Identification of Port Communication Equipment Needs for Safety, Security, and Interoperability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ACU-M™ Improving In-Building Communications
Application Note: AN-2306-2 ACU-M™ Improving In-Building Communications Purpose This application note will describe methods in which the Raytheon’s ACU-M can be used to improve in-building communications. The application note will discuss permanent and temporary methods at which different devices can help increase the ability to transmit or receive land mobile radio communications from within a building, below-grade, or behind obstructions. Introduction Land mobile radios, whether used in vehicles or as handheld portables, are an important tool used everyday by first responders to make their jobs safer and more efficient. In the most part, these radio systems function as designed, and serve the end-user with reliable communications. However, when the duties of a first responder require them to enter a building, or operate below- grade during emergencies, the ability of their radios to communicate to the base, incident command or dispatcher may become an issue. One physical constraint of land mobile radio communications is its inability to transmit and receive radio waves through obstructions such as buildings or below-grade structures. The failure of a land mobile radio to transmit and receive communications from within a building or below-grade has cursed radio users since the beginning of land mobile radio communications (see Figure 1). Figure 1: Blockage or Absorption of Low-Power Handheld Radio Transmission Raytheon 5800 Departure Drive Raleigh, NC 27616 919.790.1011 © Raytheon Company. Data is subject to change. http://www.raytheon.com All Trademarks are the property of their respective owners. Application Note: AN-2306-2 Solutions Land mobile radios were first introduced to public safety, in the late 20’s, in the form of shortwave receivers mounted inside patrol vehicles. -
Rs-232 Rs-422 Rs-485
ConceptConcept ofof SerialSerial CommunicationCommunication AgendaAgenda Serial v.s. Parallel Simplex , Half Duplex , Full Duplex Communication RS-485 Advantage over RS-232 SerialSerial v.s.v.s. ParallelParallel Application: How to Measure the temperature in a long distance? Measuring with a DAC card: 1200 m Remote sensor Control room T/C wire T/C A/D noise Application: How to Measure the temperature in a long distance? Measuring with a remote I/O module: 1200 m Remote sensor Control room T/C Remote I/O Standard Serial Communication T/C signal, 4-20mA, 0-5V… Noise rejection (Differential signal) MostMost PopularPopular 33 typestypes ofof SerialSerial Comm.Comm. z Most commonly available Tx Rx Rx Tx z Simple wiring CTS RTS z Low cost RTS CTS RS-232 z Short length (40 ft) DTR DSR DSR DTR Bar code reader z Slow data rates GND GND z Subject to noise Tx+ z High data rates Tx- z Longer cable lengths (4000 ft) Rx+ Rx- RS-422 z Full-duplex GND z Noise rejection PLC z Multipoint application (Up to 32 units) z Low cost Data+ z Longer cable lengths (4000 ft) Data- RS-485 zNoise immunity GND zHalf-duplex PLC SerialSerial V.S.V.S. ParallelParallel CommunicationCommunication Serial Communication Transfer the data bit by bit Synchronous Data Transfer Bit Send Data Receive Data Parallel Communication Transfer the all data simultaneously Asynchronous Data Transfer Bit Bit Bit Bit Bit Bit Bit Bit Send Data Receive Data SimplexSimplex ,, HalfHalf DuplexDuplex ,, FullFull DuplexDuplex CommunicationCommunication SimplexSimplex CommunicationCommunication Simplex Communication : – Data in a simplex channel is always one way. -
Complete Document 042612
Investigation into US Radio Spectrum Policy and Management An Interactive Qualifying Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By Robert A. Over 4/26 /2012 Project Advisor – Professor David I. Spanagel Project Advisor – Professor Alexander M. Wyglinski This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects . Table of Contents 1 Introduction .................................................................................................................................... 7 2 Background ................................................................................................................................... 11 2.1 Radio Spectrum Establishment ............................................................................................... 11 2.1.1 TV Broadcast Frequency Bands ....................................................................................... 12 2.1.2 Mobile Communications Frequency Bands ..................................................................... 15 2.2 Governance and Regulation ................................................................................................... 17 2.2.1 History of US Government Radio Regulation .................................................................. -
DMR and Digital Voice Modes
DMR and Digital Voice Modes Presented by N7MOT – Lenny Gemar Amateur radio began with spark gap transmitters, evolving to Morse code and analog voice communications, all originally in the Low Frequency (LF) and High Frequency (HF) bands. Since those early days, many new modes, both analog and digital have been developed. These modes now span from the Very Low Frequencies (VLF) to the Extra High Frequencies (EHF). This presentation is designed to acquaint amateur radio operators with the Digital Mobile Radio or DMR format of digital audio communications, used primarily in the VHF and UHF bands. We’ll briefly discuss the other four Common Air Interface formats (CAI) before diving into the specifics of DMR. DMR and Digital Voice Modes – 8/14/2017 Page 1 of 20 DMR and Digital Voice Modes Digital Voice Modes used in Amateur Radio Interconnected Systems • DDD-D---StarStar ––– Digital Smart Technologies for Amateur Radio (FDMA) • WiresWires----X/SystemX/System Fusion --- Wide-coverage Internet Repeater Enhancement System (FDMA) • NXDN (IDAS/NEXEDGE) ––– Icom/Kenwood Collaboration (FDMA) • DMR ––– Digital Mobile Radio (TDMA 2-TS) • P25 (Phase 1) – Project 25 or APCO P25 (Phase 1 FDMA, Phase 2 TDMA 2-TS) • TETRA --- Terrestrial Trunked Radio, formerly known as Trans-European Trunked Radio (TDMA 4-TS) No known U.S./Canada amateur deployments. DMR and Digital Voice Modes – 8/14/2017 Page 2 of 20 DMR and Digital Voice Modes Digital Voice Modes used in Amateur Radio Interconnected Systems. Repeaters in service as reported by RepeaterBook.com on 8/14/2017 @ 12:00 PDT for the U.S. and Canada. -
Project 25 and Interoperability in Land Mobile Radio
WHITE PAPER 2014 PROJECT 25 AND INTEROPERABILITY IN LAND MOBILE RADIO • The Project 25 standard is unique in that it is a USER driven standard. • Multiple vendors support the P25 standard. • Motorola Solutions equipment interoperates with other vendors equipment. • Customers can and do have a mix of vendor’s equipment. • As technology and customer needs move forward, so too, does P25, which is an open and continually evolving standard. WHITE PAPER PROJECT 25 AND INTEROPERABILITY IN LAND MOBILE RADIO P25: A UNIQUE USER DRIVEN STANDARD Public safety agencies are challenged with keeping communities safe and protecting the lives of their officers, both in normal day-to-day operations as well as when a disaster strikes. Often, it requires agencies to work not only within their jurisdictions or agencies but also across multiple jurisdictions and agencies. Interoperable wireless communications is critical to coordinating joint and immediate response. The public safety community and mission critical land mobile communication providers have been working hand-in-hand for many years and have developed the Project 25 (P25) standards for interoperable mission critical communications. WHAT IS THE PROJECT 25 STANDARD AND WHO MANAGES IT? According to the Project 25 Interest Group (PTIG), “Project 25 is the standard for the design and manufacture of interoperable digital two-way wireless communications products. Developed in North America with state, local and federal representatives and Telecommunications Industry Association (TIA) governance, P25 has gained worldwide acceptance for public safety, security, public service, and commercial applications.” PTIG continues, “The published P25 standards suite is administered by the Telecommunications Industry Association (TIA Mobile and Personal Private Radio Standards Committee TR-8). -
Technical Specification for Land Mobile Radio Equipment
SKMM WTS LMR Rev. 1.01:2007 TECHNICAL SPECIFICATION FOR LAND MOBILE RADIO EQUIPMENT Suruhanjaya Komunikasi dan Multimedia Malaysia Off Pesiaran Multimedia, 63000 Cyberjaya, Selangor Darul Ehsan, Malaysia Copyright of SKMM, 2007 SKMM WTS LMR Rev. 1.01:2007 FOREWORD This Technical Specification was developed under the authority of the Malaysian Communications and Multimedia Commission (SKMM) under the Communications and Multimedia Act 1998 (CMA 98) and the relevant provisions on technical regulation of Part VII of the CMA 98. It is based on recognised International Standards documents. This Technical Specification specifies the specification to conform for approval of telecommunications devices. NOTICE This Specification is subject to review and revision i SKMM WTS LMR Rev. 1.01:2007 CONTENTS Page Foreword................................................................................................................... i 1 Scope........................................................................................................................ 1 2 Normative references ............................................................................................... 1 3 Abbreviations............................................................................................................ 1 4 Requirements ........................................................................................................... 2 4.1 General requirements............................................................................................... 2 4.2 -
Security Weaknesses in the APCO Project 25 Two-Way Radio System
University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science 11-18-2010 Security Weaknesses in the APCO Project 25 Two-Way Radio System Sandy Clark University of Pennsylvania Perry Metzger University of Pennsylvania Zachary Wasserman University of Pennsylvania Kevin Xu University of Pennsylvania Matthew A. Blaze University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/cis_reports Part of the Computer Sciences Commons Recommended Citation Sandy Clark, Perry Metzger, Zachary Wasserman, Kevin Xu, and Matthew A. Blaze, "Security Weaknesses in the APCO Project 25 Two-Way Radio System", . November 2010. University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-10-34. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/944 For more information, please contact [email protected]. Security Weaknesses in the APCO Project 25 Two-Way Radio System Abstract APCO Project 25 (“P25”) is a suite of wireless communications protocols designed for public safety two- way (voice) radio systems. The protocols include security options in which voice and data traffic can be cryptographically protected from eavesdropping. This report analyzes the security of P25 systems against passive and active attacks. We find a number of protocol, implementation, and user interface weaknesses that can leak information to a passive eavesdropper and that facilitate active attacks. In particular, P25 systems are highly susceptible to active traffic analysis attacks, in which radio user locations are surreptitiously determined, and selective jamming attacks, in which an attacker can jam specific kinds of traffic (such as encrypted messages or key management traffic). -
A Software Based APCO Project 25 Data Transmission Base Station for Local Police Headquarters
University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Fall 2007 A software based APCO Project 25 data transmission base station for local police headquarters Eric Rene Ramsey University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Ramsey, Eric Rene, "A software based APCO Project 25 data transmission base station for local police headquarters" (2007). Master's Theses and Capstones. 308. https://scholars.unh.edu/thesis/308 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. A SOFTWARE BASED APCO PROJECT 25 DATA TRANSMISSION BASE STATION FOR LOCAL POLICE HEADQUARTERS BY ERIC RENE RAMSEY B.S., University of New Hampshire, 2005 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering September, 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1447900 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
Improving Public Safety Communications in the 800 Mhz Band; Consolidating the 900 Mhz Industrial/Land Transportation and Business Pool Channels, WT Docket No
Federal Communications Commission FCC 04-168 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Improving Public Safety Communications in the ) 800 MHz Band ) WT Docket 02-55 ) Consolidating the 800 and 900 MHz ) Industrial/Land Transportation and Business Pool ) Channels ) ) ET Docket No. 00-258 Amendment of Part 2 of the Commission’s Rules ) to Allocate Spectrum Below 3 GHz for Mobile ) and Fixed Services to Support the Introduction of ) New Advanced Wireless Services, including Third ) RM-9498 Generation Wireless Systems ) ) Petition for Rule Making of the Wireless ) Information Networks Forum Concerning the ) RM-10024 Unlicensed Personal Communications Service ) ) Petition for Rule Making of UT Starcom, Inc., ) Concerning the Unlicensed Personal ) ET Docket No. 95-18 Communications Service ) ) Amendment of Section 2.106 of the Commission’s ) Rules to Allocate Spectrum at 2 GHz for use by ) the Mobile Satellite Service REPORT AND ORDER, FIFTH REPORT AND ORDER, FOURTH MEMORANDUM OPINION AND ORDER, AND ORDER Adopted: July 8, 2004 Released: August 6, 2004 By the Commission: Chairman Powell, Commissioners Abernathy, Copps, and Adelstein issuing separate statements. TABLE OF CONTENTS Heading Paragraph # I. INTRODUCTION.................................................................................................................................. 1 II. EXECUTIVE SUMMARY.................................................................................................................... 8 III. MAJOR FINDINGS -
Before the Federal Communications Commission Washington, D.C
BEFORE THE FEDERAL COMMUNICATIONS COMMISSION WASHINGTON, D.C. 20554 In the Matter of ) ) Request for Declaratory Ruling That the ) WT Docket No. 11-110 Commission’s Rules Authorize Greater ) Than 25 kHz Bandwidth Operations in ) the 800 MHz ESMR Band ) ) To: Chief, Wireless Telecommunications Bureau COMMENTS OF SOUTHERNLINC WIRELESS Southern Communications Services, Inc. d/b/a SouthernLINC Wireless (“SouthernLINC Wireless”) hereby submits its comments in support of the Petition for Declaratory Ruling filed on June 3, 2011, by Sprint Nextel Corporation (“Sprint Nextel”) to allow larger than 25 kHz bandwidth operations in the 800 MHz Enhanced Specialized Mobile Radio Service (“ESMR”) band.1 SouthernLINC Wireless urges the Commission to grant the Petition and declare that licensees in the ESMR band may deploy and operate technologies that require greater than 25 kHz bandwidth on the 800 MHz spectrum authorized by their Economic Area (“EA”) licenses. The requested declaratory ruling would be technology-neutral as it would provide licensees in the ESMR band with the ability to deploy and operate the mobile wireless technology of their choice, including 3G technologies such as CDMA and 4G technologies such as LTE. 1 / “Wireless Telecommunications Bureau Seeks Comment on Petition From Sprint Nextel to Allow Wideband Operations In 800 MHz Enhanced Specialized Mobile Radio Service Bands, WT Docket No. 11-110, Public Notice, DA 11-1152 (rel. June 30, 2011) (“Public Notice”). Significantly, the requested ruling would promote regulatory parity among CMRS providers and encourage the competitive deployment and greater availability of mobile broadband technologies and services for US consumers. SouthernLINC Wireless emphasizes, however, that the requested ruling must expressly apply to all EA-licensed ESMR frequencies, including those in the expanded ESMR band in the southeastern United States – i.e., the 813.5-824/858.5-869 MHz band. -
EFJ Catalog 2004
Sandown Wireless USA 2004 Catalog Mobiles VHF UHF 800 MHz ANALOG/DIGITAL MOBILE RADIO I APCO Project 25 Compatible – Trunked and Conventional5300 SERIES I SMARTNET® and SmartZone® I Analog FM I Encryption For over 80 years, EFJohnson has been at the forefront of the communi- cations industry. Our subscriber radios are used throughout the world by military, police, fire, paramedics, and homeland security profes- sionals. The 5300 Series Analog/ Digital Mobile Radio provides Project 25 Forward Compatibility is provided Field Programmable Capability compatibility along with SMARTNET®/ via a scalable design that allows new provides National Telecommunications SmartZone® capability to meet the features and applications to be inte- and Information Administration (NTIA) needs of federal, state, and local grated into the existing radio platform. agencies the ability to reprogram government users, as well as business, conventional frequencies, CTCSS, DCS, Encrypted Communications for industrial and public safety applications. and talkgroups into the radio’s memory. Switching between SMARTNET/ wideband legacy systems and narrow- ™ 10-Character Alphanumeric Display SmartZone Project 25 and conventional band operation. DES and DES-XL provides a backlit visual display of the analog equipment is simple – just turn enable secure voice communications in radio’s channel or talkgroup on the front the channel knob. wideband channels; Project 25 DES-OFB and AES encryption provide secure of the radio. Tilt viewing angle allows Multiple Protocol Compatibility: communication in narrowband channels. for easy viewing anywhere in the – Project 25 CAI (Common Air vehicle and in any light condition. Interface) enables users to commu- Multiple System Select is an 100-Watt Option allows extra power nicate with other Project 25 compatible advanced feature that enables the user for VHF communication systems. -
Esco Rfp Draft 20171030
Emergency Communications of Southern Oregon (ECSO) Request for Proposals Public Safety Voice Radio Communications System Functional Specification DUE: 3/18/2020 by 2:00pm PDT Prepared by Federal Engineering, Inc. 10560 Arrowhead Dr. Fairfax, VA 22030 703-359-8200 Emergency Communications of Southern Oregon Public Safety Voice Radio Communications System FINAL Table of Contents 1. Functional Specifications .................................................................................. 6 1.1 Overview .......................................................................................................... 6 1.1.1 Standards and Guidelines................................................................................. 7 1.1.2 Network Security Requirements ....................................................................... 8 1.1.3 Governing Codes and Conflicts ...................................................................... 10 1.2 Integrated Voice and Data Radio System ....................................................... 10 1.2.1 Project 25 Requirements ................................................................................ 10 1.2.2 Core System Features and Capabilities .......................................................... 10 1.2.3 Interoperability Requirements ......................................................................... 13 1.2.4 Coverage ........................................................................................................ 14 1.2.5 Site Selection.................................................................................................