae, Ginkgoi- (56.0 %) of the total 1104 recognized species and 82 (90.0 %) of dae, Gnetidae and Pinidae under the class Equisetopsida the 88 recognized genera of gymnosperms. Family Cycada- (Chase and Reveal 2009) comprising 12 families and 83 genera ceae and many genera of Zamiaceae show intrageneric unifor- (Christenhusz et al. 2011) and 88 genera with 1104 recognized mity of somatic numbers, the genus Zamia is represented by a species according to the Plant List (www.theplantlist.org). The range of number from 2n=16-28. Ginkgo, Welwitschia and Gen- validity of accepted name of each taxa and the total number of tum show 2n=24, 2n=42, and 2n=44 respectively. Ephedra species in each genus has been checked from the Plant List shows a range of polyploidy from 2x-8x based on n=7. The (www.theplantlist.org). The chromosome numbers of 688 taxa family Pinaceae as a whole shows 2n=24except for Pseudolarix arranged according to the recent classification (Christenhusz and Pseudotsuga with 2n=44 and 2n=26 respectively.
    [Show full text]
  • Cephalotaxus
    Reprinted from the Winter 1970 issue of t'he THE AMERICA HORTICULTURAL \t{AGAZIl\'E Copyright 1970 by The American Horticultural Society, Inc. Cephalotaxus­ Source of Harringtonine, A Promising New Anti..Cancer Alkaloid ROBERT E. PERDUE, JR.,l LLOYD A. SPETZMAN,l and RICHARD G. POWELL2 The plumyews (Cephalotaxus) are yew-like evergreen trees and shrubs. The genus includes seven species native to southeastern Asia from Japan and Korea to Taiwan and Hainan, and west through China to northeastern India. Two species are in cultivation in the United States, C. harringtoniaJ (Fig. 1 & 2) of which there are several varieties (one often listed as C. drupacea) , and C. fortunii (Fig. 3). The cultivars are shrubs up to about 20 feet in height; most have broad crowns. The linear and pointed leaves are spirally arranged or in two opposite ranks. The upper sur­ Fig. 1. Japanese plumyew (Cephalo­ face is dark shiny green with a conspicu­ taxus harringtonia var. drupacea), an ous mid-rib; the lower surface has a evergreen shrub about 6 ft. high, at broad silvery band on either side of the the USDA Plant Introduction Station, mid-rib. These bands are made up of Glenn Dale, Maryland. This photo­ conspicuous white stomata arranged in graph was made in 1955. The plant is numerous distinct lines. Leaf length is now about 7 ft. high, but the lower variable, from about one inch in varie­ branches have been severely pruned ties of C. harringtonia to three or four to provide material for chemical re­ inches in C. fortunii. The leaves are search.
    [Show full text]
  • Palaeo Leaf Economics Reveal a Shift in Ecosystem Function Associated with the End-Triassic Mass Extinction Event
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/318473239 Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event Article in Nature Plants · July 2017 DOI: 10.1038/nplants.2017.104 CITATIONS READS 7 428 7 authors, including: Wuu Kuang Soh Karen Bacon University College Dublin University of Leeds 14 PUBLICATIONS 79 CITATIONS 15 PUBLICATIONS 167 CITATIONS SEE PROFILE SEE PROFILE Margret Steinthorsdottir Andrew C Parnell Swedish Museum of Natural History Maynooth University 30 PUBLICATIONS 408 CITATIONS 103 PUBLICATIONS 5,129 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Mid-Cretaceous south polar forests View project Response of pan-Arctic permafrost peatlands to rapid climate warming View project All content following this page was uploaded by Wuu Kuang Soh on 24 March 2019. The user has requested enhancement of the downloaded file. ARTICLES PUBLISHED: XX XX 2017 | VOLUME: 3 | ARTICLE NUMBER: 17104 Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event W. K. Soh1*,I.J.Wright2,K.L.Bacon3, T. I. Lenz2, M. Steinthorsdottir4,5,A.C.Parnell6 and J. C. McElwain1 Climate change is likely to have altered the ecological functioning of past ecosystems, and is likely to alter functioning in the future; however, the magnitude and direction of such changes are difficult to predict. Here we use a deep-time case study to evaluate the impact of a well-constrained CO2-induced global warming event on the ecological functioning of dominant plant communities.
    [Show full text]
  • Torreya Taxifolia
    photograph © Abraham Rammeloo Torreya taxifolia produces seeds in 40 Kalmthout Arboretum ABRAHAM RAMMELOO, Curator of the Kalmthout Arboretum, writes about this rare conifer that recently produced seed for the first time. Torreya is a genus of conifers that comprises four to six species that are native to North America and Asia. It is closely related to Taxus and Cephalotaxus and is easily confused with the latter. However, it is relatively easy to distinguish them apart by their leaves. Torreya has needles with, on the underside, two small edges with stomas giving it a green appearance; Cephalotaxus has different rows of stomas, and for this reason the underside is more of a white colour. It is very rare to find Torreya taxifolia in the wild; it is native to a small area in Florida and Georgia. It grows in steep limestone cliffs along the Apalachicola River. These trees come from a warm and humid climate where the temperature in winter occasionally falls below freezing. They grow mainly on north-facing slopes between Fagus grandifolia, Liriodendron tulipifera, Acer barbatum, Liquidambar styraciflua and Quercus alba. They can grow up to 15 to 20 m high. The needles are sharp and pointed and grow in a whorled pattern along the branches. They are 25 to 35 mm long and stay on the tree for three to four years. If you crush them, they give off a strong, sharp odour. The health and reproduction of the adult population of this species suffered INTERNATIONAL DENDROLOGY SOCIETY TREES Opposite Torreya taxifolia ‘Argentea’ growing at Kalmthout Arboretum in Belgium.
    [Show full text]
  • Agathis Macrophylla Araucariaceae (Lindley) Masters
    Agathis macrophylla (Lindley) Masters Araucariaceae LOCAL NAMES English (pacific kauri); Fijian (da‘ua,dakua dina,makadri,makadre,takua makadre,dakua,dakua makadre) BOTANIC DESCRIPTION Agathis macrophylla is a tall tree typically to about 30–40 m tall, 3 m in bole diameter, with a broad canopy of up to 36 m diameter. Branches may be erect to horizontal and massive. Mature specimens have wide, spreading root systems whereas seedlings and young specimens have a vigorous taproot with one or more whorls of lateral roots. Leaves simple, entire, elliptic to lanceolate, leathery, and dark green, and shiny above and often glaucous below; about 7–15 cm long and 2–3.5 cm wide, with many close inconspicuous parallel veins. The leaves taper to a more or less pointed tip, rounded at the base, with the margins curved down at the edge. Petioles short, from almost sessile up to 5 mm long. Cones egg-shaped at the end of the first year, about 5 cm long, and 3 cm in diameter, more or less round at the end of the second year, 8–10 cm in diameter. Female cones much larger than males, globular, on thick woody stalks, green, slightly glaucous, turning brownish during ripening. Seeds brown, small, ovoid to globose, flattened, winged, and attached to a triangular cone scale about 2.5 cm across. BIOLOGY Pacific kauri is monoecious and produces cones instead of flowers. The first female cones begin to be produced at about 10 years old and take up to 2 years to mature (more often in 12-15 months).
    [Show full text]
  • Morphology and Morphogenesis of the Seed Cones of the Cupressaceae - Part II Cupressoideae
    1 2 Bull. CCP 4 (2): 51-78. (10.2015) A. Jagel & V.M. Dörken Morphology and morphogenesis of the seed cones of the Cupressaceae - part II Cupressoideae Summary The cone morphology of the Cupressoideae genera Calocedrus, Thuja, Thujopsis, Chamaecyparis, Fokienia, Platycladus, Microbiota, Tetraclinis, Cupressus and Juniperus are presented in young stages, at pollination time as well as at maturity. Typical cone diagrams were drawn for each genus. In contrast to the taxodiaceous Cupressaceae, in Cupressoideae outgrowths of the seed-scale do not exist; the seed scale is completely reduced to the ovules, inserted in the axil of the cone scale. The cone scale represents the bract scale and is not a bract- /seed scale complex as is often postulated. Especially within the strongly derived groups of the Cupressoideae an increased number of ovules and the appearance of more than one row of ovules occurs. The ovules in a row develop centripetally. Each row represents one of ascending accessory shoots. Within a cone the ovules develop from proximal to distal. Within the Cupressoideae a distinct tendency can be observed shifting the fertile zone in distal parts of the cone by reducing sterile elements. In some of the most derived taxa the ovules are no longer (only) inserted axillary, but (additionally) terminal at the end of the cone axis or they alternate to the terminal cone scales (Microbiota, Tetraclinis, Juniperus). Such non-axillary ovules could be regarded as derived from axillary ones (Microbiota) or they develop directly from the apical meristem and represent elements of a terminal short-shoot (Tetraclinis, Juniperus).
    [Show full text]
  • Chatsea-WP-3-Tugault-Lafleur-Turner.Pdf
    THE CHALLENGES OF THE AGRARIAN TRANSITION IN SOUTHEAST ASIA ChATSEA ChATSEA Working Papers Working Paper no. 3, January 2009 Of Rice and Spice: Hmong Livelihoods and Diversification in the Northern Vietnam Uplands by Claire Tugault-Lafleur and Sarah Turner ISSN 1919-0581 ISSN 1919-0581 © January 2009 Published by the Canada Research Chair in Asian Studies – Université de Montréal 3744 Jean-Brillant, office 420, Montreal, Quebec, Canada, H3T 1P1 ChATSEA The Challenges of the Agrarian Transition in Southeast Asia Project (ChATSEA) is spon- sored under the Major Collaborative Research Initiatives of the Social Sciences and Hu- manities Research Council of Canada. With its primary focus on Southeast Asia Region, the Project seeks innovative understandings of the agrarian transition understood as the multiple, uneven, and reversible pathways and processes through which agrarian rela- tions are transformed. Key processes being studied include agricultural intensification and expansion; commodification; peri/urbanization, industrialization, human mobilities, intensification of regulation; ecological change; agrarian social movements; and the re- making of agrarian wealth and poverty. The Project involves an interdisciplinary team from Canada, Southeast Asia, Europe, and Australia. It is directed by Professor Rodolphe De Koninck, Canada Research Chair in Asian Studies, Université de Montreal, Canada. It runs from 2005 to 2010. For more information: http://www.caac.umontreal.ca/en/chatsea_intro.html ChATSEA Working Papers The ChATSEA Working Paper Series is intended to present empirical findings from origi- nal research concerning the agrarian transition, with an emphasis on contemporary con- text. The Series includes work done by faculty and graduate students sponsored by or af- filiated with ChATSEA, and by other scholars who are not affiliated but whose research concerns similar themes.
    [Show full text]
  • Vietnamese Conifers and Some Problems of Their Sustainable Utilization Ke Loc Et Al
    Vietnamese conifers and some problems of their sustainable utilization Ke Loc et al. Vietnamese conifers and some problems of their sustainable utilization Phan Ke Loc 1, 2, Nguyen Tien Hiep 2, Nguyen Duc To Luu 3, Philip Ian Thomas 4, Aljos Farjon 5, L.V. Averyanov 6, J.C. Regalado, Jr. 7, Nguyen Sinh Khang 2, Georgina Magin 8, Paul Mathew 8, Sara Oldfield 9, Sheelagh O’Reilly 8, Thomas Osborn 10, Steven Swan 8 and To Van Thao 2 1 University of Natural Science, Vietnam National University, Hanoi; 2 Institute of Ecology and Biological Resources; 3 Vietnam Central Forest Seed Company; 4 Royal Botanic Garden Edinburgh; 5 Royal Botanic Gardens, Kew; 6 Komarov Botanical Institute; 7 Missouri Botanical Garden; 8 Fauna & Flora International; 9 Global Trees Campaign; 10 Independent Consultant Introduction Vietnam is now recognized as one of the top ten global conifer conservation ‘hotspots’, as defined by the Conifer Specialist Group of the World Conservation Union (IUCN). Vietnam’s conifer flora has approximately 34 species that are indigenous to the country, making up about 5% of conifers known worldwide. Although conifers represent only less than 0.3% of the total number of higher vascular plant species of Vietnam, they are of great ecological, cultural and economic importance. Most conifer wood is prized for its high value in house construction, furniture making, etc. The decline of conifer populations in Vietnam has caused serious concern among scientists. Threats to conifer species are substantial and varied, ranging from logging (both commercial and subsistence), land clearing for agriculture, and forest fire. Over the past twelve years (1995-2006), Vietnam Botanical Conservation Program (VBCP), a scientific cooperation between the Missouri Botanical Garden in Saint Louis and the Institute of Ecology and Biological Resources in Hanoi, has conducted various studies on this important group of plants in order to gather baseline information necessary to make sound recommendations for their conservation and sustainable use.
    [Show full text]
  • Podocarpus Totara
    Mike Marden and Chris Phillips [email protected] TTotaraotara Podocarpus totara INTRODUCTION AND METHODS Reasons for planting native trees include the enhancement of plant and animal biodiversity for conservation, establishment of a native cover on erosion-prone sites, improvement of water quality by revegetation of riparian areas and management for production of high quality timber. Signifi cant areas of the New Zealand landscape, both urban and rural, are being re-vegetated using native species. Many such plantings are on open sites where the aim is to quickly achieve canopy closure and often includes the planting of a mixture of shrubs and tree species concurrently. Previously, data have been presented showing the potential above- and below-ground growth performance of eleven native plant species considered typical early colonisers of bare ground, particularly in riparian areas (http://icm.landcareresearch.co.nz/research/land/Trial1results.asp). In this current series of posters we present data on the growth performance of six native conifer (kauri, rimu, totara, matai, miro, kahikatea) and two broadleaved hardwood (puriri, titoki) species most likely to succeed the early colonising species to become a major component in mature stands of indigenous forest (http://icm.landcareresearch.co.nz/research/land/ Trial2.asp). Data on the potential above- and below-ground early growth performance of colonising shrubby species together with that of conifer and broadleaved species will help land managers and community groups involved in re-vegetation projects in deciding the plant spacing and species mix most appropriate for the scale of planting and best suited to site conditions. Data are from a trial established in 2006 to assess the relative growth performance of native conifer and broadleaved hardwood tree species.
    [Show full text]
  • Morphology and Anatomy of Pollen Cones and Pollen in Podocarpus Gnidioides Carrière (Podocarpaceae, Coniferales)
    1 2 Bull. CCP 4 (1): 36-48 (6.2015) V.M. Dörken & H. Nimsch Morphology and anatomy of pollen cones and pollen in Podocarpus gnidioides Carrière (Podocarpaceae, Coniferales) Abstract Podocarpus gnidioides is one of the rarest Podocarpus species in the world, and can rarely be found in collections; fertile material especially is not readily available. Until now no studies about its reproductive structures do exist. By chance a 10-years-old individual cultivated as a potted plant in the living collection of the second author produced 2014 pollen cones for the first time. Pollen cones of Podocarpus gnidioides have been investigated with microtome technique and SEM. Despite the isolated systematic position of Podocarpus gnidioides among the other New Caledonian Podocarps, it shows no unique features in morphology and anatomy of its hyposporangiate pollen cones and pollen. Both the pollen cones and the pollen are quite small and belong to the smallest ones among recent Podocarpus-species. The majority of pollen cones are unbranched but also a few branched ones are found, with one or two lateral units each of them developed from different buds, so that the base of each lateral cone-axis is also surrounded by bud scales. This is a great difference to other coniferous taxa with branched pollen cones e.g. Cephalotaxus (Taxaceae), where the whole “inflorescence” is developed from a single bud. It could be shown, that the pollen presentation in the erect pollen cones of Podocarpus gnidioides is secondary. However, further investigations with more specimens collected in the wild will be necessary. Key words: Podocarpaceae, Podocarpus, morphology, pollen, cone 1 Introduction Podocarpus gnidioides is an evergreen New Caledonian shrub, reaching up to 2 m in height (DE LAUBENFELS 1972; FARJON 2010).
    [Show full text]