Studying Cosmic Evolution with the XMM-Newton Distant Cluster Project: X-Ray Luminous Galaxy Clusters at Z>~ 1 and Their Galaxy Populations

Total Page:16

File Type:pdf, Size:1020Kb

Studying Cosmic Evolution with the XMM-Newton Distant Cluster Project: X-Ray Luminous Galaxy Clusters at Z>~ 1 and Their Galaxy Populations Studying Cosmic Evolution with the XMM-Newton Distant Cluster Project: X-ray Luminous Galaxy Clusters at z>1 and their Galaxy Populations ∼ Dissertation der Fakult¨at f¨ur Physik der Ludwig-Maximilians-Universit¨at M¨unchen arXiv:0806.0861v1 [astro-ph] 4 Jun 2008 vorgelegt von Rene Fassbender aus Diez/Lahn M¨unchen, Oktober 2007 1. Gutachter: Prof. Dr. Hans B¨ohringer 2. Gutachter: Prof. Dr. Andreas Burkert Tag der m¨undlichen Pr¨ufung: 29. November 2007 Dedicated to the memory of Peter Schuecker (1959–2006) Beobachtung Kosmischer Entwicklung mit dem XMM-Newton Distant Cluster Project: R¨ontgenhelle Galaxienhaufen bei z>1 und ihre Galaxienpopulationen ∼ Zusammenfassung R¨ontgenhelle Galaxienhaufen bei hoher Rotverschiebung (z >1) erm¨oglichen einzigartige, aber herausfordernde, Untersuchungen der kosmischen Entwicklung∼ dieser gr¨oßten Objekte im Uni- versum, der baryonischen Materie in Form des heißen Haufengases (Intracluster Medium, ICM), ihrer Galaxienpopulationen und des Einflusses der mysteri¨osen Dunklen Energie. Das Hauptziel der vorliegenden Doktorarbeit ist das Erstellen der Datengrundlage f¨ur das XMM- Newton Distant Cluster Project (XDCP). Diese neue Himmelsdurchmusterung im R¨ontgenlicht konzentriert sich auf die systematische Suche und Identifizierung von Galaxienhaufen bei den h¨ochsten Rotverschiebungen von z > 1 mittels einer gezielten Vorauswahl von ausgedehnten R¨ontgenquellen, Nachbeobachtungen∼ in zwei photometrischen B¨andern zum Nachweis und zur Entfernungssch¨atzung der Objekte sowie der abschließenden spektroskopischen Best¨atigung. Als ersten Schritt habe ich insgesamt 80 Quadratgrad (469 Felder) langbelichteter R¨ontgenbeobachtungen aus dem XMM-Newton Datenarchiv mit einem neu entwickelten au- tomatisierten Datenreduktionssystem analysiert. Damit konnte ich ann¨ahernd 1 000 aus- gedehnte Quellen als Galaxienhaufen-Kandidaten nachweisen, von denen sich 75% durch vorhandene optische Daten als Haufen und Gruppen bei z < 0.6 identifizieren ließen. Die verbleibenden ca. 250 Kandidaten mit typischen R¨ontgenfl¨∼ussen von 10−14 ergs−1cm−2 ≃ (0.5–2.0 keV) erfordern weitere Schritte, um als entfernte Galaxienhaufen best¨atigt werden zu k¨onnen. Daf¨ur entwickelte ich eine neue Nahinfrarot-Beobachtungsstrategie, mit der sich die Iden- tifizierung der ausgedehnten R¨ontgenquellen mittels Z- und H-Band Aufnahmen effizient durchf¨uhren l¨asst und die zur Rotverschiebungsabsch¨atzung anhand der Z–H Farbe der ‘Red- Sequence’ der Fr¨uhtypgalaxien dient. Um das Potential dieser Methode voll auszusch¨opfen, konzipierte ich ein neues Nahinfrarot-Datenverarbeitungsprogramm, mit dem die Nachbeobach- tungen zweier Kampagnen mit dem 3.5 m Teleskop des Calar Alto Observatoriums f¨ur 25% der 250 entfernten Galaxienhaufen-Kandidaten ausgewertet wurden. Anhand dieser Daten konnte ich als erstes Hauptergebnis insgesamt mehr als 20 photometrisch best¨atigte Neuendeckungen von entfernten r¨ontgenhellen Galaxienhaufen bei z >0.9 nachweisen. Desweiteren hat es die neue Z–H Beobachtungsmethode∼ erm¨oglicht, erstmalig eine Galaxienhaufen-Stichprobe ¨uber die gesamte Rotverschiebungsspanne von 0.2 < z < 1.5 zu untersuchen. Durch den Vergleich der beobachteten Farbentwicklung der ‘Red-Sequence’∼ ∼ mit Entwicklungsmodellen konnte ich die Entstehungsepoche der Sternpopulationen der Fr¨uhtypgalaxien auf z = 4.2 1.1 einschr¨anken und damit ihr hohes Alter best¨atigen. Eine f ± weitere Vorstudie ¨uber die H-Band Leuchtkraftentwicklung von 63 hellsten Haufengalaxien (Brightest Cluster Galaxies, BCGs) ¨uber das gleiche Rotverschiebungsintervall erm¨oglichte es, erstmals direkte Beobachtungshinweise daf¨ur zu liefern, dass sich die Masse der gr¨oßten Gala- xien im lokalen Universum seit z 1.5 mindestens verdoppelt hat. Mein vorl¨aufiges Ergebnis, ≃ dass nahe BCGs alte Sternpopulationen besitzen, ihre Masse aber erst zum Großteil ¨uber die letzten 9 Milliarden Jahre angesammelt wurde, stimmt qualitativ mit den Vorhersagen der mo- dernsten Simulationen zur hierarchischen Galaxienentstehung und -entwicklung innerhalb des theoretischen Standardmodells ¨uberein. Die Best¨atigung und Verfeinerung dieser vorl¨aufigen Ergebnisse werden zur Entwicklung einer widerspruchsfreien Beschreibung kosmischer Entwick- lung von Galaxienpopulationen und der großr¨aumigen Struktur beitragen. Studying Cosmic Evolution with the XMM-Newton Distant Cluster Project: X-ray Luminous Galaxy Clusters at z>1 and their Galaxy Populations ∼ Abstract Investigating X-ray luminous galaxy clusters at high redshift (z > 1) provides a challenging but fundamental constraint on evolutionary studies of the largest∼ virialized structures in the Universe, the baryonic matter component in form of the hot intracluster medium (ICM), their galaxy populations, and the effects of the mysterious Dark Energy. The main aim of this thesis work is to establish the observational foundation for the XMM-Newton Distant Cluster Project (XDCP). This new generation serendipitous X-ray survey is focused on the most distant galaxy clusters at z >1, based on the selection of extended X-ray sources, their identification as clusters and redshift∼ estimation via two-band imaging, and their final spectroscopic confirmation. As a first step, I have analyzed 80 deg2 (469 fields) of deep XMM-Newton archival X-ray data with a new pipeline processing system and selected almost 1 000 extended sources as galaxy cluster candidates, 75% of which could be identified as clusters or groups at z < 0.6 using available optical data. This left about 250 candidates with typical 0.5–2.0 keV X-ray∼ fluxes of 10−14 ergs−1cm−2 in need of confirmation as distant cluster sources. ∼ Therefore, I have adopted a new strategy to efficiently establish the nature of these extended X-ray sources and estimate their redshifts, based on medium deep Z- and H-band photometry and the observed Z–H ‘red-sequence’ color of early-type cluster galaxies. To fully exploit this technique, I have designed a new near-infrared data reduction code, which was applied to the data collected for 25% of the 250 distant cluster candidates in two imaging campaigns at the 3.5m telescope at the Calar Alto Observatory. As a first main result, more than 20 X-ray luminous clusters were discovered to lie at a photometric redshift of z >0.9. Furthermore, the new Z–H red-sequence method has allowed a cluster∼ sample study over an unprecedented redshift baseline of 0.2 < z < 1.5. From a comparison of the observed color evolution of the cluster red-sequence galaxies∼ ∼ with model predictions, I could constrain the formation epoch of the bulk of their stellar populations as z = 4.2 1.1. This confirms f ± the well-established old age of the stellar populations of early-type galaxies in clusters. The preliminary investigation of the H-band luminosity evolution of 63 brightest cluster galaxies (BCGs) over the same redshift range provides for the first time direct observational indications that the most massive cluster galaxies in the local Universe have doubled their stellar mass since z 1.5. My tentative finding that nearby BCGs have old, passively evolving stellar ≃ populations and were assembled in the last 9 Gyr is in qualitative agreement with predictions from the latest numerical simulations based on the standard cold dark matter scenario of galaxy formation and evolution via hierarchical merging. The confirmation and refinement of these preliminary results will contribute to the development of a consistent picture of the cosmic evolution of galaxy populations and the large-scale structure. Contents 1 Introduction 1 2 Galaxy Clusters as Astrophysical Laboratories 3 2.1 GeneralProperties ............................... 3 2.2 ClustersasDarkMatterHalos. .. 4 2.3 X-ray Properties of the Intracluster Medium . ....... 6 2.3.1 Emissionmechanisms.......................... 6 2.3.2 ICMstructure.............................. 8 2.3.3 ICMformation ............................. 9 2.3.4 Scalingrelations............................. 11 2.3.5 Coolcoreclusters............................ 15 2.3.6 Sunyaev-Zeldovich effect . 16 2.4 TheClusterGalaxyPopulation . .. 17 2.4.1 Cluster versus field galaxies . 18 2.4.2 Formation of ellipticals and the cluster red-sequence......... 20 2.4.3 Evolution and environmental effects . ... 23 2.4.4 Brightestclustergalaxies. .. 26 3 Galaxy Clusters as Cosmological Probes 29 3.1 CosmologicalFramework . 29 3.1.1 Dynamics of the expanding Universe . 29 3.1.2 Distancemeasures ........................... 33 3.2 CosmicStructureFormation . .. 38 3.2.1 Growth and collapse of density perturbations . ..... 38 3.2.2 Galaxyclusterstatistics . 41 3.3 Cosmological Tests with Galaxy Clusters . ..... 51 4 X-ray Cluster Surveys 57 4.1 X-raySelection ................................. 57 4.2 LocalClusterSurveys. .. .. 58 4.3 DeepSurveys .................................. 62 4.4 DistantGalaxyClustersin2004 . ... 64 i 5 The XMM-Newton Distant Cluster Project 67 5.1 Motivation.................................... 67 5.2 XDCPSurveyStrategy............................. 68 5.3 PilotStudyResults............................... 70 5.4 XMMUJ2235.3-2557 .............................. 71 5.5 ThesisDataOverview ............................. 75 6 X-ray Analysis of XMM-Newton Archival Data 77 6.1 XMM-NewtoninaNutshell .......................... 77 6.2 X-ray Data Archive and Survey Definition . .... 83 6.3 Development of an X-ray Reduction and Analysis Pipeline ......... 85 6.3.1 Searchstrategy ............................. 85 6.3.2 X-raydatareduction .......................... 87 6.3.3 Detection of extended X-ray
Recommended publications
  • The Cosmic Evolution Survey (Cosmos): Overview1 N
    The Astrophysical Journal Supplement Series, 172:1Y8, 2007 September # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE COSMIC EVOLUTION SURVEY (COSMOS): OVERVIEW1 N. Scoville,2,3 H. Aussel,4 M. Brusa,5 P. Capak,2 C. M. Carollo,6 M. Elvis,7 M. Giavalisco,8 L. Guzzo,9 G. Hasinger,5 C. Impey,10 J.-P. Kneib,11 O. LeFevre,11 S. J. Lilly,6 B. Mobasher,8 A. Renzini,12,13 R. M. Rich,14 D. B. Sanders,15 E. Schinnerer,16,17 D. Schminovich,18 P. Shopbell,2 Y. Taniguchi,19 and N. D. Tyson20 Received 2006 April 25; accepted 2006 June 28 ABSTRACT The Cosmic Evolution Survey (COSMOS) is designed to probe the correlated evolution of galaxies, star formation, active galactic nuclei (AGNs), and dark matter (DM) with large-scale structure (LSS) over the redshift range z > 0:5Y6. The survey includes multiwavelength imaging and spectroscopy from X-rayYtoYradio wavelengths covering a 2 deg2 area, including HST imaging. Given the very high sensitivity and resolution of these data sets, COSMOS also provides unprecedented samples of objects at high redshift with greatly reduced cosmic variance, compared to earlier surveys. Here we provide a brief overview of the survey strategy, the characteristics of the major COSMOS data sets, and a summary the science goals. Subject headinggs: cosmology: observations — dark matter — galaxies: evolution — galaxies: formation — large-scale structure of universe — surveys 1. INTRODUCTION multiband imaging and spectroscopy provide redshifts and hence cosmic ages for these populations. Most briefly, the early universe Our understanding of the formation and evolution of galaxies and their large-scale structures (LSSs) has advanced enormously galaxies were more irregular/interacting than at present and the overall cosmic star formation rate probably peaked at z 1Y3 over the last decade—a result of a phenomenal synergy between with 10Y30 times the current rates (Lilly et al.
    [Show full text]
  • Dynamos on Galactic Scales, Or Dynamos Around Us
    Dynamos on galactic scales, or Dynamos around us. Part I. Galaxies and galaxy clusters Anvar Shukurov School of Mathematics and Statistics, Newcastle University, U.K. 1. Introduction: basic facts and parameters 2. Spiral galaxies 2.1. Rotation 2.2. Hydrostatic equilibrium of the gas layer 2.3. Interstellar gas and its multi-phase structure 2.4. Interstellar turbulence 3. Elliptical galaxies 4. Galaxy clusters Warning cgs units will be used, 1 G = 10 -4 T, 1 µG = 10 -6 G = 0.1 nT. G ≈ 6.67 ×10 −8 cm 3 g−1 s−2; k ≈ 1.38 ×10 −16 erg K −1; ≈ × −24 ≈ × 7 ≈ × −12 mp 1.7 10 g, 1 year 3 10 s; 1 eV 1.6 10 erg. 1 parsec ≈ 3 × 10 18 cm ≈ 3.26 light years, 1 kpc = 10 3 pc; c ≈ 3×10 10 cm 3 cm s −1 (1 parsec distance: Earth orbit’s par allax = 1 sec ond of arc). Solar mass, radius and luminosity: ≈ × 33 ≈ × 10 ≈ × 33 −1 M 2 10 g; R 7 10 cm; L 4 10 erg s . Notation: HI = neutral hydrogen, HII = p+ = ionized hydrogen, CIV = triply ionized carbon, etc. Further reading R. G. Tayler, Galaxies: Structures and Evolution , Cambridge Univ. Press, 1993 (a high-level scientific popular book on galactic astrophysics, entertaining and informative, very well written). J.E Dyson and D.A Williams, The Physics of the Interstellar Medium , Second Edition (The Graduate Series in Astronomy), IOP, 1997 (a good textbook on interstellar medium, presents appropriate equations and their solutions together with clear qualitative arguments and explanations and order of magnitude estimates).
    [Show full text]
  • Hot Interstellar Matter in Elliptical Galaxies
    Hot Interstellar Matter in Elliptical Galaxies For further volumes: http://www.springer.com/series/5664 Astrophysics and Space Science Library EDITORIAL BOARD Chairman W. B. BURTON, National Radio Astronomy Observatory, Charlottesville, Virginia, U.S.A. ([email protected]); University of Leiden, The Netherlands ([email protected]) F. BERTOLA, University of Padua, Italy J. P. CASSINELLI, University of Wisconsin, Madison, U.S.A. C. J. CESARSKY, Commission for Atomic Energy, Saclay, France P. EHRENFREUND, Leiden University, The Netherlands O. ENGVOLD, University of Oslo, Norway A. HECK, Strasbourg Astronomical Observatory, France E. P. J. VAN DEN HEUVEL, University of Amsterdam, The Netherlands V. M. KASPI, McGill University, Montreal, Canada J. M. E. KUIJPERS, University of Nijmegen, The Netherlands H. VAN DER LAAN, University of Utrecht, The Netherlands P. G. MURDIN, Institute of Astronomy, Cambridge, UK F. PACINI, Istituto Astronomia Arcetri, Firenze, Italy V. RADHAKRISHNAN, Raman Research Institute, Bangalore, India B . V. S O M OV, Astronomical Institute, Moscow State University, Russia R. A. SUNYAEV, Space Research Institute, Moscow, Russia Dong-Woo Kim Silvia Pellegrini Editors Hot Interstellar Matter in Elliptical Galaxies 123 Editors Dong-Woo Kim Harvard Smithsonian Center for Astrophysics Garden Street 60 02138 Cambridge Massachusetts USA [email protected] Silvia Pellegrini Dipartimento di Astronomia Universita` di Bologna Via Ranzani 1 40127 Bologna Italy [email protected] Cover figure: Chandra image of NGC 7619. From Kim et al. (2008). Reproduced by permission of the AAS. ISSN 0067-0057 ISBN 978-1-4614-0579-5 e-ISBN 978-1-4614-0580-1 DOI 10.1007/978-1-4614-0580-1 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011938147 c Springer Science+Business Media, LLC 2012 This work is subject to copyright.
    [Show full text]
  • Teacher's Guide
    Teacher’s guide CESAR Science Case – The secrets of galaxies Material that is necessary during the laboratory o CESAR Booklet o Computer with an Internet browser o CESAR List of Galaxies (.txt file) o Paper, pencil or pen o CESAR Student’s guide o o Introduction o o This Science Case provides an introduction to galaxies based on real multi-wavelength observations with space missions. It discusses concepts such as the Hubble Tuning Fork and the morphological classification of galaxies, stellar and ISM content of the different types of galaxies, and galaxy interaction and evolution. The activity is designed to encourage students to discover the properties of galaxies on their own. o During the laboratory, students make use of ESASky1, a portal for exploration and retrieval of space astronomical data, to visualise different galaxies and classify them according to their shapes and optical colours. Students can load different sky maps to see how the galaxies look like when they are observed at different wavelength ranges, and discuss how the presence of the ISM is affecting these observations. o Before starting this activity, students must be familiar with the properties of stars and of the interstellar medium, as well as have some basic concepts of stellar evolution. In particular, they must understand that young, massive stars display blue colors, while evolved stars look yellowish or reddish. They must also understand the relation between the ISM and young stars. o o Learning Outcomes o o By the end of this laboratory, students will be able to: 1. Explain how astronomers classify galaxies according to their shapes and contents.
    [Show full text]
  • HEIC0701: for IMMEDIATE RELEASE 19:30 (CET)/01:30 PM EST 7 January, 2007
    HEIC0701: FOR IMMEDIATE RELEASE 19:30 (CET)/01:30 PM EST 7 January, 2007 http://www.spacetelescope.org/news/html/heic0701.html News release: First 3D map of the Universe’s Dark Matter scaffolding 7-January-2007 By analysing the COSMOS survey – the largest ever survey undertaken with Hubble – an international team of scientists has assembled one of the most important results in cosmology: a three-dimensional map that offers a first look at the web-like large-scale distribution of dark matter in the Universe. This historic achievement accurately confirms standard theories of structure formation. For astronomers, the challenge of mapping the Universe has been similar to mapping a city from night-time aerial snapshots showing only streetlights. These pick out a few interesting neighbourhoods, but most of the structure of the city remains obscured. Similarly, we see planets, stars and galaxies in the night sky; but these are constructed from ordinary matter, which accounts in total for only one sixth of the total mass in the Universe. The remainder is a mysterious component - dark matter - that neither emits nor reflects light. An international team of astronomers led by Richard Massey of the California Institute of Technology (Caltech), USA, has made a three-dimensional map that offers a first look at the web-like large-scale distribution of dark matter in the Universe in unprecedented detail. This new map is equivalent to seeing a city, its suburbs and surrounding country roads in daylight for the first time. Major arteries and intersections are revealed and the variety of different neighbourhoods becomes evident.
    [Show full text]
  • Constraining Gas Motions in the Intra-Cluster Medium
    Noname manuscript No. (will be inserted by the editor) Constraining Gas Motions in the Intra-Cluster Medium Aurora Simionescu · John ZuHone · Irina Zhuravleva · Eugene Churazov · Massimo Gaspari · Daisuke Nagai · Norbert Werner · Elke Roediger · Rebecca Canning · Dominique Eckert · Liyi Gu · Frits Paerels Received: date / Accepted: date Aurora Simionescu SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands; E-mail: [email protected] Institute of Space and Astronautical Science (ISAS), JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan John ZuHone Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA Irina Zhuravleva Department of Astronomy & Astrophysics, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085, USA Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305-4085, USA Eugene Churazov Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching, Germany Space Research Institute (IKI), Profsoyuznaya 84/32, Moscow 117997, Russia Massimo Gaspari Einstein and Spitzer Fellow, Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544-1001, USA Daisuke Nagai Department of Physics, Yale University, PO Box 208101, New Haven, CT, USA Yale Center for Astronomy and Astrophysics, PO Box 208101, New Haven, CT, USA Norbert Werner MTA-E¨otv¨osLor´andUniversity Lend¨uletHot Universe Research Group, H-1117 P´azm´any P´eters´eta´ny1/A, Budapest, Hungary Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk Univer- sity, Kotl´arsk´a2, Brno, 61137, Czech Republic School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, arXiv:1902.00024v1 [astro-ph.CO] 31 Jan 2019 Japan 2 Aurora Simionescu et al.
    [Show full text]
  • Astronomy 2008 Index
    Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs.
    [Show full text]
  • And Ecclesiastical Cosmology
    GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc.
    [Show full text]
  • Measuring the Scatter in the Cluster Optical Richness-Mass Relation with Machine Learning
    MEASURING THE SCATTER IN THE CLUSTER OPTICAL RICHNESS-MASS RELATION WITH MACHINE LEARNING A Dissertation by STEVEN ALVARO BOADA Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Casey J. Papovich Committee Members, Wolfgang Bangerth Louis Strigari Nicholas Suntzeff Head of Department, Peter McIntyre August 2016 Major Subject: Physics Copyright 2016 Steven Alvaro Boada ABSTRACT The distribution of massive clusters of galaxies depends strongly on the total cos- mic mass density, the mass variance, and the dark energy equation of state. As such, measures of galaxy clusters can provide constraints on these parameters and even test models of gravity, but only if observations of clusters can lead to accurate estimates of their total masses. Here, we carry out a study to investigate the ability of a blind spectroscopic survey to recover accurate galaxy cluster masses through their line- of-sight velocity dispersions (LOSVD) using probability based and machine learning methods. We focus on the Hobby Eberly Telescope Dark Energy Experiment (HET- DEX), which will employ new Visible Integral-Field Replicable Unit Spectrographs (VIRUS), over 420 degree2 on the sky with a 1/4.5 fill factor. VIRUS covers the blue/optical portion of the spectrum (3500 − 5500 A),˚ allowing surveys to measure redshifts for a large sample of galaxies out to z < 0:5 based on their absorption or emission (e.g., [O II], Mg II, Ne V) features. We use a detailed mock galaxy catalog from a semi-analytic model to simulate surveys observed with VIRUS, including: (1) Survey, a blind, HETDEX-like survey with an incomplete but uniform spectroscopic selection function; and (2) Targeted, a survey which targets clusters directly, ob- taining spectra of all galaxies in a VIRUS-sized field.
    [Show full text]
  • Exoplanet Community Report
    JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probe­class missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2
    [Show full text]
  • Structural Parameters of Compact Stellar Systems
    Structural Parameters of Compact Stellar Systems Juan Pablo Madrid Presented in fulfillment of the requirements of the degree of Doctor of Philosophy May 2013 Faculty of Information and Communication Technology Swinburne University Abstract The objective of this thesis is to establish the observational properties and structural parameters of compact stellar systems that are brighter or larger than the “standard” globular cluster. We consider a standard globular cluster to be fainter than M 11 V ∼ − mag and to have an effective radius of 3 pc. We perform simulations to further un- ∼ derstand observations and the relations between fundamental parameters of dense stellar systems. With the aim of establishing the photometric and structural properties of Ultra- Compact Dwarfs (UCDs) and extended star clusters we first analyzed deep F475W (Sloan g) and F814W (I) Hubble Space Telescope images obtained with the Advanced Camera for Surveys. We fitted the light profiles of 5000 point-like sources in the vicinity of NGC ∼ 4874 — one of the two central dominant galaxies of the Coma cluster. Also, NGC 4874 has one of the largest globular cluster systems in the nearby universe. We found that 52 objects have effective radii between 10 and 66 pc, in the range spanned by extended star ∼ clusters and UCDs. Of these 52 compact objects, 25 are brighter than M 11 mag, V ∼ − a magnitude conventionally thought to separate UCDs and globular clusters. We have discovered both a red and a blue subpopulation of Ultra-Compact Dwarf (UCD) galaxy candidates in the Coma galaxy cluster. Searching for UCDs in an environment different to galaxy clusters we found eleven Ultra-Compact Dwarf and 39 extended star cluster candidates associated with the fossil group NGC 1132.
    [Show full text]
  • Algol Türü Örten Çift Yildizlarin Işikölçüm Ve Tayf Gözlemleri
    XVI. Ulusal Astronomi Kongresi ve V. Ulusal Öğrenci Astronomi Kongresi-2008, Çanakkale ALGOL TÜRÜ ÖRTEN ÇİFT YILDIZLARIN IŞIKÖLÇÜM VE TAYF GÖZLEMLERİ C. İBANOĞLU, S. EVREN, G. TAŞ, Ö. ÇAKIRLI, Z. BOZKURT, M. AFŞAR, E.SİPAHİ, H. A. DAL, O. ÖZDARCAN, D. Z. ÇAMURDAN, M. ÇAMURDAN Ege Üniversitesi, Astronomi ve Uzay Bilimleri Bölümü, 35100 Bornova İzmir Özet: Hipparcos uydusu ile keşfedilen 13 örten çift yıldızın ışıkölçüm ve tayf gözlemleri yapılmıştır. Örten çift olduğu daha önceden bilinen zonklayan yıldız bileşenli HD 172189 ve kuvvetli salma çizgileri gösteren disk yapılı AW Peg yıldızı da listeye alınmıştır. AW Peg’in ışıkölçüm verileri daha önce elde edildiğinden yalnızca tayf gözlemleri yapılmıştır. Seçilen yıldızlardan 14’ünün ışıkölçüm ve tayf gözlemleri iki yıl gibi kısa bir sürede bitirilmiştir. CP Psc sönük olduğundan tayfı alınamamıştır. Işıkölçüm gözlemleri Ege Üniversitesi Gözlemevi’nin 48, 40 ve 35 cm’lik teleskopları ile yapılmıştır. Üç kanallı hızlı ışıkölçeri, CCD kameralar ve UBV süzgeçleri kullanılmıştır. Tayf gözlemler Catania Astrofizik Gözlemevi’nin 91 cm, TÜBİTAK TUG’un 150 ve David Dunlap Gözlemevi’nin 188 cm’lik teleskopları ile yapılmıştır. UBV ışıkölçümleri standart düzeneğe dönüştürülmüş, renk- renk diyagramları ve yıldızlararası ortamın etkisinden bağımsız geniş-band Q-parametresi kullanılarak E(B-V) ve baş yıldızın etkin sıcaklığı Te belirlenmiştir. Bu sıcaklık yıldızın tayfı ile karşılaştırılmıştır. Işık eğrilerinin analizinde temel öğe olan baş yıldızın etkin sıcaklığı duyarlı olarak bulunduktan sonra ışık eğrileri ve dikine hız verileri ortak olarak analiz edilmiş, bileşen yıldızların temel öğeleri kütle, yarıçap, sıcaklık ve ışıtmaları bulumuştur. Yıldızların bulunan salt öğeleri kuramsal modellerle karşılaştırılmış, evrim durumları ortaya çıkartılmıştır. Bileşenlerin ışınımsal özellikleri ve yıldızlararası kızıllaşma değerleri kullanılarak uzaklıklar hesaplanmıştır.
    [Show full text]