Reports 927 REFERENCES

Total Page:16

File Type:pdf, Size:1020Kb

Reports 927 REFERENCES Volume 14 Reports 927 Number 12 around the central matrix. The outer diameters From the Section of Tumor Research and Pa- of the circular profile of filaments seen surround- thology, Department of Ophthalmology and Visual ing the electron-lucent matrix in transverse sec- Science, Yale University School of Medicine, New tions were the same as in the longitudinal sec- Haven, Conn. Supported in part by National Institutes of Health Crant EY 00108-06. Submitted tion, with the single exception of the smaller for publication Aug. 12, 1975. Reprint requests: incomplete forms (Fig. 2, A). The outer diameters J. Craft, Department of Ophthalmology and in this case were approximately 740 A. It is Visual Science, Yale University School of Medi- interesting to note that the cylinder structures cine, 333 Cedar St., New Haven, Conn. 06510. were always enveloped by the cell processes. Discussion. The organization of the vertebrate REFERENCES retina has become increasingly well recognized 1 1. Hogan, M. J., Alvarado, J. A., and Weddell, in recent years. ' " The present paper describes ]. E.: Histology of the Human Eye, Phila- in detail for the first time the ultrastructural delphia, 1971, W. B. Saunders Company. characteristics of cylinder-like structures (termed 2. Radnot, M., and Lovas, B.: Die Ultrastruktur the cylinder organelle) present in the horizontal der Photoreceptor-Synapsen in einem Falle cell processes. Previous reports of this structure von Sehnervenatrophie, Albrecht v. Craefes in the human retina have included only a partial Arch. Klin. Exp. Ophthalmol. 173: 56, 1967. description of its ultrastructural detail.1- 2 3. Hebel, R.: Uber ein Korperchen mit regel- Certain other specialized structures in this area massiger Innenstruktur in einer. Synapse der have been described but appear morphologically ausseren plexiformen Schicht des Hundeauges, 1 Albrecht v. Graefes Arch. Klin. Exp. Ophthal- distinct from the cylinder organelle: Evans found mol. 180: 38, 1970. parallel fibers of electron-dense material in chick 5 4. Evans, E. M.: On the infrastructure of the rod endings. In 1967, Matsusaka described a synaptic region of visual receptors in certain structure in the synaptic cytoplasm of chick retina vertebrates, Z. Zellforsch. Mikrosk. Anat. 71: cone. He found stacks of paired membranes and 499, 1966. called them lamellar bodies. In serial sections, 5. Matsusaka, T.: Lamellar bodies in the synaptic Mountford" described a structure in the receptor- cytoplasm of the accessory cone from the bipolar synaptic area of the guinea pig retina chick retina as revealed by electron microscopy, J. Ultrastr. Res. 18: 55, 1967. and described it as spindle-shaped with cross 7 6. Mountford, S.: Filamentous organelles in re- striations. Pedler and Tilly observed a banded ceptor-bipolar synapses of the retina, J. Ultrastr. structure in Rhesus macaque monkeys; they re- Res. 10: 207, 1964. ported that it extended for approximately 37 sec- 7. Pedler, C. M. H., and Tilly, R.: Eye Structure, tions, having a length of approximately 3 /*. Eleventh Symposium, Stuttgart, 1965, Schat- In a study by Leuenbergers paracrystalline inclu- taver Verlag. sions were observed within the inner segments 8. Leuenberger, P. M.: Mikrofibrillare Kristal- and the synaptic pedicles of the human photo- lartige Einschliisse in den Photoreceptorsynap- sen der menschlichen Netzhaut, J. Microscopic receptor cells. These inclusions are formed by 15: 79, 1972. microfilaments, 150 A in diameter and showing 9. Dowling, J. E.: Organization of vertebrate regular spacing. retinas, INVEST. OPHTHALMOL. 9: 655, 1970. We would speculate that the cylinder structure apparently has gone unnoticed in previous studies, perhaps in part because of different orientations of the specimen block. The structure may also be Crossing axons in the third nerve nucleus. more observable under certain pathologic con- DON C. BIENFANG. ditions, and there may be some significance in the fact that all of the present specimens having The research presented in this paper studied the cylinder structure were from eyes with mela- the pathway taken by the crossed fibers of the nomas. In the present cases, however, the mela- third nerve nucleus in an animal whose nucleus nomas were distant from the areas where the has been well mapped and found to correlate well cylinder organelles were seen. We do not believe with higher mammals and man. Autoradiography the cylinder organelles to be artifacts, as we have using tritiated amino acid labeled the cell bodies not seen it in many other animal or human and axons of the left side of the oculomotor retinas, other ocular tissues or tumors similarly nucleus of the cat. Axons so labeled could be seen processed. emerging from the ventral portion of the left nucleus through the median longitudinal fasciculus At the present time the origin and function of (mlf) to join the left oculomotor nerve. Labeled the cylinder-like structure is unknown. Its close axons were also seen to emerge from the medial physical relationship with the synaptic vesicles border of the caudal left nucleus, cross the midline, might suggest that it is involved in the synaptic and pass through the right nucleus and the right functions of the retina rod cells or horizontal mlf to pin the right oculomotor nerve. These latter cell processes. axons must be the crossed axons of the superior Downloaded from iovs.arvojournals.org on 09/28/2021 928 Reports Investigative Ophthalmology December 1975 rectus and levator palpebrae subnuclei. Since the head holder and an occipital craniotomy was per- path of these crossed axons is through the caudal formed. A small amount of the tip of the bony portion of the nucleus of the opposite side, the tentorium was removed to allow the stereotactic destruction of one lateral half of the octdomotor placement of a glass micropipette into the left nucleus would result in a bilateral palsy of the third cranial nerve nucleus. The micropipettes had crossed subnuclei. Bilateral palsy of the superior previously been loaded with 1 to 2 juCi of des- rectus and bilateral assymetrical palsy of the sicated tritiated proline or leucine. The dry amino levator palpebrae muscles would result. acid was redissolved in a small amount of normal saline at the time of the experiment. The bolus Previous investigations in the cat and the mon- of approximately 0.5 to 1.0 /tliters of solution was key have established that the branch of the third injected into the region of the left third nerve nerve to the superior rectus consists entirely of nucleus through the hydraulic pressure created by crossed fibers, and that the branch to the levator a Hamilton syringe connected to the micropipette palpebrae consists of both crossed and uncrossed with polyethylene tubing. 1 3 fibers. " This suggests that all the axons from the The scalp wound was sutured and the animals superior rectus and some from the levator were killed after one week. The brains were fixed palpebrae must cross the mesencephalic midline. in 10 per cent formaldehyde buffered to pH 7.4, The location of this crossing and the subsequent and the brain stem was processed for paraffin path taken by these crossed fibers has not been sectioning. Sections were cut at 10 micra and one well studied though some suggestive information section of every twenty was mounted. The is available.4' 5 mounted sections were processed down to the Stains for central nervous system myelin or for water stage and then dipped in % strength Kodak neuron fibers easily demonstrate an abundance of NTB-2 photographic emulsion. They were stored nerve fibers crossing the midline between the in dry, light-free boxes in a freezer at —13° C. paired third nerve nuclei of the cat. Though for six weeks and developed in Dektol. The sec- present throughout the rostro-caudal extent of the tions were lightly stained with toluidine blue. nucleus, they are most prominent in the caudal Results. In three of the five cats the caudal one-third, suggesting that they are axons of the portion of the third nerve nucleus was labeled. superior rectus, inferior oblique, and levator These three cats demonstrated radiolabeled axons palpebrae subnuclei located there.2- 3 that originated in the left third nerve nucleus, However, Cajal'1 pointed out on the basis of crossed the midline, and entered the right third Golgi studies of the third nerve nucleus that there nerve after passing through the right third nerve are two other potential sources for crossing fibers nucleus. Since proline seemed to have a greater in this nucleus, namely axons of afferents to the tendency to label small cells than leucine, and nucleus, e.g., from the vestibular nuclei,7 and hence showed less contrast, the results were more dendrites of the cell bodies of the third nerve striking with leucine. This differential uptake has nucleus. been noted in other areas of the brain.9 With Positive identification of these crossed fibers as both amino acids, an abundance of radioactive the axons of the cell bodies of the opposite side fibers can be shown exiting from the ventral por- could be made with a whole neuron marking tech- tion of the left nucleus destined for the muscles nique such as autoradiography. innervated by uncrossed axons. On the opposite Radioactive amino acids, when injected in the side, exiting from the ventral portion of the right vicinity of neurons, are taken up by the soma, nucleus are radioactive fibers that have had their incorporated into the protein of the cell, and origin in cell bodies on the left side of the mid- ultimately distributed along the course of the line (Figs. 1 and 2). entire cell thus labeling the cell body and the The details of these crossing fibers is shown in course of its axon.s This new tracing device offers Fig. 3. It should be noted that these radioactive great promise for neuro-anatomic mapping since axons cross the midline in the dorsoventral center the amino acid is not taken up by axons passing of the nucleus and plunge into the mass of cell through the region of the injection but only by bodies of the opposite side before exiting through cell bodies at the site of the injection.
Recommended publications
  • Congenital Oculomotor Palsy: Associated Neurological and Ophthalmological Findings
    CONGENITAL OCULOMOTOR PALSY: ASSOCIATED NEUROLOGICAL AND OPHTHALMOLOGICAL FINDINGS M. D. TSALOUMAS1 and H. E. WILLSHA W2 Birmingham SUMMARY In our group of patients we found a high incidence Congenital fourth and sixth nerve palsies are rarely of neurological abnormalities, in some cases asso­ associated with other evidence of neurological ahnor­ ciated with abnormal findings on CT scanning. mality, but there have been conflicting reports in the Aberrant regeneration, preferential fixation with literature on the associations of congenital third nerve the paretic eye, amblyopia of the non-involved eye palsy. In order to clarify the situation we report a series and asymmetric nystagmus have all been reported as 1 3 7 of 14 consecutive cases presenting to a paediatric associated ophthalmic findings. - , -9 However, we tertiary referral service over the last 12 years. In this describe for the first time a phenomenon of digital lid series of children, 5 had associated neurological elevation to allow fixation with the affected eye. Two abnormalities, lending support to the view that con­ children demonstrated this phenomenon and in each genital third nerve palsy is commonly a manifestation of case the accompanying neurological defect was widespread neurological damage. We also describe for profound. the first time a phenomenon of digital lid elevation to allow fixation with the affected eye. Two children demonstrated this phenomenon and in each case the PATIENTS AND METHODS accompanying neurological defect was profound. The Fourteen children (8 boys, 6 girls) with a diagnosis of frequency and severity of associated deficits is analysed, congenital oculomotor palsy presented to our paed­ and the mechanism of fixation with the affected eye is iatric tertiary referral centre over the 12 years from discussed.
    [Show full text]
  • Cranial Nerves II, III, IV & VI (Optic, Oculomotor, Trochlear, & Abducens)
    Cranial Nerves II, III, IV & VI (Optic, Oculomotor, Trochlear, & Abducens) Lecture (13) ▪ Important ▪ Doctors Notes Please check our Editing File ▪ Notes/Extra explanation ه هذا العمل مب ين بشكل أسا يس عىل عمل دفعة 436 مع المراجعة { َوَم نْ يَ َت َو َ ّكْ عَ َلْ ا َّْلل فَهُ َوْ َحْ سْ ُ ُُْ} والتدقيق وإضافة المﻻحظات وﻻ يغ ين عن المصدر اﻷسا يس للمذاكرة ▪ Objectives At the end of the lecture, students should be able to: ✓ List the cranial nuclei related to occulomotor, trochlear, and abducent nerves in the brain stem. ✓ Describe the type and site of each nucleus. ✓ Describe the site of emergence and course of these 3 nerves. ✓ Describe the important relations of oculomotor, trochlear, and abducent nerves in the orbit ✓ List the orbital muscles supplied by each of these 3 nerves. ✓ Describe the effect of lesion of each of these 3 nerves. ✓ Describe the optic nerve and visual pathway. Recall the how these nerves exit from the brain stem: Optic (does not exit from brain stem) Occulomotor: ventral midbrain (medial aspect of crus cerebri) Trochlear: dorsal midbrain (caudal to inferior colliculus) Abducent: ventral Pons (junction b/w pons & pyramid) Brain (Ventral view) Brain stem (Lateral view) Extra-Ocular Muscles 7 muscles: (ترفع جفن العين) .Levator palpebrae superioris 1- Origin: from the roof of the orbit (4) Recti muscles: *Rectus: ماشي على ( Superior rectus (upward and medially 2- الصراط (Inferior rectus (downward and medially 3- المستقيم 4- Medial rectus (medial) (medial) 5- Lateral rectus (lateral) How to remember the 2 فحركته muscles not supplied by نفس اسمه -اسمها عكس وظيفتها- :Oblique muscles (2) 6- Superior oblique (downward and laterally) Oblique: CN3? Superior oblique goes -1 منحرفOrigin: from the roof of the orbit 7- Inferior oblique (upward and laterally) up (superior) and turns around (oblique) a notch يمشي Origin: from the anterior floor or pulley and its supply is عكس كﻻمه NB.
    [Show full text]
  • Anatomy of the Extraneural Blood Supply to the Intracranial
    British Journal of Ophthalmology 1996; 80: 177-181 177 the extraneural blood to the Anatomy of supply Br J Ophthalmol: first published as 10.1136/bjo.80.2.177 on 1 February 1996. Downloaded from intracranial oculomotor nerve Mark Cahill, John Bannigan, Peter Eustace Abstract have since been classified as extraneural vessels Aims-An anatomical study was under- as they arise from outside the nerve and ramify taken to determine the extraneural blood on the surface ofthe nerve. In 1965, Parkinson supply to the intracranial oculomotor attempted to demonstrate and name the nerve. branches of the intracavernous internal carotid Methods-Human tissue blocks contain- artery.3 One of these branches, the newly titled ing brainstem, cranial nerves II-VI, body meningohypophyseal trunk was seen to pro- of sphenoid, and associated cavernous vide a nutrient arteriole to the oculomotor sinuses were obtained, injected with con- nerve in the majority of dissections. The infe- trast material, and dissected using a rior hypophyseal artery was also seen to arise stereoscopic microscope. from the meningohypophyseal trunk. Seven Results-Eleven oculomotor nerves were years earlier McConnell had demonstrated dissected, the intracranial part being that this vessel provided a large portion of the divided into proximal, middle, and distal pituitary blood supply.4 (intracavernous) parts. The proximal part Asbury and colleagues provided further of the intracranial oculomotor nerve anatomical detail in 1970.5 They set out to received extraneural nutrient arterioles explain the clinical findings of diabetic oph- from thalamoperforating arteries in all thalmoplegia on a pathological basis. Using a specimens and in six nerves this blood serial section technique, they demonstrated an supply was supplemented by branches intraneural network of small arterioles within from other brainstem vessels.
    [Show full text]
  • The Accessory Optic System: Basic Organization with an Update on Connectivity, Neurochemistry, and Function
    UC Irvine UC Irvine Previously Published Works Title The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Permalink https://escholarship.org/uc/item/3v25z604 Journal Progress in brain research, 151 ISSN 0079-6123 Authors Giolli, Roland A Blanks, Robert H I Lui, Fausta Publication Date 2005 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Chapter 13 The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function Roland A. Giolli1, , , Robert H.I. Blanks1, 2 and Fausta Lui3 1Department of Anatomy and Neurobiology, University of California, College of Medicine, Irvine, CA 92697, USA 2Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd., P.O. Box 3091, Boca Raton, FL 33431, USA 3Dipartimento di Scienze Biomediche, Sezione di Fisiologia, Universita di Modena e Reggio Emilia, Via Campi 287, 41100, Modena, Italy Available online 10 October 2005. Abstract The accessory optic system (AOS) is formed by a series of terminal nuclei receiving direct visual information from the retina via one or more accessory optic tracts. In addition to the retinal input, derived from ganglion cells that characteristically have large receptive fields, are direction-selective, and have a preference for slow moving stimuli, there are now well-characterized afferent connections with a key pretectal nucleus (nucleus of the optic tract) and the ventral lateral geniculate nucleus. The efferent connections of the AOS are robust, targeting brainstem and other structures in support of visual-oculomotor events such as optokinetic nystagmus and visual–vestibular interaction. This chapter reviews the newer experimental findings while including older data concerning the structural and functional organization of the AOS.
    [Show full text]
  • Clinical Anatomy of the Cranial Nerves Clinical Anatomy of the Cranial Nerves
    Clinical Anatomy of the Cranial Nerves Clinical Anatomy of the Cranial Nerves Paul Rea AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA First published 2014 Copyright r 2014 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
    [Show full text]
  • Cranial Nerves
    Cranial Nerves Cranial nerve evaluation is an important part of a neurologic exam. There are some differences in the assessment of cranial nerves with different species, but the general principles are the same. You should know the names and basic functions of the 12 pairs of cranial nerves. This PowerPage reviews the cranial nerves and basic brain anatomy which may be seen on the VTNE. The 12 Cranial Nerves: CN I – Olfactory Nerve • Mediates the sense of smell, observed when the pet sniffs around its environment CN II – Optic Nerve Carries visual signals from retina to occipital lobe of brain, observed as the pet tracks an object with its eyes. It also causes pupil constriction. The Menace response is the waving of the hand at the dog’s eye to see if it blinks (this nerve provides the vision; the blink is due to cranial nerve VII) CN III – Oculomotor Nerve • Provides motor to most of the extraocular muscles (dorsal, ventral, and medial rectus) and for pupil constriction o Observing pupillary constriction in PLR CN IV – Trochlear Nerve • Provides motor function to the dorsal oblique extraocular muscle and rolls globe medially © 2018 VetTechPrep.com • All rights reserved. 1 Cranial Nerves CN V – Trigeminal Nerve – Maxillary, Mandibular, and Ophthalmic Branches • Provides motor to muscles of mastication (chewing muscles) and sensory to eyelids, cornea, tongue, nasal mucosa and mouth. CN VI- Abducens Nerve • Provides motor function to the lateral rectus extraocular muscle and retractor bulbi • Examined by touching the globe and observing for retraction (also tests V for sensory) Responsible for physiologic nystagmus when turning head (also involves III, IV, and VIII) CN VII – Facial Nerve • Provides motor to muscles of facial expression (eyelids, ears, lips) and sensory to medial pinna (ear flap).
    [Show full text]
  • What Causes Microvascular Cranial Nerve Palsy? It Is Not Always Clear What Causes the Blockage in the Tiny Blood Vessels to the Cranial Nerves
    MICROVASCULAR CRANIAL NERVE PALSEY Microvascular Cranial Nerve Palsy (MCNP) is one of the most common causes of acute double vision in the older population. It occurs more often in patients with diabetes and high blood pressure. MCNP is sometimes referred to as a “diabetic” palsy. This condition almost always resolves on its own without leaving any double vision. Six muscles move your eyes. Four of these muscles attach to the front part of your eye (just behind the iris, or the colored portion of the eye). The two muscles that attach to the back of your eye are responsible for some of the up-and-down (vertical) movement and most of the twisting movement of each eye. These six muscles receive their signals from three cranial nerves that begin in the brain stem. What is Microvascular Cranial Nerve Palsy? A nerve cannot function properly when its blood flow is blocked. If the 6th cranial nerve (also called the abducens nerve) is affected, your eye will not be able to move to the outside and you will be aware of double vision, seeing side-by-side images. If the 4th cranial nerve (also called the trochlear nerve) is affected, you will be aware of vertical double vision (one image on top of another). You may be able to eliminate or decrease the double vision by tilting your head towards the opposite shoulder. The 3rd cranial nerve (also called the oculomotor nerve) supplies four of the six eye muscles. These are some of the muscles that control the eyelid and the size of the pupil.
    [Show full text]
  • Isolated Superior Rectus Palsy Due to Contralateral Midbrain Infarction
    OBSERVATION Isolated Superior Rectus Palsy Due to Contralateral Midbrain Infarction Jee-Hyun Kwon, MD; Sun U. Kwon, MD; Hyo-Sook Ahn, MD; Ki-Bum Sung, MD; Jong S. Kim, MD Background: Isolated superior rectus palsy due imaging showed a tiny infarct at the area of the oculo- to a contralateral midbrain lesion has not been re- motor nucleus on the contralateral side. ported. Conclusion: Isolated superior rectus palsy may be caused by a contralateral midbrain lesion that selec- Case Description: A 71-year-old woman suddenly tively involves crossing superior rectus nerve fibers. developed diplopia. Examination showed that she had isolated superior rectus paresis. Magnetic resonance Arch Neurol. 2003;60:1633-1635 IDBRAIN INFARCTS may the red glass test, maximally separated im- produce ocular motor ages were present on the right, upward paresis without other gaze when the red image was present su- neurological signs.1 perior to the white one. Weakness of a single Although the palpebral fissure in the Mextraocular muscle has also been re- right eye appeared slightly narrow as com- ported to be caused by a small midbrain pared with the left one, the patient and her infarction.1 However, to our knowledge, relatives stated that this had been present isolated contralateral superior rectus palsy long before hospital admission. A fundus ex- had not been reported to be caused by mid- amination showed extorsion of the right eye brain lesions. without a torsional component in the left eye (Figure 1B). Diplopia test findings with REPORT OF A CASE the Hess chart were consistent with the su- perior rectus palsy in the right eye.
    [Show full text]
  • Occurrence of Oculomotor Dysfunctions in Acquired Brain Injury: a Retrospective Analysis
    Optometry (2007) 78, 155-161 Occurrence of oculomotor dysfunctions in acquired brain injury: A retrospective analysis Kenneth J. Ciuffreda, O.D., Ph.D., Neera Kapoor, O.D., M.S., Daniella Rutner, O.D., M.S., Irwin B. Suchoff, O.D., D.O.S., M.E. Han, O.D., and Shoshana Craig, O.D. State University of New York State College of Optometry, Raymond J. Greenwald Rehabilitation Center, New York, New York. KEYWORDS Abstract Acquired brain injury; BACKGROUND: The purpose of this retrospective study was to determine the frequency of occurrence Traumatic brain of oculomotor dysfunctions in a sample of ambulatory outpatients who have acquired brain injury injury; (ABI), either traumatic brain injury (TBI) or cerebrovascular accident (CVA), with associated vision Cerebrovascular symptoms. accident; METHODS: Medical records of 220 individuals with either TBI (n ϭ 160) or CVA (n ϭ 60) were Stroke; reviewed retrospectively. This was determined by a computer-based query spanning the years 2000 Oculomotor through 2003, for the frequency of occurrence of oculomotor dysfunctions including accommodation, dysfunction; version, vergence, strabismus, and cranial nerve (CN) palsy. Strabismus; RESULTS: The majority of individuals with either TBI (90%) or CVA (86.7%) manifested an Accommodation; oculomotor dysfunction. Accommodative and vergence deficits were most common in the TBI Eye movements; subgroup, whereas strabismus and CN palsy were most common in the CVA subgroup. The frequency Cranial nerve palsy of occurrence of versional deficits was similar in each diagnostic subgroup. CONCLUSION: These new findings should alert the clinician to the higher frequency of occurrence of oculomotor dysfunctions in these populations and the associated therapeutic, rehabilitative, and quality-of-life implications.
    [Show full text]
  • Cranial Nerves and Their Nuclei
    CranialCranial nervesnerves andand theirtheir nucleinuclei 鄭海倫鄭海倫 整理整理 Cranial Nerves Figure 13.4a Location of the cranial nerves • Anterior cranial fossa: C.N. 1–2 • Middle cranial fossa: C.N. 3-6 • Posterior cranial fossa: C.N. 7-12 FunctionalFunctional componentscomponents inin nervesnerves • General Somatic Efferent • Special Visceral Afferent •GSE GSA GVE GVA • (SSE) SSA SVE SVA Neuron columns in the embryonic spinal cord * The floor of the 4th ventricle in the embryonic rhombencephalon Sp: special sensory B:branchial motor Ss: somatic sensory Sm: somataic motor Vi: visceral sensory A: preganglionic autonomic (visceral motor) • STT: spinothalamic tract • CST: corticospinal tract • ML: medial lemniscus Sensory nerve • Olfactory (1) •Optic (2) • Vestibulocochlear (8) Motor nerve • Oculomotor (3) • Trochlear (4) • Abducens (6) • Accessory (11) • Hypoglossal (12) Mixed nerve • Trigeminal (5) • Facial (7) • Glossopharyngeal (9) • Vagus (10) Innervation of branchial muscles • Trigemial • Facial • Glossopharyngeal • Vagus Cranial Nerve I: Olfactory Table 13.2(I) Cranial Nerve II: Optic • Arises from the retina of the eye • Optic nerves pass through the optic canals and converge at the optic chiasm • They continue to the thalamus (lateral geniculate body) where they synapse • From there, the optic radiation fibers run to the visual cortex (area 17) • Functions solely by carrying afferent impulses for vision Cranial Nerve II: Optic Table 13.2(II) Cranial Nerve III: Oculomotor • Fibers extend from the ventral midbrain, pass through the superior orbital fissure, and go to the extrinsic eye muscles • Functions in raising the eyelid, directing the eyeball, constricting the iris, and controlling lens shape Cranial Nerve III: Oculomotor Table 13.2(III) 1.Oculomotor nucleus (GSE) • Motor to ocular muscles: rectus (superior對側, inferior同側and medial同 側),inferior oblique同側, levator palpebrae superioris雙側 2.
    [Show full text]
  • A Study of Etiology and Prognosis of Oculomotor Nerve Paralysis
    Edorium J Neurol 2014;1:1–8. Kumar et al. 1 http://www.edoriumjournalofneurology.com ORIGINAL ARTICLE OPEN ACCESS A study of etiology and prognosis of oculomotor nerve paralysis Maraiah Pradeep Kumar, Undrakonda Vivekanand, Shashikiran Umakanth, Yashodhara BM ABSTRACT How to cite this article Aims: To study the etiological pattern and Kumar MP, Vivekanand U, Umakanth S, Yashodhara prognosis of oculomotor nerve palsy in a medical BM. A study of etiology and prognosis of oculomotor college hospital in South India. Methods: This nerve paralysis. Edorium J Neurol 2014;1:1–8. study comprises 40 cases of oculomotor nerve palsy presenting to medical college hospital between March 2004 to September 2005. Details Article ID: 100001N06MK2014 of various modes of presentation, aetiologies, pupillary involvement and recovery were documented and analysed. Conclusion: Isolated ********* oculomotor nerve palsy which is a predominant mode of presentation has a good recovery rate. doi:10.5348/n06-2014-1-OA-1 We recommend that patients with oculomotor nerve palsy be carefully examined clinically in close collaboration with other specialists, especially where sophisticated complementary investigations are impossible. INTRODUCTION Keywords: Oculomotor nerve palsy, Outcome, Etiological trends of oculomotor nerve palsy have Partial, Management remained fairly consistent over the decades, although there is a changing disease pattern worldwide and the current focus is on etiologies like diabetes, trauma and Maraiah Pradeep Kumar1, Undrakonda Vivekanand2, orbital inflammatory diseases which are emerging as 3 4 Shashikiran Umakanth , Yashodhara BM frequent causes of third cranial nerve paralysis [1, 2]. 1 Affiliations: Associate Professor, Department of Thus a collaborative approach with other specialties Ophthalmology, Shimoga Institute of Medical Sciences, Karnataka, India; 2Associate Professor, Department of is essential to enhance the diagnostic accuracy.
    [Show full text]
  • Acquired Palsy of the Oculomotor, Trochlear and Abducens Nerves
    ACQUIRED PALSY OF THE OCULOMOTOR, TROCHLEAR AND ABDUCENS NERVES l 2 P. A. C. TIFFIN\ C. J. MacEWEN\ E. A. CRAIG and G. CLAYTON Dundee SUMMARY commonly than trochlear nerve palsy. In addition, There have been few studies primarily concerned with although the major cause of ocular palsy was the relative frequencies, aetiologies and prognoses of consistently classified as undetermined (25%), a ocular motor palsies. Those published have emanated relatively high proportion of cases were recorded as largely from neurological tertiary referral centres rather secondary to sinister pathology: neoplasia (18%) and than primary ophthalmology departments. We have aneurysm (7%). performed a retrospective study of all patients with There have been several studies relating to series acquired III, IV or VI cranial nerve palsy who were of patients seen in the more general setting of both s 9 seen in the orthoptic department at Ninewells Hospital, orthoptic and ophthalmic clinics. - However, these Dundee, over the 9 year period from 1984 to 1992. A have concentrated on groups of patients presenting total of 165 cases were identified. VI nerve palsies with the somewhat broader diagnosis of diplopia accounted for the majority of patients (57%), with IV rather than only those with acquired nerve palsies nerve palsies (21%) occurring more frequently than III per se. Acquired ocular motor nerve palsy accounted nerve palsies (17%) and multiple palsies (5%). Thirty­ for 40-60% of patients presenting with binocular five per cent of cases were of unknown aetiology and diplopia. Although abducens nerve palsy occurred 6 8 9 32% of vascular aetiology. The incidence of sinister most frequently in most of these reports, , , oculo­ s pathology - neoplasia (2%) and aneurysm (1%) - was motor nerve palsy was found most often in one and surprisingly low.
    [Show full text]