Cohomological Descent
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cohomological Descent on the Overconvergent Site
COHOMOLOGICAL DESCENT ON THE OVERCONVERGENT SITE DAVID ZUREICK-BROWN Abstract. We prove that cohomological descent holds for finitely presented crystals on the overconvergent site with respect to proper or fppf hypercovers. 1. Introduction Cohomological descent is a robust computational and theoretical tool, central to p-adic cohomology and its applications. On one hand, it facilitates explicit calculations (analo- gous to the computation of coherent cohomology in scheme theory via Cechˇ cohomology); on another, it allows one to deduce results about singular schemes (e.g., finiteness of the cohomology of overconvergent isocrystals on singular schemes [Ked06]) from results about smooth schemes, and, in a pinch, sometimes allows one to bootstrap global definitions from local ones (for example, for a scheme X which fails to embed into a formal scheme smooth near X, one actually defines rigid cohomology via cohomological descent; see [lS07, comment after Proposition 8.2.17]). The main result of the series of papers [CT03,Tsu03,Tsu04] is that cohomological descent for the rigid cohomology of overconvergent isocrystals holds with respect to both flat and proper hypercovers. The barrage of choices in the definition of rigid cohomology is burden- some and makes their proofs of cohomological descent very difficult, totaling to over 200 pages. Even after the main cohomological descent theorems [CT03, Theorems 7.3.1 and 7.4.1] are proved one still has to work a bit to get a spectral sequence [CT03, Theorem 11.7.1]. Actually, even to state what one means by cohomological descent (without a site) is subtle. The situation is now more favorable. -
Homological Algebra
Homological Algebra Donu Arapura April 1, 2020 Contents 1 Some module theory3 1.1 Modules................................3 1.6 Projective modules..........................5 1.12 Projective modules versus free modules..............7 1.15 Injective modules...........................8 1.21 Tensor products............................9 2 Homology 13 2.1 Simplicial complexes......................... 13 2.8 Complexes............................... 15 2.15 Homotopy............................... 18 2.23 Mapping cones............................ 19 3 Ext groups 21 3.1 Extensions............................... 21 3.11 Projective resolutions........................ 24 3.16 Higher Ext groups.......................... 26 3.22 Characterization of projectives and injectives........... 28 4 Cohomology of groups 32 4.1 Group cohomology.......................... 32 4.6 Bar resolution............................. 33 4.11 Low degree cohomology....................... 34 4.16 Applications to finite groups..................... 36 4.20 Topological interpretation...................... 38 5 Derived Functors and Tor 39 5.1 Abelian categories.......................... 39 5.13 Derived functors........................... 41 5.23 Tor functors.............................. 44 5.28 Homology of a group......................... 45 1 6 Further techniques 47 6.1 Double complexes........................... 47 6.7 Koszul complexes........................... 49 7 Applications to commutative algebra 52 7.1 Global dimensions.......................... 52 7.9 Global dimension of -
Co-Occurrence Simplicial Complexes in Mathematics: Identifying the Holes of Knowledge Arxiv:1803.04410V1 [Physics.Soc-Ph] 11 M
Co-occurrence simplicial complexes in mathematics: identifying the holes of knowledge Vsevolod Salnikov∗, NaXys, Universit´ede Namur, 5000 Namur, Belgium ∗Corresponding author: [email protected] Daniele Cassese NaXys, Universit´ede Namur, 5000 Namur, Belgium ICTEAM, Universit´eCatholique de Louvain, 1348 Louvain-la-Neuve, Belgium Mathematical Institute, University of Oxford, OX2 6GG Oxford, UK [email protected] Renaud Lambiotte Mathematical Institute, University of Oxford, OX2 6GG Oxford, UK [email protected] and Nick S. Jones Department of Mathematics, Imperial College, SW7 2AZ London, UK [email protected] Abstract In the last years complex networks tools contributed to provide insights on the structure of research, through the study of collaboration, citation and co-occurrence networks. The network approach focuses on pairwise relationships, often compressing multidimensional data structures and inevitably losing information. In this paper we propose for the first time a simplicial complex approach to word co-occurrences, providing a natural framework for the study of higher-order relations in the space of scientific knowledge. Using topological meth- ods we explore the conceptual landscape of mathematical research, focusing on homological holes, regions with low connectivity in the simplicial structure. We find that homological holes are ubiquitous, which suggests that they capture some essential feature of research arXiv:1803.04410v1 [physics.soc-ph] 11 Mar 2018 practice in mathematics. Holes die when a subset of their concepts appear in the same ar- ticle, hence their death may be a sign of the creation of new knowledge, as we show with some examples. We find a positive relation between the dimension of a hole and the time it takes to be closed: larger holes may represent potential for important advances in the field because they separate conceptually distant areas. -
Sheaves and Homotopy Theory
SHEAVES AND HOMOTOPY THEORY DANIEL DUGGER The purpose of this note is to describe the homotopy-theoretic version of sheaf theory developed in the work of Thomason [14] and Jardine [7, 8, 9]; a few enhancements are provided here and there, but the bulk of the material should be credited to them. Their work is the foundation from which Morel and Voevodsky build their homotopy theory for schemes [12], and it is our hope that this exposition will be useful to those striving to understand that material. Our motivating examples will center on these applications to algebraic geometry. Some history: The machinery in question was invented by Thomason as the main tool in his proof of the Lichtenbaum-Quillen conjecture for Bott-periodic algebraic K-theory. He termed his constructions `hypercohomology spectra', and a detailed examination of their basic properties can be found in the first section of [14]. Jardine later showed how these ideas can be elegantly rephrased in terms of model categories (cf. [8], [9]). In this setting the hypercohomology construction is just a certain fibrant replacement functor. His papers convincingly demonstrate how many questions concerning algebraic K-theory or ´etale homotopy theory can be most naturally understood using the model category language. In this paper we set ourselves the specific task of developing some kind of homotopy theory for schemes. The hope is to demonstrate how Thomason's and Jardine's machinery can be built, step-by-step, so that it is precisely what is needed to solve the problems we encounter. The papers mentioned above all assume a familiarity with Grothendieck topologies and sheaf theory, and proceed to develop the homotopy-theoretic situation as a generalization of the classical case. -
Simplicial Complexes
46 III Complexes III.1 Simplicial Complexes There are many ways to represent a topological space, one being a collection of simplices that are glued to each other in a structured manner. Such a collection can easily grow large but all its elements are simple. This is not so convenient for hand-calculations but close to ideal for computer implementations. In this book, we use simplicial complexes as the primary representation of topology. Rd k Simplices. Let u0; u1; : : : ; uk be points in . A point x = i=0 λiui is an affine combination of the ui if the λi sum to 1. The affine hull is the set of affine combinations. It is a k-plane if the k + 1 points are affinely Pindependent by which we mean that any two affine combinations, x = λiui and y = µiui, are the same iff λi = µi for all i. The k + 1 points are affinely independent iff P d P the k vectors ui − u0, for 1 ≤ i ≤ k, are linearly independent. In R we can have at most d linearly independent vectors and therefore at most d+1 affinely independent points. An affine combination x = λiui is a convex combination if all λi are non- negative. The convex hull is the set of convex combinations. A k-simplex is the P convex hull of k + 1 affinely independent points, σ = conv fu0; u1; : : : ; ukg. We sometimes say the ui span σ. Its dimension is dim σ = k. We use special names of the first few dimensions, vertex for 0-simplex, edge for 1-simplex, triangle for 2-simplex, and tetrahedron for 3-simplex; see Figure III.1. -
Lecture 15. De Rham Cohomology
Lecture 15. de Rham cohomology In this lecture we will show how differential forms can be used to define topo- logical invariants of manifolds. This is closely related to other constructions in algebraic topology such as simplicial homology and cohomology, singular homology and cohomology, and Cechˇ cohomology. 15.1 Cocycles and coboundaries Let us first note some applications of Stokes’ theorem: Let ω be a k-form on a differentiable manifold M.For any oriented k-dimensional compact sub- manifold Σ of M, this gives us a real number by integration: " ω : Σ → ω. Σ (Here we really mean the integral over Σ of the form obtained by pulling back ω under the inclusion map). Now suppose we have two such submanifolds, Σ0 and Σ1, which are (smoothly) homotopic. That is, we have a smooth map F : Σ × [0, 1] → M with F |Σ×{i} an immersion describing Σi for i =0, 1. Then d(F∗ω)isa (k + 1)-form on the (k + 1)-dimensional oriented manifold with boundary Σ × [0, 1], and Stokes’ theorem gives " " " d(F∗ω)= ω − ω. Σ×[0,1] Σ1 Σ1 In particular, if dω =0,then d(F∗ω)=F∗(dω)=0, and we deduce that ω = ω. Σ1 Σ0 This says that k-forms with exterior derivative zero give a well-defined functional on homotopy classes of compact oriented k-dimensional submani- folds of M. We know some examples of k-forms with exterior derivative zero, namely those of the form ω = dη for some (k − 1)-form η. But Stokes’ theorem then gives that Σ ω = Σ dη =0,sointhese cases the functional we defined on homotopy classes of submanifolds is trivial. -
Operations on Metric Thickenings
Operations on Metric Thickenings Henry Adams Johnathan Bush Joshua Mirth Colorado State University Colorado, USA [email protected] Many simplicial complexes arising in practice have an associated metric space structure on the vertex set but not on the complex, e.g. the Vietoris–Rips complex in applied topology. We formalize a remedy by introducing a category of simplicial metric thickenings whose objects have a natural realization as metric spaces. The properties of this category allow us to prove that, for a large class of thickenings including Vietoris–Rips and Cechˇ thickenings, the product of metric thickenings is homotopy equivalent to the metric thickenings of product spaces, and similarly for wedge sums. 1 Introduction Applied topology studies geometric complexes such as the Vietoris–Rips and Cechˇ simplicial complexes. These are constructed out of metric spaces by combining nearby points into simplices. We observe that proofs of statements related to the topology of Vietoris–Rips and Cechˇ simplicial complexes often contain a considerable amount of overlap, even between the different conventions within each case (for example, ≤ versus <). We attempt to abstract away from the particularities of these constructions and consider instead a type of simplicial metric thickening object. Along these lines, we give a natural categorical setting for so-called simplicial metric thickenings [3]. In Sections 2 and 3, we provide motivation and briefly summarize related work. Then, in Section 4, we introduce the definition of our main objects of study: the category MetTh of simplicial metric thick- m enings and the associated metric realization functor from MetTh to the category of metric spaces. -
Etale Homotopy Theory of Non-Archimedean Analytic Spaces
Etale homotopy theory of non-archimedean analytic spaces Joe Berner August 15, 2017 Abstract We review the shape theory of ∞-topoi, and relate it with the usual cohomology of locally constant sheaves. Additionally, a new localization of profinite spaces is defined which allows us to extend the ´etale realization functor of Isaksen. We apply these ideas to define an ´etale homotopy type functor ´et(X ) for Berkovich’s non-archimedean analytic spaces X over a complete non-archimedean field K and prove some properties of the construction. We compare the ´etale homotopy types coming from Tate’s rigid spaces, Huber’s adic spaces, and rigid models when they are all defined. 0 Introduction The ´etale homotopy type of an algebraic variety is one of many tools developed in the last century to use topological machinery to attack algebraic questions. For example sheaves and their cohomology, topoi, spectral sequences, Galois categories, algebraic K-theory, and Chow groups. The ´etale homotopy type enriches ´etale cohomology and torsor data from a collection of groups into a pro-space. This allows us to almost directly apply results from algebraic topol- ogy, with the book-keeping primarily coming from the difference between spaces and pro-spaces. In this paper, we apply this in the context of non-archimedean geometry. The major results are two comparison theorems for the ´etale homo- topy type of non-archimedean analytic spaces, and a theorem indentifying the homotopy fiber of a smooth proper map with the ´etale homotopy type of any geometric fiber. The first comparison theorem concerns analytifications of va- rieties, and states that after profinite completion away from the characteristic arXiv:1708.03657v1 [math.AT] 11 Aug 2017 of the field that the ´etale homotopy type of a variety agrees with that of its analytification. -
Floer Homology, Gauge Theory, and Low-Dimensional Topology
Floer Homology, Gauge Theory, and Low-Dimensional Topology Clay Mathematics Proceedings Volume 5 Floer Homology, Gauge Theory, and Low-Dimensional Topology Proceedings of the Clay Mathematics Institute 2004 Summer School Alfréd Rényi Institute of Mathematics Budapest, Hungary June 5–26, 2004 David A. Ellwood Peter S. Ozsváth András I. Stipsicz Zoltán Szabó Editors American Mathematical Society Clay Mathematics Institute 2000 Mathematics Subject Classification. Primary 57R17, 57R55, 57R57, 57R58, 53D05, 53D40, 57M27, 14J26. The cover illustrates a Kinoshita-Terasaka knot (a knot with trivial Alexander polyno- mial), and two Kauffman states. These states represent the two generators of the Heegaard Floer homology of the knot in its topmost filtration level. The fact that these elements are homologically non-trivial can be used to show that the Seifert genus of this knot is two, a result first proved by David Gabai. Library of Congress Cataloging-in-Publication Data Clay Mathematics Institute. Summer School (2004 : Budapest, Hungary) Floer homology, gauge theory, and low-dimensional topology : proceedings of the Clay Mathe- matics Institute 2004 Summer School, Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary, June 5–26, 2004 / David A. Ellwood ...[et al.], editors. p. cm. — (Clay mathematics proceedings, ISSN 1534-6455 ; v. 5) ISBN 0-8218-3845-8 (alk. paper) 1. Low-dimensional topology—Congresses. 2. Symplectic geometry—Congresses. 3. Homol- ogy theory—Congresses. 4. Gauge fields (Physics)—Congresses. I. Ellwood, D. (David), 1966– II. Title. III. Series. QA612.14.C55 2004 514.22—dc22 2006042815 Copying and reprinting. Material in this book may be reproduced by any means for educa- tional and scientific purposes without fee or permission with the exception of reproduction by ser- vices that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. -
Metric Geometry, Non-Positive Curvature and Complexes
METRIC GEOMETRY, NON-POSITIVE CURVATURE AND COMPLEXES TOM M. W. NYE . These notes give mathematical background on CAT(0) spaces and related geometry. They have been prepared for use by students on the International PhD course in Non- linear Statistics, Copenhagen, June 2017. 1. METRIC GEOMETRY AND THE CAT(0) CONDITION Let X be a set. A metric on X is a map d : X × X ! R≥0 such that (1) d(x; y) = d(y; x) 8x; y 2 X, (2) d(x; y) = 0 , x = y, and (3) d(x; z) ≤ d(x; y) + d(y; z) 8x; y; z 2 X. On its own, a metric does not give enough structure to enable us to do useful statistics on X: for example, consider any set X equipped with the metric d(x; y) = 1 whenever x 6= y. A geodesic path between x; y 2 X is a map γ : [0; `] ⊂ R ! X such that (1) γ(0) = x, γ(`) = y, and (2) d(γ(t); γ(t0)) = jt − t0j 8t; t0 2 [0; `]. We will use the notation Γ(x; y) ⊂ X to be the image of the path γ and call this a geodesic segment (or just geodesic for short). A path γ : [0; `] ⊂ R ! X is locally geodesic if there exists > 0 such that property (2) holds whever jt − t0j < . This is a weaker condition than being a geodesic path. The set X is called a geodesic metric space if there is (at least one) geodesic path be- tween every pair of points in X. -
Combinatorial Topology
Chapter 6 Basics of Combinatorial Topology 6.1 Simplicial and Polyhedral Complexes In order to study and manipulate complex shapes it is convenient to discretize these shapes and to view them as the union of simple building blocks glued together in a “clean fashion”. The building blocks should be simple geometric objects, for example, points, lines segments, triangles, tehrahedra and more generally simplices, or even convex polytopes. We will begin by using simplices as building blocks. The material presented in this chapter consists of the most basic notions of combinatorial topology, going back roughly to the 1900-1930 period and it is covered in nearly every algebraic topology book (certainly the “classics”). A classic text (slightly old fashion especially for the notation and terminology) is Alexandrov [1], Volume 1 and another more “modern” source is Munkres [30]. An excellent treatment from the point of view of computational geometry can be found is Boissonnat and Yvinec [8], especially Chapters 7 and 10. Another fascinating book covering a lot of the basics but devoted mostly to three-dimensional topology and geometry is Thurston [41]. Recall that a simplex is just the convex hull of a finite number of affinely independent points. We also need to define faces, the boundary, and the interior of a simplex. Definition 6.1 Let be any normed affine space, say = Em with its usual Euclidean norm. Given any n+1E affinely independentpoints a ,...,aE in , the n-simplex (or simplex) 0 n E σ defined by a0,...,an is the convex hull of the points a0,...,an,thatis,thesetofallconvex combinations λ a + + λ a ,whereλ + + λ =1andλ 0foralli,0 i n. -
Algebraic Topology
Algebraic Topology John W. Morgan P. J. Lamberson August 21, 2003 Contents 1 Homology 5 1.1 The Simplest Homological Invariants . 5 1.1.1 Zeroth Singular Homology . 5 1.1.2 Zeroth deRham Cohomology . 6 1.1.3 Zeroth Cecˇ h Cohomology . 7 1.1.4 Zeroth Group Cohomology . 9 1.2 First Elements of Homological Algebra . 9 1.2.1 The Homology of a Chain Complex . 10 1.2.2 Variants . 11 1.2.3 The Cohomology of a Chain Complex . 11 1.2.4 The Universal Coefficient Theorem . 11 1.3 Basics of Singular Homology . 13 1.3.1 The Standard n-simplex . 13 1.3.2 First Computations . 16 1.3.3 The Homology of a Point . 17 1.3.4 The Homology of a Contractible Space . 17 1.3.5 Nice Representative One-cycles . 18 1.3.6 The First Homology of S1 . 20 1.4 An Application: The Brouwer Fixed Point Theorem . 23 2 The Axioms for Singular Homology and Some Consequences 24 2.1 The Homotopy Axiom for Singular Homology . 24 2.2 The Mayer-Vietoris Theorem for Singular Homology . 29 2.3 Relative Homology and the Long Exact Sequence of a Pair . 36 2.4 The Excision Axiom for Singular Homology . 37 2.5 The Dimension Axiom . 38 2.6 Reduced Homology . 39 1 3 Applications of Singular Homology 39 3.1 Invariance of Domain . 39 3.2 The Jordan Curve Theorem and its Generalizations . 40 3.3 Cellular (CW) Homology . 43 4 Other Homologies and Cohomologies 44 4.1 Singular Cohomology .