Computing Label-Constraint Reachability in Graph Databases

Total Page:16

File Type:pdf, Size:1020Kb

Computing Label-Constraint Reachability in Graph Databases COMPUTING LABEL-CONSTRAINT REACHABILITY IN GRAPH DATABASES A thesis submitted to Kent State University in partial fulfillment of the requirements for the degree of Master of Science by Hui Hong May 2012 Thesis written by Hui Hong B.S., Wuhan University, 2006 M.S., Wuhan University, 2008 M.S., Kent State University, 2012 Approved by Dr. Ruoming Jin , Advisor Dr. Javed I. Khan , Chair, Department of Computer Science Dr. Timothy Moerland , Dean, College of Arts and Sciences ii TABLE OF CONTENTS LISTOFFIGURES..................................... v LISTOFTABLES ..................................... vi Acknowledgements ................................... vii Dedication......................................... ix 1 Introduction ...................................... 1 1.1 OurContributions................................. 3 2 ProblemStatement .................................. 5 2.1 OnlineDFS/BFSSearch ............................. 7 2.2 Generalized Transitive Closure . ..... 8 3 ATree-basedIndexFramework. 12 4 Optimal Index Construction . 18 4.1 Directed Maximal Spanning Tree for Generalized Transitive Closure Compres- sion ........................................ 18 4.2 Scalable Index Construction . 23 5 FastQueryProcessing............................... 34 5.1 Searching Non-Empty Entry of NT . 35 iii 5.2 Computing In-Tree Path-Labels . 37 5.3 LCRQueryProcessing .............................. 38 6 Experiments....................................... 41 6.1 SetuponSyntheticDatasets. 41 6.2 ResultsonSyntheticDatasets. 43 6.3 ResultsonRealDatasets ............................. 49 7 Conclusion........................................ 51 BIBLIOGRAPHY...................................... 52 iv LIST OF FIGURES 1 RunningExample................................. 6 2 (0, 9) Path-Label ................................. 6 3 Spanning Tree and Non-Tree Edges ......................... 14 4 Partial Transitive Closure (NT) (S. for Source and T. for Target) ........... 15 5 Weighted Graph .................................. 21 6 Interval Labeling for Spanning Tree ......................... 36 7 Coordinates in 4-dimensions ............................ 37 8 Expr1.a: Density E / V from 1.5 to 5; ....................... 46 | | | | 9 Expr1.b: A / Σ from 0.15 to 0.85, when V = 5000; ............... 46 | | | | | | 10 Expr1.c: V from 20000 to 100000, when Density E / V = 1.5; .......... 47 | | | | | | 11 Expr1.d: A / Σ from 0.15 to 0.85, when V = 5000 for SF graphs; ........ 47 | | | | | | 12 Expr1.e: V from 20000 to 100000 for SF graphs; ................. 48 | | 13 Varying A in Yeast ................................ 49 | | 14 Varying A in Yago ................................. 50 | | v LIST OF TABLES 1 I-S(Index Size in KB), C-T(Construction Time in s), O-W(Optimal Weight), S-W(Sampling Weight), S-S(Sampling-Size) . ..... 43 2 Expr1.c: V from 20000 to 100000, when Density E / V = 1.5; I-S(Index | | | | | | Size in KB), C-T(Construction Time in s), S-S(Sampling-Size) . 45 vi Acknowledgements First of all, I really want to sincerely thank my advisor, Dr. Ruoming Jin, during three years’ study. I’m very lucky that Dr. Jin has advised me throughout my thesis with his great kindness and rich knowledge. I mean he has devoted himself into supporting and guiding me to reach the goal one step by one step. I will never forget we discuss over the academic problem with full focus, and Dr. Jin even helped me code and debug the program after mid- night and fixed it in the end. My advisor, Dr. Jin, also treated his students as very close friends. Sometimes he invited me to enjoy the most delicious food together and release the pressure, for better studying. I learned a lot from my advisor, like how to discover, formalize, analyze, code and solve the interesting problem, and also how to sell the idea and communicate with people. Without Dr. Jin’s engagement and encouragement, I can never finish my thesis and get my Master’s degree. Without Dr. Jin’s suggestion and help, I can never start my career path after graduation. I also want to thank Professor Hassan Peyravi and Professor Ye Zhao. Both of them have given valuable suggestion over the modification of my thesis. Thanks very much for taking time to review the draft so carefully. The administration staff in Computer Science Department gave me a lot resources and information regarding my graduation. I want to offer Marcy Curtiss with my deep gratitude for she has been with me during every phase of graduation. Without her full patience and help, I can never get my thesis ready and submit it on time. All the friends in the KDDB lab has shown their enthusiasm accross my project. Ning Ruan vii helped me check the format very carefully. Finally I want to say thank you to my friend, Wenzhu Zhou, and thanks for staying together, as well as facing and solving different problems. viii Your dedication here. The thesis is dedicated to my Parents. They have supported me financially and mentally and deserve everything I can get for them. ix CHAPTER 1 Introduction Our world today is generating huge amounts of graph data such as social networks, biolog- ical networks, and the semantic web. How to manage these large graphs in a database system has become an important research issue in the database research community. One of the most fundamental research problems is the reachability query, which asks if one vertex can reach another or not. This is a seemingly simple but very difficult problem due to the sheer size of these large graphs. In recent years, a number of algorithms have been proposed to handle graph reachability queries [1, 2, 3, 4]. However, many real-world graphs are edge-labeled graphs, i.e., edges are associated with labels to denote different types of relationships between vertices. The reachability query for labeled graphs often involves constraints on the path connecting two vertices. Here, we list several such applications: Social Networks: In a social network, each person is represented as a vertex and two per- sons are linked by an edge if they are related. The relationships between two persons are represented through different types of labels. For instance, such relationships may include parent-of, brother-of, sister-of, friend-of, employee-of, etc. Many queries in social networks seek to discover how one person A relates to another person B. These queries in general can be written as if there is a path from A to B where the labels of all edges in the path are either of a specific type or belong to a specified set of labels. For instance, if we want to know whether 1 2 A is a remote relative of B, then we ask if there is a path from A to B where each edge label along the path is one of parent-of, brother-of, sister-of. Bioinformatics: Understanding how metabolic chain reactions take place in cellular systems is one of the most fundamental questions in system biology. To answer these questions, biol- ogists utilize so-called metabolic networks, where each vertex represents a compound, and a directed edge between two compounds indicates that one compound can be transformed into another one through a certain chemical reaction. The edge label records the enzymes which control the reaction. One of the basic questions is whether there is a certain pathway between two compounds which can be active or not under certain conditions. The condition can be described as the availability of a set of enzymes. Here, again, our problem can be described as a reachability query with certain constraints on the labels of the edges along the path. To summarize, these queries ask the following question: Can vertex u reach vertex v through a path whose edge labels must satisfy certain constraints? Typically, the constraint is membership: the path’s edge labels must be in the set of constraint labels. Alternatively, we can ask for a path which avoids any of these labels. These two forms are equivalent. We note that this type of query can also find applications in recommendation search in viral market- ing [5] and reachability computation in RDF graphs, such as Wikipedia and YAGO [6]. The constraint reachability problem is much more complicated than the traditional reach- ability query which does not consider any constraints. Existing work on graph reachability typically constructs a compact index of the graph’s transitive closure matrix. The transitive closure can be used to answer the Yes/No question of reachability, but it cannot tell how the connection is made between any two vertices. Since the index does not include the label- ing information, it cannot be expanded easily to answer our aforementioned label-constraint 3 reachability query. The constraint reachability problem is closely related to the simple path query and the reg- ular expression path query for XML documents and graphs. Typically, these queries describe the desired path as a regular expression and then search the graph to see if such a path exists or not. An XPath query is a simple iteration of alternating axes (/ and //) and tags (or labels), and it can be generalized by using regular expressions to describe the paths between two or a sequence of vertices [7]. We can look at our constraint reachability query as a special case of the regular simple path query. However, the general problem of finding regular simple paths has proven to be NP-complete [8]. The existing methods to handle such queries are based on equivalence classes and refinement to build compact indices and then match the path expres- sion over such indices [9, 10]. On the other hand, a linear algorithm exists for the constraint reachability problem. Thus, the existing work on querying XML and graphs cannot handle our constraint reachability query effciently. 1.1 Our Contributions In this work, we provide a detailed study of the constraint reachability problem and offer an efficient solution. We begin by investigating two simple solutions, representing two extremes in the spectrum of solutions: an online search (DFS/BFS) approach uses the least amount of memory but has high computational cost for query answering, while the precomputation of all pair-wise path information answers the query efficiently, but uses a large amount of memory.
Recommended publications
  • Masters Thesis: an Approach to the Automatic Synthesis of Controllers with Mixed Qualitative/Quantitative Specifications
    An approach to the automatic synthesis of controllers with mixed qualitative/quantitative specifications. Athanasios Tasoglou Master of Science Thesis Delft Center for Systems and Control An approach to the automatic synthesis of controllers with mixed qualitative/quantitative specifications. Master of Science Thesis For the degree of Master of Science in Embedded Systems at Delft University of Technology Athanasios Tasoglou October 11, 2013 Faculty of Electrical Engineering, Mathematics and Computer Science (EWI) · Delft University of Technology *Cover by Orestis Gartaganis Copyright c Delft Center for Systems and Control (DCSC) All rights reserved. Abstract The world of systems and control guides more of our lives than most of us realize. Most of the products we rely on today are actually systems comprised of mechanical, electrical or electronic components. Engineering these complex systems is a challenge, as their ever growing complexity has made the analysis and the design of such systems an ambitious task. This urged the need to explore new methods to mitigate the complexity and to create sim- plified models. The answer to these new challenges? Abstractions. An abstraction of the the continuous dynamics is a symbolic model, where each “symbol” corresponds to an “aggregate” of states in the continuous model. Symbolic models enable the correct-by-design synthesis of controllers and the synthesis of controllers for classes of specifications that traditionally have not been considered in the context of continuous control systems. These include qualitative specifications formalized using temporal logics, such as Linear Temporal Logic (LTL). Be- sides addressing qualitative specifications, we are also interested in synthesizing controllers with quantitative specifications, in order to solve optimal control problems.
    [Show full text]
  • Efficient Graph Reachability Query Answering Using Tree Decomposition
    Efficient Graph Reachability Query Answering using Tree Decomposition Fang Wei Computer Science Department, University of Freiburg, Germany Abstract. Efficient reachability query answering in large directed graphs has been intensively investigated because of its fundamental importance in many application fields such as XML data processing, ontology rea- soning and bioinformatics. In this paper, we present a novel indexing method based on the concept of tree decomposition. We show analytically that this intuitive approach is both time and space efficient. We demonstrate empirically the efficiency and the effectiveness of our method. 1 Introduction Querying and manipulating large scale graph-like data has attracted much atten- tion in the database community, due to the wide application areas of graph data, such as GIS, XML databases, bioinformatics, social network, and ontologies. The problem of reachability test in a directed graph is among the fundamental operations on the graph data. Given a digraph G = (V; E) and u; v 2 V , a reachability query, denoted as u ! v, ask: is there a path from u to v? One of the fundamental queries on biological networks is for instance, to find all genes whose expressions are directly or indirectly influenced by a given molecule [15]. Given the graph representation of the genes and regulation events, the question can also be reduced to the reachability query in a directed graph. Recently, tree decomposition methodologies have been successfully applied to solving shortest path query answering over undirected graphs [17]. Briefly stated, the vertices in a graph G are decomposed into a tree in which each node contains a set of vertices in G.
    [Show full text]
  • Depth-First Search & Directed Graphs
    Depth-first Search and Directed Graphs Story So Far • Breadth-first search • Using breadth-first search for connectivity • Using bread-first search for testing bipartiteness BFS (G, s): Put s in the queue Q While Q is not empty Extract v from Q If v is unmarked Mark v For each edge (v, w): Put w into the queue Q The BFS Tree • Can remember parent nodes (the node at level i that lead us to a given node at level i + 1) BFS-Tree(G, s): Put (∅, s) in the queue Q While Q is not empty Extract (p, v) from Q If v is unmarked Mark v parent(v) = p For each edge (v, w): Put (v, w) into the queue Q Spanning Trees • Definition. A spanning tree of an undirected graph G is a connected acyclic subgraph of G that contains every node of G . • The tree produced by the BFS algorithm (with (( u, parent(u)) as edges) is a spanning tree of the component containing s . • The BFS spanning tree gives the shortest path from s to every other vertex in its component (we will revisit shortest path in a couple of lectures) • BFS trees in general are short and bushy Spanning Trees • Definition. A spanning tree of an undirected graph G is a connected acyclic subgraph of G that contains every node of G . • The tree produced by the BFS algorithm (with (( u, parent(u)) as edges) is a spanning tree of the component containing s . • The BFS spanning tree gives the shortest path from s to every other vertex in its component (we will revisit shortest path in a couple of lectures) • BFS trees in general are short and bushy Generalizing BFS: Whatever-First If we change how we store
    [Show full text]
  • An Efficient Reachability Indexing Scheme for Large Directed Graphs
    1 Path-Tree: An Efficient Reachability Indexing Scheme for Large Directed Graphs RUOMING JIN, Kent State University NING RUAN, Kent State University YANG XIANG, The Ohio State University HAIXUN WANG, Microsoft Research Asia Reachability query is one of the fundamental queries in graph database. The main idea behind answering reachability queries is to assign vertices with certain labels such that the reachability between any two vertices can be determined by the labeling information. Though several approaches have been proposed for building these reachability labels, it remains open issues on how to handle increasingly large number of vertices in real world graphs, and how to find the best tradeoff among the labeling size, the query answering time, and the construction time. In this paper, we introduce a novel graph structure, referred to as path- tree, to help labeling very large graphs. The path-tree cover is a spanning subgraph of G in a tree shape. We show path-tree can be generalized to chain-tree which theoretically can has smaller labeling cost. On top of path-tree and chain-tree index, we also introduce a new compression scheme which groups vertices with similar labels together to further reduce the labeling size. In addition, we also propose an efficient incremental update algorithm for dynamic index maintenance. Finally, we demonstrate both analytically and empirically the effectiveness and efficiency of our new approaches. Categories and Subject Descriptors: H.2.8 [Database management]: Database Applications—graph index- ing and querying General Terms: Performance Additional Key Words and Phrases: Graph indexing, reachability queries, transitive closure, path-tree cover, maximal directed spanning tree ACM Reference Format: Jin, R., Ruan, N., Xiang, Y., and Wang, H.
    [Show full text]
  • The Surprizing Complexity of Generalized Reachability Games Nathanaël Fijalkow, Florian Horn
    The surprizing complexity of generalized reachability games Nathanaël Fijalkow, Florian Horn To cite this version: Nathanaël Fijalkow, Florian Horn. The surprizing complexity of generalized reachability games. 2010. hal-00525762v2 HAL Id: hal-00525762 https://hal.archives-ouvertes.fr/hal-00525762v2 Preprint submitted on 2 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The surprising complexity of generalized reachability games Nathanaël Fijalkow1,2 and Florian Horn1 1 LIAFA CNRS & Université Denis Diderot - Paris 7, France {nath,florian.horn}@liafa.jussieu.fr 2 ÉNS Cachan École Normale Supérieure de Cachan, France Abstract. Games on graphs provide a natural and powerful model for reactive systems. In this paper, we consider generalized reachability objectives, defined as conjunctions of reachability objectives. We first prove that deciding the winner in such games is PSPACE-complete, although it is fixed-parameter tractable with the number of reachability objectives as parameter. Moreover, we consider the memory requirements for both players and give matching upper and lower bounds on the size of winning strategies. In order to allow more efficient algorithms, we consider subclasses of generalized reachability games. We show that bounding the size of the reachability sets gives two natural subclasses where deciding the winner can be done efficiently.
    [Show full text]
  • Lecture 16: Directed Graphs
    Lecture 16: Directed Graphs BOS ORD JFK SFO DFW LAX MIA Courtesy of Goodrich, Tamassia and Olga Veksler Instructor: Yuzhen Xie Outline Directed Graphs Properties Algorithms for Directed Graphs DFS and BFS Strong Connectivity Transitive Closure DAG and Toppgological Ordering 2 Digraphs A digraph is a ggpraph whose E edges are all directed D Short for “directed graph” C Applications B one-way streets A flights task scheduling 3 Digraph Properties E D A graph G=(V,E) such that Each edge goes in one direction: C Ed(dge (A,B) goes from A to B, Edge (B,A) goes from B to A, B If G is simple, m < n*(n-1). A If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of in-edges and out-edges in time proportional to their size OutgoingEdges(A): (A,C), (A,D), (A,B) IngoingEdges(A): (E,A),(B,A) We say that vertex w is reachable from vertex v if there is a directed path from v to w EiseahablefomAE is reachable from A E is not reachable from D 4 Algorithm DFS(G, v) Directed DFS Input digraph G and a start vertex v of G Output traverses vertices in G reachable from v We can specialize the setLabel(v, VISITED) traversal algorithms (DFS and for all e ∈ G.outgoingEdges(v) BFS) to digraphs by traversing edges only along w ← opposite(v,e) their direction if getLabel(w) = UNEXPLORED DFS(G, w) In the directed DFS algorithm, we have 3 four types of edges E discovery edges 4 bkdback edges D forward edges cross edges A directed DFS starting at a C 2 vertex s visits all the vertices reachable from s B 5
    [Show full text]
  • An Efficient Strongly Connected Components Algorithm In
    An Efficient Strongly Connected Components Algorithm in the Fault Tolerant Model∗† Surender Baswana1, Keerti Choudhary2, and Liam Roditty3 1 Department of Computer Science and Engineering, IIT Kanpur, Kanpur, India [email protected] 2 Department of Computer Science and Engineering, IIT Kanpur, Kanpur, India [email protected] 3 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel [email protected] Abstract In this paper we study the problem of maintaining the strongly connected components of a graph in the presence of failures. In particular, we show that given a directed graph G = (V, E) with n = |V | and m = |E|, and an integer value k ≥ 1, there is an algorithm that computes in O(2kn log2 n) time for any set F of size at most k the strongly connected components of the graph G \ F . The running time of our algorithm is almost optimal since the time for outputting the SCCs of G \ F is at least Ω(n). The algorithm uses a data structure that is computed in a preprocessing phase in polynomial time and is of size O(2kn2). Our result is obtained using a new observation on the relation between strongly connected components (SCCs) and reachability. More specifically, one of the main building blocks in our result is a restricted variant of the problem in which we only compute strongly connected com- ponents that intersect a certain path. Restricting our attention to a path allows us to implicitly compute reachability between the path vertices and the rest of the graph in time that depends logarithmically rather than linearly in the size of the path.
    [Show full text]
  • Arxiv:1908.08911V1 [Cs.DS] 23 Aug 2019
    Parameterized Algorithms for Book Embedding Problems? Sujoy Bhore1, Robert Ganian1, Fabrizio Montecchiani2, and Martin N¨ollenburg1 1 Algorithms and Complexity Group, TU Wien, Vienna, Austria fsujoy,rganian,[email protected] 2 Engineering Department, University of Perugia, Perugia, Italy [email protected] Abstract. A k-page book embedding of a graph G draws the vertices of G on a line and the edges on k half-planes (called pages) bounded by this line, such that no two edges on the same page cross. We study the problem of determining whether G admits a k-page book embedding both when the linear order of the vertices is fixed, called Fixed-Order Book Thickness, or not fixed, called Book Thickness. Both problems are known to be NP-complete in general. We show that Fixed-Order Book Thickness and Book Thickness are fixed-parameter tractable parameterized by the vertex cover number of the graph and that Fixed- Order Book Thickness is fixed-parameter tractable parameterized by the pathwidth of the vertex order. 1 Introduction A k-page book embedding of a graph G is a drawing that maps the vertices of G to distinct points on a line, called spine, and each edge to a simple curve drawn inside one of k half-planes bounded by the spine, called pages, such that no two edges on the same page cross [20,25]; see Fig.1 for an illustration. This kind of layout can be alternatively defined in combinatorial terms as follows. A k-page book embedding of G is a linear order ≺ of its vertices and a coloring of its edges which guarantee that no two edges uv, wx of the same color have their vertices ordered as u ≺ w ≺ v ≺ x.
    [Show full text]
  • GRAIL: Scalable Reachability Index for Large Graphs
    Problem Definition & Motivation Background Our Approach : GRAIL Experiments Conclusion & Future Work GRAIL: Scalable Reachability Index for Large Graphs Hilmi Yıldırım1 Vineet Chaoji2 Mohammed J.Zaki1 1Rensselaer Polytechnic Institute Troy, NY 2Yahoo! Labs Bangalore, India 14 September VLDB 2010 Problem Definition & Motivation Background Our Approach : GRAIL Experiments Conclusion & Future Work Outline Problem Definition & Motivation Background Related Work Interval Labeling Our Approach : GRAIL Index Construction Querying Experiments Experimental Setup & Datasets Results and Comparison with Other Methods Sensitivity to Different Graph Types and Parameters Conclusion & Future Work Problem Definition & Motivation Background Our Approach : GRAIL Experiments Conclusion & Future Work Problem Definition Reachability Query : Given two vertices u and v in a directed acyclic graph G, is there a path between u and v? Simple in undirected graphs • Any directed graph can be transformed into a dag • A Query(B,I) B C D • Reachable E F G HI Query(D,B) • Not Reachable J Problem Definition & Motivation Background Our Approach : GRAIL Experiments Conclusion & Future Work Motivation Traditional Applications Class Hierarchies, GIS, • dependency graphs Trending Applications Semantic Web • Biological networks • Citation graphs • Motivation Existing methods do not • scale for large and dense graphs Motivation Problem Definition & Motivation Background Our Approach : GRAIL Experiments Conclusion & Future Work Related Work Construction Time Query Time Index Size Opt. Tree Cover (Agrawal et al. 89) O(nm) O(n) O(n2) GRIPP (Trissl et al. 07) O(m + n) O(m n) O(m + n) − Dual Labeling (Wang et al. 06) O(n + m + t3) O(1) O(n + t2) PathTree (Jin et al. 08) O(mk) O(mk)/O(mn) O(nk) 2HOP (Cohen et al.
    [Show full text]
  • Grid Graph Reachability Problems
    Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 149 (2005) Grid Graph Reachability Problems Eric Allender∗ David A. Mix Barrington† Tanmoy Chakraborty‡ Samir Datta§ Sambuddha Roy¶ Abstract graphs logspace reduces to single-source-single-sink acyclic grid graphs. We show that reachability on such We study the complexity of restricted versions of st- grid graphs AC0 reduces to undirected GGR. connectivity, which is the standard complete problem for NL. Grid graphs are a useful tool in this regard, since • We build on this to show that reachability for single- source multiple-sink planar dags is solvable in L. • reachability on grid graphs is logspace-equivalent to reachability in general planar digraphs, and • reachability on certain classes of grid graphs gives 1. Introduction natural examples of problems that are hard for NC1 0 under AC reductions but are not known to be hard for Graph reachability problems have long played a fun- L; they thus give insight into the structure of L. damental role in complexity theory. The general st- connectivity problem in directed graphs is the standard In addition to explicating the structure of L, another of our complete problem for NL, while the st-connectivity prob- goals is to expand the class of digraphs for which connec- lems for directed graphs of outdegree 1 [7, 12, 9] and undi- tivity can be solved in logspace, by building on the work of rected graphs [17] are complete for L. It follows from [3] Jakoby et al. [15], who showed that reachability in series- that reachability in directed graphs of width O(1) (or even parallel digraphs is solvable in L.
    [Show full text]
  • The Power of Reachability Testing for Timed Automata
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 300 (2003) 411–475 www.elsevier.com/locate/tcs The power ofreachability testing for timed automata Luca Acetoa;1 , Patricia Bouyerb;∗ , Augusto Burgue˜noc;2 , Kim G. Larsena aBRICS (Basic Research in Computer Science), Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7-E, DK-9220 Aalborg +, Denmark bLaboratoire Speciÿcationà et Veriÿcation,à CNRS UMR 8643, Ecole Normale Superieureà de Cachan, 61, avenue du Presidentà Wilson, F-94235 Cachan Cedex, France cEuropean Commission, Research Directorate-General, Rue de la Loi 200, B-1049 Brussels, Belgium Received 6 September 2001; received in revised form 18 March 2002; accepted 20 March 2002 Communicated by R. Gorrieri Abstract The computational engine ofthe veriÿcation tool U PPAAL consists ofa collection ofe4cient algorithms forthe analysis ofreachability properties ofsystems. Model-checking ofproperties other than plain reachability ones may currently be carried out in such a tool as follows. Given a property to model-check, the user must provide a test automaton T for it. This test automaton must be such that the original system S has the property expressed by precisely when none ofthe distinguished reject states of T can be reached in the synchronized parallel composition of S with T. This raises the question ofwhich properties may be analysed by U PPAAL in such a way. This paper gives an answer to this question by providing a complete characterization of the class ofproperties forwhich model-checking can be reduced to reachability testing in the sense outlined above.
    [Show full text]
  • An Efficient Strongly Connected Components
    Algorithmica https://doi.org/10.1007/s00453-018-0452-3 An Efficient Strongly Connected Components Algorithm in the Fault Tolerant Model Surender Baswana1 · Keerti Choudhary1 · Liam Roditty2 Received: 11 September 2017 / Accepted: 3 May 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract In this paper we study the problem of maintaining the strongly connected components of a graph in the presence of failures. In particular, we show that given a directed graph G = (V, E) with n =|V | and m =|E|, and an integer value k ≥ 1, there is an algorithm that computes in O(2kn log2 n) time for any set F of size at most k the strongly connected components of the graph G\F. The running time of our algorithm is almost optimal since the time for outputting the SCCs of G\F is at least Ω(n). The algorithm uses a data structure that is computed in a preprocessing phase in polynomial time and is of size O(2kn2). Our result is obtained using a new observation on the relation between strongly connected components (SCCs) and reachability. More specifically, one of the main building blocks in our result is a restricted variant of the problem in which we only compute strongly connected components that intersect a certain path. Restricting our attention to a path allows us to implicitly compute reachability between the path vertices and the rest of the graph in time that depends A preliminary version of this paper appeared in the proceedings of ICALP 2017. This research was partially supported by Israel Science Foundation (ISF) and University Grants Commission (UGC) of India.
    [Show full text]