Simpson Desert, Mojave Desert Springboard 5

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Simpson Simpson Desert, Mojave Desert Mojave Simpson Desert, Desert, Mojave Desert The Simpson and Mojave deserts are two of Earth’s most incredible places. This information report compares and contrasts the climates, wildlife, and histories of these sun-scorched, seemingly barren parts of the world. Other Information Reports (Compare/Contrast) in Springboard 5: Daintree Rainforest, Amazon Springboard 5 Rainforest Murray River, Mississippi River Written by Tracey Michele For inspection teachers' Simpson ONLY Desert, Mojave Desert Contents Introduction .......................................4 The Simpson and Mojave Deserts .....8 Climate ............................................10 History ............................................ 14 Desert Vegetation ............................ 17 Desert Animals ...............................24 Threats to the Deserts .....................29 Glossary ...........................................31 Index ................................................32 For inspection teachers' Introduction Cactuses are world-famous desert icons. Places that are extremely dry, or arid, are known as deserts. ONLY Deserts do not have much rainfall. Some of Earth’s deserts are hot and others are cold. Some are sandy and rocky. Other deserts are snowy and icy. Deserts cover about one-fifth of the planet’s land. Most deserts are in hot places near two regions of Earth called the tropics. The tropics are north and south of an invisible line round the middle of Earth. This line is the equator. The equator is the place on Earth nearest the sun, making it very hot. The places just north and south of the tropics are the subtropics, where most hot deserts are. In hot subtropical deserts, the sun beats down every day. Deserts of the World ASIA EUROPE NORTH AMERICA TROPIC OF CANCER AFRICA EQUATOR SOUTH AMERICA TROPIC OF CAPRICORN AUSTRALIA Key Hot desert Cold desert ANTARCTICA 4 5 For inspection teachers' Deserts are amazing places. Some of Earth’s deserts Even though deserts can be harsh places, a lot of plants contain large areas of sand and dry rock. Other deserts have and animals live in them. A lot of the plants and animals enormous sand dunes. Some have massive plains covered have special features to help them live in such hot, dry ONLY in salt, called salt pans. A lot of Earth’s salt pans formed places. millions of years ago, when inland seas dried up and left This book will look at two deserts in the subtropics. behind the salt. Sometimes, salt pans still fill up with water These are the Simpson Desert in Australia and the Mojave from rivers and rain. Water leaves behind the salt in salt Desert in the United States. pans when heat from the sun turns the water into a gas called water vapour. Water turning into water vapour is evaporation. Salt pans form over thousands of years. Other deserts have wet areas from rivers or underground springs. A huge, jutting formation of scarred desert rock in the Monument Valley Tribal Park in Arizona 6 7 For inspection teachers' The Simpson and Mojave Deserts The Mojave Desert is in the west of the United States. It covers 130,600 square km. The Mojave is in four American states. These states are California, Utah, Nevada, and So, where exactly are the Simpson and Mojave Deserts? ONLY Arizona. The Mojave is between two other deserts. To the The Simpson Desert is in the middle of Australia. It covers north is the Great Basin Desert, which is a cold desert. The 170,000 square km of land. The Simpson is spread across Sonoran Desert is a hot desert to the south. The Colorado parts of South Australia, Queensland, and the Northern River runs through part of the Mojave Desert. Territory. Lake Eyre is in the south of the desert. As the area is so dry, a lot of the time the huge lake has no water. When it is dry, Lake Eyre is a salt pan. Location of the Mojave Desert Location of the Simpson Desert C A NORTHERN L NEVADA United States I TERRITORY F UTAH O R Australia QUEENSLAND r N e v I i A R WESTERN o PACIFIC Las Vegas ad AUSTRALIA Lake Eyre Color OCEAN SOUTH AUSTRALIA NEW SOUTH WALES ACT ARIZONA 0 km 500 VICTORIA Mexico Key Mojave Desert Key TASMANIA PACIFIC Great Basin Desert Simpson Desert OCEAN Sonoran Desert 8 9.
Recommended publications
  • Alluvial Fans in the Death Valley Region California and Nevada

    Alluvial Fans in the Death Valley Region California and Nevada

    Alluvial Fans in the Death Valley Region California and Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 466 Alluvial Fans in the Death Valley Region California and Nevada By CHARLES S. DENNY GEOLOGICAL SURVEY PROFESSIONAL PAPER 466 A survey and interpretation of some aspects of desert geomorphology UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publications as follows: Denny, Charles Storrow, 1911- Alluvial fans in the Death Valley region, California and Nevada. Washington, U.S. Govt. Print. Off., 1964. iv, 61 p. illus., maps (5 fold. col. in pocket) diagrs., profiles, tables. 30 cm. (U.S. Geological Survey. Professional Paper 466) Bibliography: p. 59. 1. Physical geography California Death Valley region. 2. Physi­ cal geography Nevada Death Valley region. 3. Sedimentation and deposition. 4. Alluvium. I. Title. II. Title: Death Valley region. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Page Abstract.. _ ________________ 1 Shadow Mountain fan Continued Introduction. ______________ 2 Origin of the Shadow Mountain fan. 21 Method of study________ 2 Fan east of Alkali Flat- ___-__---.__-_- 25 Definitions and symbols. 6 Fans surrounding hills near Devils Hole_ 25 Geography _________________ 6 Bat Mountain fan___-____-___--___-__ 25 Shadow Mountain fan..______ 7 Fans east of Greenwater Range___ ______ 30 Geology.______________ 9 Fans in Greenwater Valley..-----_____. 32 Death Valley fans.__________--___-__- 32 Geomorpholo gy ______ 9 Characteristics of fans.._______-___-__- 38 Modern washes____.
  • Munga-Thirri–Simpson Desert Conservation Park and Regional Reserve

    Munga-Thirri–Simpson Desert Conservation Park and Regional Reserve

    <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5L9VKK" height="0" width="0" style="display:none;visibility:hidden"></iframe> Munga-Thirri–Simpson Desert Conservation Park and Regional Reserve About Check the latest Desert Parks Bulletin (https://cdn.environment.sa.gov.au/parks/docs/desert-parks-bulletin- 30092021.pdf) before visiting this park. Located within the driest region of the Australian continent, the Munga-Thirri–Simpson Desert Conservation Park is in the centre of the Simpson Desert, one of the world's best examples of parallel dunal desert. The Simpson Desert's sand dunes stretch over hundreds of kilometres and lie across the corners of three states - South Australia, Queensland and the Northern Territory. The Munga-Thirri–Simpson Desert Regional Reserve, just outside the Conservation Park, features a wide variety of desert wildlife preserved in a landscape of varied dune systems, extensive playa lakes, spinifex grasslands and acacia woodlands. The reserve links the Munga-Thirri–Simpson Desert Conservation Park to Witjira National Park. Simpson Desert parks in South Australia and Queensland are closed in summer from 1 December to 15 March. Vehicles are required to have high visibility safety flags (#safety) attached to the front of the vehicle. Opening hours Open daily. Munga-Thirri–Simpson Desert Conservation Park and Regional Reserve are closed from 1 December to 15 March each year. Access may be restricted due to local road conditions. Please refer to the latest Desert Parks Bulletin (https://cdn.environment.sa.gov.au/parks/docs/desert-parks-bulletin-30092021.pdf) for current access and road condition information. Closures and safety This park is closed on days of Catastrophic Fire Danger and may also be closed on days of Extreme Fire Danger.
  • M O J a V E D E S E R T I S S U E S a Secondary

    M O J a V E D E S E R T I S S U E S a Secondary

    MOJAVE DESERT ISSUES A Secondary School Curriculum Bruce W. Bridenbecker & Darleen K. Stoner, Ph.D. Research Assistant Gail Uchwat Mojave Desert Issues was funded with a grant from the National Park �� Foundation. Parks as Classrooms is the educational program of the National ����� �� ���������� Park Service in partnership with the National Park Foundation. Design by Amy Yee and Sandra Kaye Published in 1999 and printed on recycled paper ii iii ACKNOWLEDGMENTS Thanks to the following people for their contribution to this work: Elayn Briggs, Bureau of Land Management Caryn Davidson, National Park Service Larry Ellis, Banning High School Lorenza Fong, National Park Service Veronica Fortun, Bureau of Land Management Corky Hays, National Park Service Lorna Lange-Daggs, National Park Service Dave Martell, Pinon Mesa Middle School David Moore, National Park Service Ruby Newton, National Park Service Carol Peterson, National Park Service Pete Ricards, Twentynine Palms Highschool Kay Rohde, National Park Service Dennis Schramm, National Park Service Jo Simpson, Bureau of Land Management Kirsten Talken, National Park Service Cindy Zacks, Yucca Valley Highschool Joe Zarki, National Park Service The following specialists provided information: John Anderson, California Department of Fish & Game Dave Bieri, National Park Service �� John Crossman, California Department of Parks and Recreation ����� �� ���������� Don Fife, American Land Holders Association Dana Harper, National Park Service Judy Hohman, U. S. Fish and Wildlife Service Becky Miller, California
  • Ecoregions of Nevada Ecoregion 5 Is a Mountainous, Deeply Dissected, and Westerly Tilting Fault Block

    Ecoregions of Nevada Ecoregion 5 Is a Mountainous, Deeply Dissected, and Westerly Tilting Fault Block

    5 . S i e r r a N e v a d a Ecoregions of Nevada Ecoregion 5 is a mountainous, deeply dissected, and westerly tilting fault block. It is largely composed of granitic rocks that are lithologically distinct from the sedimentary rocks of the Klamath Mountains (78) and the volcanic rocks of the Cascades (4). A Ecoregions denote areas of general similarity in ecosystems and in the type, quality, Vegas, Reno, and Carson City areas. Most of the state is internally drained and lies Literature Cited: high fault scarp divides the Sierra Nevada (5) from the Northern Basin and Range (80) and Central Basin and Range (13) to the 2 2 . A r i z o n a / N e w M e x i c o P l a t e a u east. Near this eastern fault scarp, the Sierra Nevada (5) reaches its highest elevations. Here, moraines, cirques, and small lakes and quantity of environmental resources. They are designed to serve as a spatial within the Great Basin; rivers in the southeast are part of the Colorado River system Bailey, R.G., Avers, P.E., King, T., and McNab, W.H., eds., 1994, Ecoregions and subregions of the Ecoregion 22 is a high dissected plateau underlain by horizontal beds of limestone, sandstone, and shale, cut by canyons, and United States (map): Washington, D.C., USFS, scale 1:7,500,000. are especially common and are products of Pleistocene alpine glaciation. Large areas are above timberline, including Mt. Whitney framework for the research, assessment, management, and monitoring of ecosystems and those in the northeast drain to the Snake River.
  • Synoptic-Scale Control Over Modern Rainfall and Flood Patterns in the Levant Drylands with Implications for Past Climates

    Synoptic-Scale Control Over Modern Rainfall and Flood Patterns in the Levant Drylands with Implications for Past Climates

    JUNE 2018 ARMONETAL. 1077 Synoptic-Scale Control over Modern Rainfall and Flood Patterns in the Levant Drylands with Implications for Past Climates MOSHE ARMON Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel ELAD DENTE Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, and Geological Survey of Israel, Jerusalem, Israel JAMES A. SMITH Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey YEHOUDA ENZEL AND EFRAT MORIN Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel (Manuscript received 23 January 2018, in final form 1 May 2018) ABSTRACT Rainfall in the Levant drylands is scarce but can potentially generate high-magnitude flash floods. Rainstorms are caused by distinct synoptic-scale circulation patterns: Mediterranean cyclone (MC), active Red Sea trough (ARST), and subtropical jet stream (STJ) disturbances, also termed tropical plumes (TPs). The unique spatiotemporal char- acteristics of rainstorms and floods for each circulation pattern were identified. Meteorological reanalyses, quantitative precipitation estimates from weather radars, hydrological data, and indicators of geomorphic changes from remote sensing imagery were used to characterize the chain of hydrometeorological processes leading to distinct flood patterns in the region. Significant differences in the hydrometeorology of these three flood-producing synoptic systems were identified: MC storms draw moisture from the Mediterranean and generate moderate rainfall in the northern part of the region. ARST and TP storms transfer large amounts of moisture from the south, which is converted to rainfall in the hyperarid southernmost parts of the Levant.
  • Bromine Geochemistry of Salar De Uyuni and Deeper Salt Crusts

    Bromine Geochemistry of Salar De Uyuni and Deeper Salt Crusts

    ... .............. * .. ........, ., ;: ... ... ........ .. ........, ., '_.~' . ...: .. ,... ' :, .. , ._... , .-. ,; ..,. _I. ................. .. ; . ... ............ ~ .. .- ............'. ............ .... , . :.. , *.,:.:-' ' .., '. -. - .. 'c..;..,. CHEMICAL /./da 3-4 GEOLOGY lSCL1lDlNri L ISOTOPE GEOSCIEiYCE ELSEVIER Chemical Geology 167 (2000) 373-392 www.elsevier.com/locate/chemgeo Bromine geochemistry of salar de Uyuni and deeper salt crusts, Central Altiplano, Bolivia I FranGois/Risacher a, Bertrand Fritz i E IRD-Centre de Géochiiliie de Ia Siriface, Fralice CNRS 1 rite Blessig, 67084 Strasboiirg Cedex, France Received 15 August 1999; accepted 13 December 1999 Abstract The salar of Uyuni, in the central Bolivian Altiplano, is probably the largest salt pan in the world (10000 km'). A 121 m deep well drilled in the central salar disclosed a complex evaporitic sequence of 12 salt crusts separated by 11 mud layers. In the lower half of the profile, thick halite beds alternate with thin mud layers. The mud layers thicken upwards and show clear lacustrine features. The thickness of the salt beds decreases markedly from the base upward. The bromine content of the halite ranges from 1.3 to 10.4 mg/kg. The halite does not originate from the evaporation of the dilute inflow waters of the Altiplano, which would lead to Br content of tens of mg/kg. The presence of halite of very low Br content (2 mg/kg) in a gypsum diapir strongly suggests that most of the halite deposited at Uyuni originated from the leaching of ancient salt formations associated with the numerous gypsum diapirs of the Altiplano. The deep and thick halite beds were probably deposited in a playa lake, as suggested by their very low and fairly constant Br content (1.6-2.3 mg/kg) and by the abundance of detrital minerals.
  • Spatially-Explicit Modeling of Modern and Pleistocene Runoff and Lake Extent in the Great Basin Region, Western United States

    Spatially-Explicit Modeling of Modern and Pleistocene Runoff and Lake Extent in the Great Basin Region, Western United States

    Spatially-explicit modeling of modern and Pleistocene runoff and lake extent in the Great Basin region, western United States Yo Matsubara1 Alan D. Howard1 1Department of Environmental Sciences University of Virginia P.O. Box 400123 Charlottesville, VA 22904-4123 Abstract A spatially-explicit hydrological model balancing yearly precipitation and evaporation is applied to the Great Basin Region of the southwestern United States to predict runoff magnitude and lake distribution during present and Pleistocene climatic conditions. The model iteratively routes runoff through, and evaporation from, depressions to find a steady state solution. The model is calibrated with spatially-explicit annual precipitation estimates and compiled data on pan evaporation, mean annual temperature, and total yearly runoff from stations. The predicted lake distribution provides a close match to present-day lakes. For the last glacial maximum the sizes of lakes Bonneville and Lahontan were well predicted by linear combinations of decrease in mean annual temperature from 0 to 6 °C and increases in precipitation from 0.8 to 1.9 times modern values. Estimated runoff depths were about 1.2 to 4.0 times the present values and yearly evaporation about 0.3 to 1 times modern values. 2 1. Introduction The Great Basin of the southwestern United States in the Basin and Range physiographic province contains enclosed basins featuring perennial and ephemeral lakes, playas and salt pans (Fig. 1). The Great Basin consists of the entire state of Nevada, western Utah, and portions of California, Idaho, Oregon, and Wyoming. At present it supports an extremely dry, desert environment; however, about 40 lakes (some reaching the size of present day Great Lakes) episodically occupied the Great Basin, most recently during the last glacial maximum (LGM) [Snyder and Langbein, 1962; Hostetler et al., 1994; Madsen et al., 2001].
  • North American Deserts Chihuahuan - Great Basin Desert - Sonoran – Mojave

    North American Deserts Chihuahuan - Great Basin Desert - Sonoran – Mojave

    North American Deserts Chihuahuan - Great Basin Desert - Sonoran – Mojave http://www.desertusa.com/desert.html In most modern classifications, the deserts of the United States and northern Mexico are grouped into four distinct categories. These distinctions are made on the basis of floristic composition and distribution -- the species of plants growing in a particular desert region. Plant communities, in turn, are determined by the geologic history of a region, the soil and mineral conditions, the elevation and the patterns of precipitation. Three of these deserts -- the Chihuahuan, the Sonoran and the Mojave -- are called "hot deserts," because of their high temperatures during the long summer and because the evolutionary affinities of their plant life are largely with the subtropical plant communities to the south. The Great Basin Desert is called a "cold desert" because it is generally cooler and its dominant plant life is not subtropical in origin. Chihuahuan Desert: A small area of southeastern New Mexico and extreme western Texas, extending south into a vast area of Mexico. Great Basin Desert: The northern three-quarters of Nevada, western and southern Utah, to the southern third of Idaho and the southeastern corner of Oregon. According to some, it also includes small portions of western Colorado and southwestern Wyoming. Bordered on the south by the Mojave and Sonoran Deserts. Mojave Desert: A portion of southern Nevada, extreme southwestern Utah and of eastern California, north of the Sonoran Desert. Sonoran Desert: A relatively small region of extreme south-central California and most of the southern half of Arizona, east to almost the New Mexico line.
  • Rose-Marcella-Thesis-2020.Pdf

    Rose-Marcella-Thesis-2020.Pdf

    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Nebkha Morphology, Distribution and Stability Black Rock Playa, Nevada A thesis submitted in partial fulfillment of the requirements For the degree of Master of Arts in Geography By Marcella Rose December 2019 The thesis of Marcella Rose is approved: _______________________________________ _____________ Dr. Julie Laity Date _______________________________________ _____________ Dr. Thomas Farr Date _______________________________________ _____________ Dr. Amalie Orme, Chair Date California State University, Northridge ii Acknowledgements Dr. Orme, I really don’t think that there is a sufficient combination of words that exist to properly express the immense amount of gratitude I feel for everything that you have done for me. This college education changed my life for the better and I hope you realize what a significant role you were within that experience. I am thankful that not only did I get a great professor, but also a friend. Dr. Laity, thank you so much for having faith in me and for taking me on as one of your last students to advise. But most of all, thank you for pushing me to be better – I needed that. Dr. Farr, I was so excited during DEVELOP that you accepted to be a part of my committee. It was a pleasure to work with you within the Black Rock Playa research team but then to also take our research a step further for this graduate thesis. I would also like to thank the staff at the Bureau of Land Management, Winnemucca: Dr. Mark E. Hall, Field Manager of the Black Rock Field Office; Shane Garside, Black Rock Station Manager/ Outdoor Recreation Planner; Brian McMillan, Rangeland Management Technician; and Braydon Gaard, Interim Outdoor Recreation Planner.
  • Central Basin and Range Ecoregion

    Central Basin and Range Ecoregion

    Status and Trends of Land Change in the Western United States—1973 to 2000 Edited by Benjamin M. Sleeter, Tamara S. Wilson, and William Acevedo U.S. Geological Survey Professional Paper 1794–A, 2012 Chapter 20 Central Basin and Range Ecoregion By Christopher E. Soulard This chapter has been modified from original material Wasatch and Uinta Mountains Ecoregion, on the north by the published in Soulard (2006), entitled “Land-cover trends of Northern Basin and Range and the Snake River Basin Ecore- the Central Basin and Range Ecoregion” (U.S. Geological gions, and on the south by the Mojave Basin and Range and Survey Scientific Investigations Report 2006–5288). the Colorado Plateaus Ecoregions (fig. 1). Most of the Central Basin and Range Ecoregion is located in Nevada (65.4 percent) and Utah (25.1 percent), but small segments are also located Ecoregion Description in Idaho (5.6 percent), California (3.7 percent), and Oregon (0.2 percent). Basin-and-range topography characterizes the The Central Basin and Range Ecoregion (Omernik, 1987; Central Basin and Range Ecoregion: wide desert valleys are U.S. Environmental Protection Agency, 1997) encompasses bordered by parallel mountain ranges generally oriented north- approximately 343,169 km² (132,498 mi2) of land bordered on south. There are more than 33 peaks within the Central Basin the west by the Sierra Nevada Ecoregion, on the east by the and Range Ecoregion that have summits higher than 3,000 m 120° 118° 116° 114° 112° EXPLANATION 42° Land-use/land-cover class Northern Basin ECSF Snake River Basin Water Forest and Range Developed Grassland/Shrubland Transitional Agriculture Mining Wetland MRK Barren Ice/Snow Ecoregion boundary 40° WB Sample block (10 x 10 km) 0 50 100 150 MILES 0 50 100 150 KILOMETERS WUM OREGON IDAHO bo um ld 38° H t R iver Ogden Sparks Reno 80 Sierra Truckee River Lockwood GREAT Tooele Nevada Salt Carson River Lake Walker RiverBASIN City Walker Lake SIERRA NEVADA CCV Mojave DESERT UTAH Basin and Range Colorado NEVADA 36° SCCCOW Plateaus SCM ANMP CALIFORNIA Figure 1.
  • Algae and Invertebrates of a Great Basin Desert Hot Lake: a Description of the Borax Lake Ecosystem of Southeastern Oregon

    Algae and Invertebrates of a Great Basin Desert Hot Lake: a Description of the Borax Lake Ecosystem of Southeastern Oregon

    Conference Proceedings. Spring-fed Wetlands: Important Scientific and Cultural Resources of the Intermountain Region, 2002. http://www.wetlands.dri.edu Algae and Invertebrates of a Great Basin Desert Hot Lake: A description of the Borax Lake ecosystem of southeastern Oregon Joseph Furnish Pacific Southwest Region 5, U.S. Department of Agriculture, Forest Service, Vallejo, CA [email protected] James McIver Pacific Northwest Research Station, U.S. Department of Agriculture, Forest Service, LaGrande, OR Mark Teiser Department of Oceanography, Oregon State University, Corvallis, OR Abstract Introduction As part of the recovery plan for the Borax Lake is a geothermally heated endangered chub Gila boraxobius (Cyprinidae), alkaline lake in southeastern Oregon. It a description of algal and invertebrate represents one of the only permanent water populations was undertaken at Borax Lake in sources in the Alvord Desert, which receives 1991 and 1992. Borax Lake, the only known less than 20 cm of rain annually (Green 1978; habitat for G. boraxobius, is a warm, alkaline Cobb et al. 1981). Borax Lake is the only known water body approximately 10 hectares in size habitat for Gila boraxobius, the Borax Lake with an average surface water temperature of chub, a cyprinid fish recognized as a new 30°C. Periphyton algae were surveyed by species in 1980. The chub was listed as scraping substrates and incubating microscope endangered under the Endangered Species Act slides in the water column. Invertebrates were in 1982 because it was believed that geothermal- collected using dip nets, pitfall traps and Ekman energy test-well drilling activities near Borax dredges. The aufwuchs community was Lake might jeopardize its habitat by altering the composed of 23 species and was dominated by flow or temperature of water in the lake.
  • Sensitivity of the Colorado Plateau to Change: Climate, Ecosystems, and Society

    Sensitivity of the Colorado Plateau to Change: Climate, Ecosystems, and Society

    Copyright © 1969 by the author(s). Published here under license by the Resilience Alliance. Schwinning, S., J. Belnap, D. R. Bowling, and J. R. Ehleringer. 2008. Sensitivity of the Colorado Plateau to change: climate, ecosystems, and society. Ecology and Society XX(YY): ZZ. [online] URL: http://www.ec ologyandsociety.org/volXX/issYY/artZZ/ Synthesis Sensitivity of the Colorado Plateau to Change: Climate, Ecosystems, and Society Susan Schwinning, Jayne Belnap 1, David R. Bowling 2, and James R. Ehleringer 2 ABSTRACT. The Colorado Plateau is located in the interior, dry end of two moisture trajectories coming from opposite directions, which have made this region a target for unusual climate fluctuations. A multi- decadal drought event some 850 years ago may have eliminated maize cultivation by the first human settlers of the Colorado Plateau, the Fremont and Anasazi people, and contributed to the abandonment of their settlements. Even today, ranching and farming are vulnerable to drought and struggle to persist. The recent use of the Colorado Plateau primarily as rangeland has made this region less tolerant to drought due to unprecedented levels of surface disturbances that destroy biological crusts, reduce soil carbon and nitrogen stocks, and increase rates of soil erosion. The most recent drought of 2002 demonstrated the vulnerability of the Colorado Plateau in its currently depleted state and the associated costs to the local economies. New climate predictions for the southwestern United States include the possibility of a long-term shift to warmer, more arid conditions, punctuated by megadroughts not seen since medieval times. It remains to be seen whether the present-day extractive industries, aided by external subsidies, can persist in a climate regime that apparently exceeded the adaptive capacities of the Colorado Plateau’s prehistoric agriculturalists.