Planar and Grid Graph Reachability Problems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
[Cs.CG] 1 Nov 2019 Forbidden (See [11,24,36,38] for Surveys and Reports)
An Experimental Study of a 1-planarity Testing and Embedding Algorithm ? Carla Binucci, Walter Didimo, and Fabrizio Montecchiani Universit`adegli Studi di Perugia, Italy fcarla.binucci,walter.didimo,[email protected] Abstract. The definition of 1-planar graphs naturally extends graph planarity, namely a graph is 1-planar if it can be drawn in the plane with at most one crossing per edge. Unfortunately, while testing graph planarity is solvable in linear time, deciding whether a graph is 1-planar is NP-complete, even for restricted classes of graphs. Although several polynomial-time algorithms have been described for recognizing specific subfamilies of 1-planar graphs, no implementations of general algorithms are available to date. We investigate the feasibility of a 1-planarity test- ing and embedding algorithm based on a backtracking strategy. While the experiments show that our approach can be successfully applied to graphs with up to 30 vertices, they also suggest the need of more sophis- ticated techniques to attack larger graphs. Our contribution provides initial indications that may stimulate further research on the design of practical approaches for the 1-planarity testing problem. 1 Introduction The study of sparse nonplanar graphs is receiving increasing attention in the last years. One objective of this research stream is to extend the rich set of results about planar graphs to wider families of graphs that can better model real-world problems (see, e.g., [27,28,29,30,31]). Another objective is to create readable visualizations of nonplanar networks arising in various application scenarios (see, e.g., [23,39]). -
Masters Thesis: an Approach to the Automatic Synthesis of Controllers with Mixed Qualitative/Quantitative Specifications
An approach to the automatic synthesis of controllers with mixed qualitative/quantitative specifications. Athanasios Tasoglou Master of Science Thesis Delft Center for Systems and Control An approach to the automatic synthesis of controllers with mixed qualitative/quantitative specifications. Master of Science Thesis For the degree of Master of Science in Embedded Systems at Delft University of Technology Athanasios Tasoglou October 11, 2013 Faculty of Electrical Engineering, Mathematics and Computer Science (EWI) · Delft University of Technology *Cover by Orestis Gartaganis Copyright c Delft Center for Systems and Control (DCSC) All rights reserved. Abstract The world of systems and control guides more of our lives than most of us realize. Most of the products we rely on today are actually systems comprised of mechanical, electrical or electronic components. Engineering these complex systems is a challenge, as their ever growing complexity has made the analysis and the design of such systems an ambitious task. This urged the need to explore new methods to mitigate the complexity and to create sim- plified models. The answer to these new challenges? Abstractions. An abstraction of the the continuous dynamics is a symbolic model, where each “symbol” corresponds to an “aggregate” of states in the continuous model. Symbolic models enable the correct-by-design synthesis of controllers and the synthesis of controllers for classes of specifications that traditionally have not been considered in the context of continuous control systems. These include qualitative specifications formalized using temporal logics, such as Linear Temporal Logic (LTL). Be- sides addressing qualitative specifications, we are also interested in synthesizing controllers with quantitative specifications, in order to solve optimal control problems. -
Efficient Graph Reachability Query Answering Using Tree Decomposition
Efficient Graph Reachability Query Answering using Tree Decomposition Fang Wei Computer Science Department, University of Freiburg, Germany Abstract. Efficient reachability query answering in large directed graphs has been intensively investigated because of its fundamental importance in many application fields such as XML data processing, ontology rea- soning and bioinformatics. In this paper, we present a novel indexing method based on the concept of tree decomposition. We show analytically that this intuitive approach is both time and space efficient. We demonstrate empirically the efficiency and the effectiveness of our method. 1 Introduction Querying and manipulating large scale graph-like data has attracted much atten- tion in the database community, due to the wide application areas of graph data, such as GIS, XML databases, bioinformatics, social network, and ontologies. The problem of reachability test in a directed graph is among the fundamental operations on the graph data. Given a digraph G = (V; E) and u; v 2 V , a reachability query, denoted as u ! v, ask: is there a path from u to v? One of the fundamental queries on biological networks is for instance, to find all genes whose expressions are directly or indirectly influenced by a given molecule [15]. Given the graph representation of the genes and regulation events, the question can also be reduced to the reachability query in a directed graph. Recently, tree decomposition methodologies have been successfully applied to solving shortest path query answering over undirected graphs [17]. Briefly stated, the vertices in a graph G are decomposed into a tree in which each node contains a set of vertices in G. -
Graph Planarity
Graph Planarity Alina Shaikhet Outline ▪ Definition. ▪ Motivation. ▪ Euler’s formula. ▪ Kuratowski’s theorems. ▪ Wagner’s theorem. ▪ Planarity algorithms. ▪ Properties. ▪ Crossing Number Definitions ▪ A graph is called planar if it can be drawn in a plane without any two edges intersecting. ▪ Such a drawing we call a planar embedding of the graph. ▪ A plane graph is a particular planar embedding of a planar graph. Motivation ▪ Circuit boards. Motivation ▪ Circuit boards. ▪ Connecting utilities (electricity, water, gas) to houses. Motivation ▪ Circuit boards. ▪ Connecting utilities (electricity, water, gas) to houses. Motivation ▪ Circuit boards. ▪ Connecting utilities (electricity, water, gas) to houses. ▪ Highway / Railroads / Subway design. self loops multi-edges Euler’s formula. Consider any plane embedding of a planar connected graph. Let V - be the number of vertices, E - be the number of edges and F - be the number of faces (including the single unbounded face), Then 푉 − 퐸 + 퐹 = 2. Euler formula gives the necessary condition for a graph to be planar. self loops multi-edges Euler’s formula. Consider any plane embedding of a planar connected graph. Let V - be the number of vertices, E - be the number of edges and F - be the number of faces (including the single unbounded face), Then 푉 − 퐸 + 퐹 = 2. Then 푉 − 퐸 + 퐹 = 퐶 + 1. C - is the number of connected components. 푉 − 퐸 + 퐹 = 2 Euler’s formula. 푉 = 6 퐸 = 12 퐹 = 8 푉 − 퐸 + 퐹 = 2 6 − 12 + 8 = 2 푉 − 퐸 + 퐹 = 2 Corollary 1 Let G be any plane embedding of a connected planar graph with 푉 ≥ 3 vertices. Then 1. -
Depth-First Search & Directed Graphs
Depth-first Search and Directed Graphs Story So Far • Breadth-first search • Using breadth-first search for connectivity • Using bread-first search for testing bipartiteness BFS (G, s): Put s in the queue Q While Q is not empty Extract v from Q If v is unmarked Mark v For each edge (v, w): Put w into the queue Q The BFS Tree • Can remember parent nodes (the node at level i that lead us to a given node at level i + 1) BFS-Tree(G, s): Put (∅, s) in the queue Q While Q is not empty Extract (p, v) from Q If v is unmarked Mark v parent(v) = p For each edge (v, w): Put (v, w) into the queue Q Spanning Trees • Definition. A spanning tree of an undirected graph G is a connected acyclic subgraph of G that contains every node of G . • The tree produced by the BFS algorithm (with (( u, parent(u)) as edges) is a spanning tree of the component containing s . • The BFS spanning tree gives the shortest path from s to every other vertex in its component (we will revisit shortest path in a couple of lectures) • BFS trees in general are short and bushy Spanning Trees • Definition. A spanning tree of an undirected graph G is a connected acyclic subgraph of G that contains every node of G . • The tree produced by the BFS algorithm (with (( u, parent(u)) as edges) is a spanning tree of the component containing s . • The BFS spanning tree gives the shortest path from s to every other vertex in its component (we will revisit shortest path in a couple of lectures) • BFS trees in general are short and bushy Generalizing BFS: Whatever-First If we change how we store -
Planarity Testing Revisited
Electronic Colloquium on Computational Complexity, Report No. 9 (2011) Planarity Testing Revisited Samir Datta, Gautam Prakriya Chennai Mathematical Institute India fsdatta,[email protected] Abstract. Planarity Testing is the problem of determining whether a given graph is planar while planar embedding is the corresponding construction problem. The bounded space complexity of these problems has been determined to be exactly Logspace by Allender and Mahajan [AM00] with the aid of Reingold's result [Rei08]. Unfortunately, the algorithm is quite daunting and generalizing it to say, the bounded genus case seems a tall order. In this work, we present a simple planar embedding algorithm running in logspace. We hope this algorithm will be more amenable to generalization. The algorithm is based on the fact that 3-connected planar graphs have a unique embedding, a variant of Tutte's criterion on conflict graphs of cycles and an explicit change of cycle basis. We also present a logspace algorithm to find obstacles to planarity, viz. a Kuratowski minor, if the graph is non-planar. To the best of our knowledge this is the first logspace algorithm for this problem. 1 Introduction Planarity Testing, the problem of determining whether a given graph is planar (i.e. the vertices and edges can be drawn on a plane with no edge intersections except at their end- points) is a fundamental problem in algorithmic graph theory. Along with the problem of actually obtaining a planar embedding, it is a prerequisite for many an algorithm designed to work specifically for planar graphs. Our focus is on the bounded space complexity of the planarity embedding problem be- cause we know that many graph theoretic problems like reachability [BTV09], perfect match- ing [DKR10,DKT10], and even isomorphism [DLN08,DLN+09] have efficient bounded space algorithms when provided graphs embedded on the plane. -
An Efficient Reachability Indexing Scheme for Large Directed Graphs
1 Path-Tree: An Efficient Reachability Indexing Scheme for Large Directed Graphs RUOMING JIN, Kent State University NING RUAN, Kent State University YANG XIANG, The Ohio State University HAIXUN WANG, Microsoft Research Asia Reachability query is one of the fundamental queries in graph database. The main idea behind answering reachability queries is to assign vertices with certain labels such that the reachability between any two vertices can be determined by the labeling information. Though several approaches have been proposed for building these reachability labels, it remains open issues on how to handle increasingly large number of vertices in real world graphs, and how to find the best tradeoff among the labeling size, the query answering time, and the construction time. In this paper, we introduce a novel graph structure, referred to as path- tree, to help labeling very large graphs. The path-tree cover is a spanning subgraph of G in a tree shape. We show path-tree can be generalized to chain-tree which theoretically can has smaller labeling cost. On top of path-tree and chain-tree index, we also introduce a new compression scheme which groups vertices with similar labels together to further reduce the labeling size. In addition, we also propose an efficient incremental update algorithm for dynamic index maintenance. Finally, we demonstrate both analytically and empirically the effectiveness and efficiency of our new approaches. Categories and Subject Descriptors: H.2.8 [Database management]: Database Applications—graph index- ing and querying General Terms: Performance Additional Key Words and Phrases: Graph indexing, reachability queries, transitive closure, path-tree cover, maximal directed spanning tree ACM Reference Format: Jin, R., Ruan, N., Xiang, Y., and Wang, H. -
The Surprizing Complexity of Generalized Reachability Games Nathanaël Fijalkow, Florian Horn
The surprizing complexity of generalized reachability games Nathanaël Fijalkow, Florian Horn To cite this version: Nathanaël Fijalkow, Florian Horn. The surprizing complexity of generalized reachability games. 2010. hal-00525762v2 HAL Id: hal-00525762 https://hal.archives-ouvertes.fr/hal-00525762v2 Preprint submitted on 2 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The surprising complexity of generalized reachability games Nathanaël Fijalkow1,2 and Florian Horn1 1 LIAFA CNRS & Université Denis Diderot - Paris 7, France {nath,florian.horn}@liafa.jussieu.fr 2 ÉNS Cachan École Normale Supérieure de Cachan, France Abstract. Games on graphs provide a natural and powerful model for reactive systems. In this paper, we consider generalized reachability objectives, defined as conjunctions of reachability objectives. We first prove that deciding the winner in such games is PSPACE-complete, although it is fixed-parameter tractable with the number of reachability objectives as parameter. Moreover, we consider the memory requirements for both players and give matching upper and lower bounds on the size of winning strategies. In order to allow more efficient algorithms, we consider subclasses of generalized reachability games. We show that bounding the size of the reachability sets gives two natural subclasses where deciding the winner can be done efficiently. -
Lecture 16: Directed Graphs
Lecture 16: Directed Graphs BOS ORD JFK SFO DFW LAX MIA Courtesy of Goodrich, Tamassia and Olga Veksler Instructor: Yuzhen Xie Outline Directed Graphs Properties Algorithms for Directed Graphs DFS and BFS Strong Connectivity Transitive Closure DAG and Toppgological Ordering 2 Digraphs A digraph is a ggpraph whose E edges are all directed D Short for “directed graph” C Applications B one-way streets A flights task scheduling 3 Digraph Properties E D A graph G=(V,E) such that Each edge goes in one direction: C Ed(dge (A,B) goes from A to B, Edge (B,A) goes from B to A, B If G is simple, m < n*(n-1). A If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of in-edges and out-edges in time proportional to their size OutgoingEdges(A): (A,C), (A,D), (A,B) IngoingEdges(A): (E,A),(B,A) We say that vertex w is reachable from vertex v if there is a directed path from v to w EiseahablefomAE is reachable from A E is not reachable from D 4 Algorithm DFS(G, v) Directed DFS Input digraph G and a start vertex v of G Output traverses vertices in G reachable from v We can specialize the setLabel(v, VISITED) traversal algorithms (DFS and for all e ∈ G.outgoingEdges(v) BFS) to digraphs by traversing edges only along w ← opposite(v,e) their direction if getLabel(w) = UNEXPLORED DFS(G, w) In the directed DFS algorithm, we have 3 four types of edges E discovery edges 4 bkdback edges D forward edges cross edges A directed DFS starting at a C 2 vertex s visits all the vertices reachable from s B 5 -
Graph Planarity Testing with Hierarchical Embedding Constraints
Graph Planarity Testing with Hierarchical Embedding Constraints Giuseppe Liottaa, Ignaz Rutterb, Alessandra Tappinia,∗ aDipartimento di Ingegneria, Universit`adegli Studi di Perugia, Italy bDepartment of Computer Science and Mathematics, University of Passau, Germany Abstract Hierarchical embedding constraints define a set of allowed cyclic orders for the edges incident to the vertices of a graph. These constraints are expressed in terms of FPQ-trees. FPQ-trees are a variant of PQ-trees that includes F-nodes in addition to P- and to Q-nodes. An F-node represents a permutation that is fixed, i.e., it cannot be reversed. Let G be a graph such that every vertex of G is equipped with a set of FPQ-trees encoding hierarchical embedding constraints for its incident edges. We study the problem of testing whether G admits a planar embedding such that, for each vertex v of G, the cyclic order of the edges incident to v is described by at least one of the FPQ-trees associated with v. We prove that the problem is fixed-parameter tractable for biconnected graphs, where the parameters are the treewidth of G and the number of FPQ- trees associated with every vertex of G. We also show that the problem is NP-complete if parameterized by the number of FPQ-trees only, and W[1]-hard if parameterized by the treewidth only. Besides being interesting on its own right, the study of planarity testing with hierarchical embedding constraints can be used to address other planarity testing problems. In particular, we apply our techniques to the study of NodeTrix planarity testing of clustered graphs. -
An Efficient Strongly Connected Components Algorithm In
An Efficient Strongly Connected Components Algorithm in the Fault Tolerant Model∗† Surender Baswana1, Keerti Choudhary2, and Liam Roditty3 1 Department of Computer Science and Engineering, IIT Kanpur, Kanpur, India [email protected] 2 Department of Computer Science and Engineering, IIT Kanpur, Kanpur, India [email protected] 3 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel [email protected] Abstract In this paper we study the problem of maintaining the strongly connected components of a graph in the presence of failures. In particular, we show that given a directed graph G = (V, E) with n = |V | and m = |E|, and an integer value k ≥ 1, there is an algorithm that computes in O(2kn log2 n) time for any set F of size at most k the strongly connected components of the graph G \ F . The running time of our algorithm is almost optimal since the time for outputting the SCCs of G \ F is at least Ω(n). The algorithm uses a data structure that is computed in a preprocessing phase in polynomial time and is of size O(2kn2). Our result is obtained using a new observation on the relation between strongly connected components (SCCs) and reachability. More specifically, one of the main building blocks in our result is a restricted variant of the problem in which we only compute strongly connected com- ponents that intersect a certain path. Restricting our attention to a path allows us to implicitly compute reachability between the path vertices and the rest of the graph in time that depends logarithmically rather than linearly in the size of the path. -
Arxiv:1908.08911V1 [Cs.DS] 23 Aug 2019
Parameterized Algorithms for Book Embedding Problems? Sujoy Bhore1, Robert Ganian1, Fabrizio Montecchiani2, and Martin N¨ollenburg1 1 Algorithms and Complexity Group, TU Wien, Vienna, Austria fsujoy,rganian,[email protected] 2 Engineering Department, University of Perugia, Perugia, Italy [email protected] Abstract. A k-page book embedding of a graph G draws the vertices of G on a line and the edges on k half-planes (called pages) bounded by this line, such that no two edges on the same page cross. We study the problem of determining whether G admits a k-page book embedding both when the linear order of the vertices is fixed, called Fixed-Order Book Thickness, or not fixed, called Book Thickness. Both problems are known to be NP-complete in general. We show that Fixed-Order Book Thickness and Book Thickness are fixed-parameter tractable parameterized by the vertex cover number of the graph and that Fixed- Order Book Thickness is fixed-parameter tractable parameterized by the pathwidth of the vertex order. 1 Introduction A k-page book embedding of a graph G is a drawing that maps the vertices of G to distinct points on a line, called spine, and each edge to a simple curve drawn inside one of k half-planes bounded by the spine, called pages, such that no two edges on the same page cross [20,25]; see Fig.1 for an illustration. This kind of layout can be alternatively defined in combinatorial terms as follows. A k-page book embedding of G is a linear order ≺ of its vertices and a coloring of its edges which guarantee that no two edges uv, wx of the same color have their vertices ordered as u ≺ w ≺ v ≺ x.