D C Profiles Along Growth Layers of Stalagmites

Total Page:16

File Type:pdf, Size:1020Kb

D C Profiles Along Growth Layers of Stalagmites Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 72 (2008) 438–448 www.elsevier.com/locate/gca d13C profiles along growth layers of stalagmites: Comparing theoretical and experimental results Douchko Romanov a,*, Georg Kaufmann a, Wolfgang Dreybrodt b a Institute of Geological Sciences, FU Berlin, Malteserstr. 74-100, Building D, 12249 Berlin, Germany b Karst Processes Research Group, Institute of Experimental Physics, University of Bremen, 28359 Bremen, Germany Received 29 May 2007; accepted in revised form 6 September 2007; available online 1 November 2007 Abstract The isotopic carbon ratio of a calcite-precipitating solution flowing as a water film on the surface of a stalagmite is deter- À mined by Rayleigh distillation. It can be calculated, when the HCO3 -concentration of the solution at each surface point of the stalagmite and the fractionation factors are known. A stalagmite growth model based entirely on the physics of laminar flow and the well-known precipitation rates of a supersaturated solution of calcite, without any further assumptions, is À employed to obtain the spatial distribution of the HCO3 -concentration, which contributes more than 95% to the dissolved inorganic carbon (DIC). The d13C profiles are calculated along the growth surface of a stalagmite for three cases: (A) isotopic equilibrium of both CO2 outgassing and calcite precipitation; (B) outgassing of CO2 is irreversible but calcite precipitation is 13 in isotopic equilibrium. (C) Both CO2 outgassing and calcite precipitation are irreversible. In all cases the isotopic shift d C increases from the apex along the distance on a growth surface. In cases A and B, calcite deposited at the apex is in isotopic equilibrium with the solution of the drip water. The difference between d13C at the apex and the end of the growth layer is independent of the stalagmite’s radius, but depends on temperature. For case A, it is about half the value obtained for cases B and C. In case C, the isotopic composition of calcite at the apex equals that of the drip water, but further out it becomes practically identical with that of case B. The growth model has been applied to field data of stalagmite growth, where the thickness and the d13C of calcite precipitated to a glass plate located on the top of a stalagmite have been measured as function of the distance from the drip point. The calculated data are in good agreement to the observed ones and indicate that depo- sition occurred most likely under conditions B, eventually also C. A sensitivity analysis has been performed, which shows that within the limits of observed external parameters, such as drip rates and partial pressure of carbon dioxide P CO2 in the cave, the results remain valid. Ó 2007 Elsevier Ltd. All rights reserved. 1. INTRODUCTION d18O and d 13C, have been the focus of research for decades. Recent studies show that in particular d18O time series are Stalagmites are now recognized as proxies of environ- useful to recover paleoclimate temperatures during the past. mental signals (McDermott, 2004; McDermott et al., As an example, Mangini et al. (2005) have shown that the 2006; Fairchild et al., 2006, 2007). They can grow for time temperatures during the last 2000 years can be recon- spans from 103–105 years, and carry paleoclimatic informa- structed. The medieval climate optimum and the little ice tion, which by use of accurate dating techniques such as age have been identified by time series from stalagmites in Uranium series (Ford and Williams, 2007), can be con- the Central Alps (Mangini et al., 2005; Vollweiler et al., verted into time series. Oxygen and carbon isotopic signals 2006). Niggemann et al. (2003) have found the existence of sub-Milankovitch cycles during the last 6000 years from a stalagmite of the Atta Cave, Sauerland, Germany. Wang * Corresponding author. Fax: +49 30 838 70729. et al. (2001) have reported on oxygen isotope records E-mail address: [email protected] (D. Romanov). from five stalagmites of Hulu Cave in China bearing a 0016-7037/$ - see front matter Ó 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.gca.2007.09.039 d13C profiles along growth layers of stalagmites 439 remarkable resemblance to oxygen records from Greenland the solution within a few percent is represented by the À 13 ice cores. These recent advances show the high potential of HCO3 ions. Therefore the enrichment in C can be ob- d 18O time series. tained by (Usdowski et al., 1979; Mickler et al., 2004) ! However, caveats must be given and an exact interpreta- ÂÃaÀ1 HCO À t tion of such data depends on many variables. Especially for 13 13 ÂÃ3 ð Þ R À ¼ R À ð0Þ ð1Þ HCO3 HCO3 À isotopic records one has to assume that isotopic fraction- HCO3 ð0Þ ation occurs under isotopic equilibrium conditions (Hendy, 13 1971). When kinetic fractionation operates, speleothems ex- where RHCO À is the isotopic ratio R = [rare_isotope]/[abun- 3 13 12 hibit a positive correlation of d18O and d13C for samples ta- dant_isotope] = C/ C at time t or at time zero, respec- ken along a growth surface and records from such tively. a is the fractionation factor taking into account stalagmites should be regarded with care. that carbon is lost by CO2-degassing and precipitation of In view of these problems detailed knowledge on the for- calcite. It takes different values for the two extremes dis- mation in isotopic signals on stalagmites is needed, first to cussed above. This will be discussed later in the text. À avoid errors and second to identify other signals, such as The concentration [HCO3 ] is related to the concentra- tion of [Ca2+]by drip rates to the apex of a stalagmite, which yield additional ÂÃ ÂÃ information of paleoprecipitation. 2þ À Ca ¼ 2 Á HCO3 ð2Þ A first step into this direction has been taken by Mu¨h- linghaus et al. (2007). They have modeled variations in This is the relaxed equation of charge balance valid for the d13C isotope profiles along the growth layer of a stalagmite pH values mentioned above (Dreybrodt, 1988). by use of a multi-box model. From their results they con- The precipitation rate F of calcite to the solid in an open clude that the interval between two drips to the apex of system is given by (Buhmann and Dreybrodt, 1985; Dreyb- the stalagmite most significantly determines the variations rodt et al., 1997): in the d13C profiles. F ¼ a ðc À ceqÞ; ð3Þ In this paper we present a new method to model the variations of d13C along growth layers of stalagmites. This with a the kinetic rate coefficient (Table 1). From this one model is based entirely on the physics and chemistry of cal- obtains the time evolution of the calcium concentration [Ca2+]=c in a thin sheet of water as: cite precipitation and isotopic chemistry. It does not need any ad hoc assumptions as used in earlier models on stalag- ÀÁ t Á d cðtÞ¼c þ c À c Á exp À ; ð4Þ mite growth (Dreybrodt, 1999; Kaufmann, 2003), which eq 0 eq a served as basis for the work of Mu¨hlinghaus et al. (2007). 2+ c is the actual concentration of Ca in the solution, c0 the 2+ 2. THEORETICAL BACKGROUND initial concentration of Ca , and ceq is the equilibrium concentration with respect to calcite. The time constant is given by d/a, where d is the depth of the water film. Eqs. When calcite precipitates from a H2O–CO2–CaCO3 solution in a thin water film to a calcite surface, carbon is (1)–(4) are the basic ingredients to calculate the isotopic transferred from the solution to the solid and as a result compositions for calcite deposited to stalagmites. À 2+ If one knows the time of contact of a parcel of water of the global chemical reaction 2HCO3 +Ca fi with the calcite surface and the position on the stalagmite’s H2O+CO2 + CaCO3, carbon dioxide must degas. This could happen in two different ways. In the first forward surface at this time it is possible to calculate its isotopic À and backward reactions for both carbon isotopes are al- composition of HCO3 . The calcite precipitated from this most equal. The products formed escape from the solution parcel of solution then contains the imprint of the solu- and do not interact with it again. Under such conditions the tion’s isotopic composition. To know the position of a se- products are in isotopic equilibrium with the solution, when lected element of a parcel of water one needs a model of they are generated. This, however, requires slow deposition the precipitation rates on the surface of the stalagmite. rates, whereby the Ca2+-concentration at the surface of the The first model of stalagmite growth and the evolution solid must be close to saturation with respect to calcite. of its morphology has been reported by Dreybrodt (1988, 1999) and later by Kaufmann (2003). This model assumes Furthermore the CO2 in the surrounding atmosphere must that the stalagmite is covered by a stagnant water film of be almost in equilibrium with the CO2 in the solution. The other extreme is irreversible fast precipitation with no back- depth between 0.005 and 0.03 cm, from which calcite is pre- cipitated during the time s between two drops. When a new ward reaction and consequently fast degassing of CO2, which is diluted into the surrounding atmosphere and lost drop impinges to the apex the entire water film is replaced irreversibly from the solution. Such irreversible processes by the new solution. To account for the fact that the depo- result in kinetic fractionation, whereas the first produces sition rates must decrease with distance from the axis one equilibrium fractionation.
Recommended publications
  • Dissertation Annewackerbarth 1
    INAUGURAL - DISSERTATION for the degree of Doctor of Natural Sciences of the Ruperto-Carola-University of Heidelberg, Germany presented by Dipl.-Phys. Anne Katrin Wackerbarth born in: Rotenburg a.d. Fulda, Germany Oral examination: 19.1.2012 Towards a better understanding of climate proxies in stalagmites - Modelling processes from surface to cave Referees: Prof. Dr. Augusto Mangini Prof. Dr. Werner Aeschbach-Hertig Dedicated to my parents. Abstract In recent years stalagmites revealed their high potential as archives for palaeo climate variability. However, the quantitative interpretation of the climate-related features - proxies - is still a challenging task. In this work two numerical models assessing the influence of climate parameters on two stalagmite proxies - the Mg/Ca ratio and the δ18 O value - were developed. The models describe quantitatively how the proxies evolve from the atmospheric signals to the incor- poration into stalagmite calcite. Both models were successfully applied to stalagmites from caves in western Germany. The models were used to establish two novel approaches of inverse modelling yield- ing simultaneously palaeo-temperatures and palaeo-precipitation from δ18 O and Mg/Ca values. Although both models are based on substantially different setups, their climate reconstructions show remarkable similarities applied on a Holocene stalagmite from west- ern Germany. In addition, for the first time a stalagmite model (the δ18 O model developed in this the- sis) was forced with the output data of a General Circulation Model, as a new concept to understand the climate impact on δ18 O values of speleothems. The advantage is that this method can be applied to caves worldwide and for any given point in time without requiring observational climate data.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Extracting winter North Atlantic Oscillation information from a central European stalagmite Gilliatt, Sam Matthew Rupar How to cite: Gilliatt, Sam Matthew Rupar (2013) Extracting winter North Atlantic Oscillation information from a central European stalagmite, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6955/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Extracting winter North Atlantic Oscillation information from a central European stalagmite Sam Matthew Rupar Gilliatt Department of Earth Sciences Durham University December 2012 A thesis submitted for the degree of Master of Science Abstract This study explores the potential for extracting winter North Atlantic Oscillation (NAO) information from central European stalagmites using a high resolution calcite δ18O 18 (δ Ocal) time-series from a stalagmite (AH1) extracted from Atta cave in northwestern Germany. Samples milled at 25µm resolution were run through an isotope-ratio mass spectrometer in weight order.
    [Show full text]
  • Climate of the Past the Magnesium Isotope Record of Cave
    VU Research Portal The magnesium isotope record of cave carbonate archives Riechelmann, S.; Buhl, D.; Schröder-Ritzrau, A.; Riechelmann, D.F.C.; Richter, D.K.; Vonhof, H.B.; Wassenburg, J.A.; Geske, A.; Spötl, C.; Immenhauser, A.M. published in Climate of the Past 2012 DOI (link to publisher) 10.5194/cp-8-1849-2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Riechelmann, S., Buhl, D., Schröder-Ritzrau, A., Riechelmann, D. F. C., Richter, D. K., Vonhof, H. B., Wassenburg, J. A., Geske, A., Spötl, C., & Immenhauser, A. M. (2012). The magnesium isotope record of cave carbonate archives. Climate of the Past, 8, 1849-1867. https://doi.org/10.5194/cp-8-1849-2012 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 29.
    [Show full text]
  • Holocene Climate Variability in Central Europe
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Clim. Past Discuss., 8, 1687–1720, 2012 www.clim-past-discuss.net/8/1687/2012/ Climate doi:10.5194/cpd-8-1687-2012 of the Past CPD © Author(s) 2012. CC Attribution 3.0 License. Discussions 8, 1687–1720, 2012 This discussion paper is/has been under review for the journal Climate of the Past (CP). Holocene climate Please refer to the corresponding final paper in CP if available. variability in central Europe J. Fohlmeister et al. Bunker Cave stalagmites: an archive for Title Page central European Holocene climate Abstract Introduction variability Conclusions References Tables Figures J. Fohlmeister1, A. Schroder-Ritzrau¨ 1, D. Scholz2, C. Spotl¨ 3, D. F. C. Riechelmann4, M. Mudelsee5, A. Wackerbarth1, A. Gerdes6,7, S. Riechelmann8, A. Immenhauser8, D. K. Richter8, and A. Mangini1 J I 1Heidelberg Academy of Sciences, Heidelberg, Germany J I 2 Institute for Geosciences, University of Mainz, Mainz, Germany Back Close 3Institute for Geology and Palaeontology, University of Innsbruck, Innsbruck, Austria 4Institute for Geography, University of Mainz, Mainz, Germany Full Screen / Esc 5Climate Risk Analysis, Hanover, Germany 6 Institute for Geosciences, Goethe University Frankfurt, Frankfurt, Germany Printer-friendly Version 7Department of Earth Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa Interactive Discussion 8Institute for Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Bochum, Germany 1687 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Received: 29 March 2012 – Accepted: 29 April 2012 – Published: 11 May 2012 Correspondence to: J. Fohlmeister ([email protected]) CPD Published by Copernicus Publications on behalf of the European Geosciences Union.
    [Show full text]
  • Bunker Cave Stalagmites: an Archive for Central European Holocene Climate Variability
    Clim. Past, 8, 1751–1764, 2012 www.clim-past.net/8/1751/2012/ Climate doi:10.5194/cp-8-1751-2012 of the Past © Author(s) 2012. CC Attribution 3.0 License. Bunker Cave stalagmites: an archive for central European Holocene climate variability J. Fohlmeister1, A. Schroder-Ritzrau¨ 1, D. Scholz2, C. Spotl¨ 3, D. F. C. Riechelmann4, M. Mudelsee5, A. Wackerbarth1, A. Gerdes6,7, S. Riechelmann8, A. Immenhauser8, D. K. Richter8, and A. Mangini1 1Heidelberg Academy of Sciences, Heidelberg, Germany 2Institute for Geosciences, University of Mainz, Mainz, Germany 3Institute for Geology and Palaeontology, University of Innsbruck, Innsbruck, Austria 4Institute for Geography, University of Mainz, Mainz, Germany 5Climate Risk Analysis, Hanover, Germany 6Institute for Geosciences, Goethe University Frankfurt, Frankfurt, Germany 7Department of Earth Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa 8Institute for Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Bochum, Germany Correspondence to: J. Fohlmeister ([email protected]) Received: 29 March 2012 – Published in Clim. Past Discuss.: 11 May 2012 Revised: 21 September 2012 – Accepted: 3 October 2012 – Published: 31 October 2012 Abstract. Holocene climate was characterised by variabil- to a pronounced negative phase of the North Atlantic Oscil- ity on multi-centennial to multi-decadal time scales. In cen- lation, the 8.2 ka event was triggered by cooler conditions in tral Europe, these fluctuations were most pronounced dur- the North Atlantic due to a slowdown of the thermohaline ing winter. Here we present a record of past winter climate circulation. variability for the last 10.8 ka based on four speleothems from Bunker Cave, western Germany.
    [Show full text]
  • Science C Author(S) 2020
    Discussions https://doi.org/10.5194/essd-2020-39 Earth System Preprint. Discussion started: 13 March 2020 Science c Author(s) 2020. CC BY 4.0 License. Open Access Open Data SISALv2: A comprehensive speleothem isotope database with multiple age-depth models Laia Comas-Bru 1, Kira Rehfeld 2, Carla Roesch 2, Sahar Amirnezhad-Mozhdehi 3, Sandy P. Harrison 1, Kamolphat Atsawawaranunt 1, Syed Masood Ahmad 4, Yassine Ait Brahim 5, Andy Baker 6, Matthew Bosomworth 1, Sebastian F.M. Breitenbach 7, Yuval Burstyn 8, Andrea Columbu 9, Michael Deininger 10, Attila Demény 11, Bronwyn Dixon 12, Jens Fohlmeister 13, István Gábor Hatvani 11, Jun Hu 14, Nikita Kaushal 15, Zoltán Kern 11, Inga Labuhn 16, Franziska A. Lechleitner 17, Andrew Lorrey 18, Belen Martrat 19, Valdir Felipe Novello 20, Jessica Oster 21, Carlos Pérez-Mejías 5, Denis Scholz 10, Nick Scroxton 22, Nitesh Sinha 23, Brittany Marie Ward 24, Sophie Warken 25, Haiwei Zhang 5 and SISAL Working Group members*. Correspondence: Laia Comas-Bru ([email protected]) Affiliations: 1 School of Archaeology, Geography, and Environmental Science, University of Reading, UK 2 Institute of Environmental Physics and Interdisciplinary Center for Scientific Computing, Heidelberg University, Germany 3 School of Geography. University College Dublin. Belfield, Dublin 4, Ireland 4 Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India 5 Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, Shaanxi, China 6 Connected Waters Initiative Research Centre, UNSW Sydney, Sydney, New South Wales 2052, Australia 7 Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK 8 The Fredy & Nadine Herrmann Institute Earth Sciences, The Hebrew University of Jerusalem, The Edmond J.
    [Show full text]
  • A Comprehensive Speleothem Isotope Database with Multiple Age-Depth Models
    SISALv2: a comprehensive speleothem isotope database with multiple age-depth models Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Comas-Bru, L. ORCID: https://orcid.org/0000-0002-7882-4996, Rehfeld, K., Roesch, C., Amirnezhad-Mozhdehi, S., Harrison, S. P., Atsawawaranunt, K., Masood Ahmad, S., Ait Brahim, Y., Baker, A., Bosomworth, M., Breitenbach, S. F.M., Burstyn, Y., Columbu, A., Deininger, M., Demény, A., Dixon, B., Fohlmeister, J., Gábor Hatvani, I., Hu, J., Kaushal, N., Kern, Z., Labuhn, I., Lechleitner, F. A., Lorrey, A., Martrat, B., Novello, V. F., Oster, J., Pérez-Mejías, C., Scholz, D., Scroxton, N., Sinha, N., Ward, B. M., Warken, S. and Zhang, H. (2020) SISALv2: a comprehensive speleothem isotope database with multiple age-depth models. Earth System Science Data, 12 (4). pp. 2579-2606. ISSN 1866-3516 doi: https://doi.org/10.5194/essd-12-2579-2020 Available at http://centaur.reading.ac.uk/95618/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.5194/essd-12-2579-2020 Publisher: Copernicus Publications All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Earth Syst. Sci. Data, 12, 2579–2606, 2020 https://doi.org/10.5194/essd-12-2579-2020 © Author(s) 2020.
    [Show full text]
  • Download Here
    Treasure map for the Sauerland Rothaar Mountains Nature Park Treasure hunting in the Sauerland Rothaar Mountains Nature Park Welcome to the Sauerland Rothaar underground cave worlds, impres- Mountains Nature Park! Our new sive cliffs and moors, rare species of treasure map leads you to the most animals and plants, historic factory beautiful and exciting places in the buildings, castles and fortresses. region. These are true jewels, For a total of 35 jewels now fill our proposed by the inhabitants and six information centres, the so- guests of the nature park in a called “treasure chests“, in Bad competition and exclusively selected Berleburg, Hemer, Lennestadt & for you. People in all participating Kirchhundem, Medebach, Meinerz- communities were called upon to hagen and Burbach (from 2021). name places that touch them Here you will learn everything about personally, that tell a story or want the natural and cultural treasures of to be discovered. the largest nature park in North Your treasure hunt leads you to Rhine-Westphalia, where famous 2 - 3 rivers such as the Ruhr, Eder and Sieg have their source. Discover the Content scenic diversity of the typical low mountain range region and set off The information centres are to explore the most exciting places veritable treasure chests for yourself. At interactive tables you the jewels in the nature park: can click your way through the information about our jewels and 4 Hemer get great tips and suggestions for 16 Meinerzhagen your next trip to the Sauerland 30 Lennestadt/Kirchhundem Rothaar Mountains Nature Park. 44 Bad Berleburg So start your own personal treasure 58 Burbach (from 2021) hunt! 72 Medebach HE Info centre Hemer The Nature Park Information Centre Hemer is located directly at the Deilinghofer Straße entrance to the Sauerland Park in Hemer, the former Blücher barracks.
    [Show full text]
  • A Comprehensive Speleothem Isotope Database with Multiple Age-Depth Models
    SISALv2: A comprehensive speleothem isotope database with multiple age-depth models Laia Comas-Bru 1, Kira Rehfeld 2, Carla Roesch 2, Sahar Amirnezhad-Mozhdehi 3, Sandy P. Harrison 1, Kamolphat Atsawawaranunt 1, Syed Masood Ahmad 4, Yassine Ait Brahim 5, Andy Baker 6, Matthew Bosomworth 1, Sebastian F.M. Breitenbach 7, Yuval Burstyn 8, Andrea Columbu 9, Michael Deininger 10, Attila Demény 11, Bronwyn Dixon 1,12, Jens Fohlmeister 13, István Gábor Hatvani 11, Jun Hu 14, Nikita Kaushal 15, Zoltán Kern 11, Inga Labuhn 16, Franziska A. Lechleitner 17, Andrew Lorrey 18, Belen Martrat 19, Valdir Felipe Novello 20, Jessica Oster 21, Carlos Pérez-Mejías 5, Denis Scholz 10, Nick Scroxton 22, Nitesh Sinha 23,24 Brittany Marie Ward 25, Sophie Warken 26, Haiwei Zhang 5 and SISAL Working Group members*. Correspondence: Laia Comas-Bru ([email protected]) Affiliations: 1 School of Archaeology, Geography, and Environmental Science, University of Reading, UK 2 Institute of Environmental Physics and Interdisciplinary Center for Scientific Computing, Heidelberg University, Germany 3 School of Geography. University College Dublin. Belfield, Dublin 4, Ireland 4 Department of Geography, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India 5 Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, Shaanxi, China 6 Connected Waters Initiative Research Centre, UNSW Sydney, Sydney, New South Wales 2052, Australia 7 Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK 8 The Fredy
    [Show full text]
  • Bunker Cave Stalagmites: an Archive for Central European Holocene Climate Variability
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Clim. Past Discuss., 8, 1687–1720, 2012 www.clim-past-discuss.net/8/1687/2012/ Climate doi:10.5194/cpd-8-1687-2012 of the Past © Author(s) 2012. CC Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Climate of the Past (CP). Please refer to the corresponding final paper in CP if available. Bunker Cave stalagmites: an archive for central European Holocene climate variability J. Fohlmeister1, A. Schroder-Ritzrau¨ 1, D. Scholz2, C. Spotl¨ 3, D. F. C. Riechelmann4, M. Mudelsee5, A. Wackerbarth1, A. Gerdes6,7, S. Riechelmann8, A. Immenhauser8, D. K. Richter8, and A. Mangini1 1Heidelberg Academy of Sciences, Heidelberg, Germany 2Institute for Geosciences, University of Mainz, Mainz, Germany 3Institute for Geology and Palaeontology, University of Innsbruck, Innsbruck, Austria 4Institute for Geography, University of Mainz, Mainz, Germany 5Climate Risk Analysis, Hanover, Germany 6Institute for Geosciences, Goethe University Frankfurt, Frankfurt, Germany 7Department of Earth Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa 8Institute for Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Bochum, Germany 1687 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Received: 29 March 2012 – Accepted: 29 April 2012 – Published: 11 May 2012 Correspondence to: J. Fohlmeister ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 1688 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract Holocene climate was characterised by variability on multi-centennial to multi-decadal time scales. In central Europe, these fluctuations were most pronounced during win- ter. Here we present a new record of past winter climate variability for the last 10.8 ka 5 based on four speleothems from Bunker Cave, Western Germany.
    [Show full text]
  • The Magnesium Isotope Record of Cave Carbonate Archives
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Clim. Past Discuss., 8, 1835–1883, 2012 www.clim-past-discuss.net/8/1835/2012/ Climate doi:10.5194/cpd-8-1835-2012 of the Past © Author(s) 2012. CC Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Climate of the Past (CP). Please refer to the corresponding final paper in CP if available. The magnesium isotope record of cave carbonate archives S. Riechelmann1, D. Buhl1, A. Schroder-Ritzrau¨ 2, D. F. C. Riechelmann3, D. K. Richter1, H. B. Vonhof4, J. A. Wassenburg1, A. Geske1, C. Spotl¨ 5, and A. Immenhauser1 1Ruhr-University Bochum, Institute for Geology, Mineralogy and Geophysics, Universitatsstraße¨ 150, 44801 Bochum, Germany 2Heidelberg Academy of Sciences, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany 3Johannes Gutenberg-University Mainz, Institute of Geography, Johann-Joachim-Becher-Weg 21, 55099 Mainz, Germany 4Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands 5Leopold-Franzens-University Innsbruck, Institute for Geology and Palaeontology, Innrain 52, 6020 Innsbruck, Austria Received: 30 April 2012 – Accepted: 3 May 2012 – Published: 22 May 2012 Correspondence to: S. Riechelmann ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 1835 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract Here we explore the potential of time-series magnesium (δ26Mg) isotope data as con- tinental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru 5 and two flowstones from a cave in Austria were investigated.
    [Show full text]
  • BOLETÍN INFORMATIVO DE LA COMISIÓN DE GEOSPELEOLOGÍA (Federación Espeleológica De América Latina Y El Caribe -FEALC-) No
    BOLETÍN INFORMATIVO DE LA COMISIÓN DE GEOSPELEOLOGÍA (Federación Espeleológica de América Latina y el Caribe -FEALC-) No. 2, Abril 1997 Coordinador: Dr. Franco Urbani Apartado 47.334, Caracas 1041A, Venezuela Fax: (58)-2-605.31.20. Email: [email protected] [email protected] Índice Bibliografía mineralógica del libro Cave Minerals of the World por C. Hill & P. Forti A Abbona, F., and Boistelle, R., 1979, Growth morphology and crystal habit of struvite crystals (MgNH4PO4.6H2O): Jour. of Crystal Growth, no. 46, p. 339-354. Abel, G., 1955, Temperatures et formation de glace dans les grottes du Salzburg (Austriche): Proc. 1st Int. Cong. Speleol., Paris, 1953, v. 2, p 321-324. ———1956, Salisburgo il paese delle grotte in ghiaccio: Prod. 7th Cong. Naz. Speleol., Sardegna, p. 256-262. Abruzze, A., Moretti, S., and Pellecchia, M., 1977, La grotto dello zolfo in Miseno (Napoli) costituisce, per le peculiarità dell’ambiente e delle strutture geofisiche, un esempio interessante di ecossistema integrato: Ann. Speleol. Club Alpina Ital., Napoli, v. 4, p. 67-70. Adam, H., 1976, Kristallschalen aus der Grotta del Vento (Italien): Frank. Höhlenspiegel, v. 5/6, p. 13-14. Adam, W., 1846, Gem of the Peak : Mozley, Derby, 406 p. Adamkó, P., and Leél-Ãssy, S., 1984, Budapest új csodája: a József-hegyi-barlang: Karszt és Barlang, v. 1, p. 1-8. Adams, C. S., and Swinnerton, A. C., 1937, Solubility of limestone: Trans. Am. Geophys. Union, 18th Ann. Mtg., v. 18, pt. 2, p. 504-508. Adams, F. D., 1938, The birth and development of the geological sciences : Baltimore, Williams and Wilkins, 506 p.
    [Show full text]