Don't Look Back in Anger. Freedom, Fatalism and the Future

Total Page:16

File Type:pdf, Size:1020Kb

Don't Look Back in Anger. Freedom, Fatalism and the Future Don’t Look Back in Anger. Freedom, Fatalism and the Future Giacomo Andreoletti Contents 1 A Journey into Fatalism 5 1.1 What Fatalism amounts to . .5 1.1.1 Three claims . .5 1.1.2 Definitions . 10 1.1.3 Why should we be worried? . 16 1.2 Two classic Arguments for Modal Fatalism . 19 1.2.1 A bit of Modal Logic . 19 1.2.2 The Main Argument . 21 Prior Truths . 26 Ockhamism and the freedom to do otherwise . 30 Introducing a Third Truth Value . 33 The Mutable Future . 41 1.2.3 Taylor’s Argument . 44 The Argument . 44 Taylor’s Argument Modal Structure . 51 Standard responses . 52 1.3 Again on Definitions . 57 1.3.1 Another bit of Modal Logic . 57 1.3.2 Modal Fatalism Principles . 59 1.3.3 What is wrong with the Main Argument and Taylor’s 62 1.4 Why I am not worried . 65 1.4.1 Lazy Argument . 65 1.4.2 Deliberation . 68 1.4.3 Moral Responsibility . 70 2 A New Argument for Modal Fatalism 77 2.1 Two Principles which imply Modal Fatalism . 77 2.2 The Disagreement on (SUF) . 79 1 CONTENTS 2 2.3 What are we left with . 84 3 Time Travel and Fatalism 86 3.1 Time Travel in One-Dimensional Time . 86 3.2 Another Odd Story . 95 3.3 The Specter of Fatalism with respect to Mit and Time Travel 98 3.4 The Specter fades away . 100 3.5 Powers, Fatalism and Abilities . 102 3.6 Protecting the Past . 105 4 Changing the Past 110 4.1 An Attempt to Change the Past . 111 4.2 Two Problems . 114 4.3 Times and T-slices . 116 4.4 The Past has not changed . 121 5 Defending A Mutable Future 124 5.1 Free Will and the Future . 125 5.2 Geach and the Changing Future . 127 5.3 A case in favor of the Changing Future . 130 5.4 Conclusion . 132 Acknowledgements On this occasion there is no one I wish to acknowledge. Thank you1. 1Actually, I am profoundly in debt with several people and friends who had the patience to discuss and read the material of this work. I am sure those people — let me just mention my advisors Giuliano Torrengo and Achille Varzi — know how much I am thankful to them. Also, I am even more sure they have enough sense of humor to appreciate my acknowledgment. Introduction “Oh, if only I’d bought that stock! If only I, if only I purchased THAT house years ago! If only I’d made a move on THAT woman. If this, if that.” You know what? Give me a break with your could have’s and should have’s. Like my mother used to say, “If my grandmother had wheels, she’d be a trolley car.” My mother didn’t have wheels. She had varicose veins. Whatever Works — Woody Allen We sometimes regret things we have done in the past. We may even despise ourselves for deeds we have done in the past. If I had not done that, I would not have ended up like this. All of us have plenty of examples which fall into this category. This kind of attitude toward the past might be overwhelming and lead to total despair. As a remedy, people are told that it’s no use crying over spilt milk. What is done is done, and cannot be undone. However, the disappointment remains. The thought that we could have done otherwise and act better than what we have done is still there. Fatalism, the topic I will be mostly dealing with in this work, offers a better medicine. There’s no point thinking that things could have gone otherwise. A fatalist would say that the way they went was the only way they could have gone, and this should be consoling. So, we are done with the past. But what about the present and the future? A fatalist, 3 CONTENTS 4 very straightforwardly, claims that there is no difference between past and future. According to him or her, we should have the same attitude toward the future. There is only one way things could go. And here, if the fatalist is correct, we are again overwhelmed. How can we claim to be free to want or do anything? Are we just living a life which is already pre-determined? What is the point of living such a life? In what follows I will try to carefully address these questions. My answer will be that we should not be too much worried if the kind of fatalism I favor turns out to be true. In the novel “Jacques the Fatalist” by Diderot, the protagonist claims all the time that what happens to him was already written on high. What this ’high’ might consist of will be investigated throughout this work. In fact, we shall see that there are different kinds of fatalism and different sources that seem to point to fatalism. Fatalism is often quickly dismissed as an untenable doctrine, which at best can count as sophistry. I don’t agree with this judgment. One of my goals is to convince the reader that fatalism, at least one kind of it, has to be taken seriously and that it deserves respect and attention within our metaphysical investigations. In chapter 1 we shall see what different kinds of fatalism there are and what is their nature. Then, we will focus on two classic arguments to the conclusion that fatalism holds. In chapter 2 I will give my own argument in favor of fatalism. In chapter 3 I will take time travel in one dimensional time as a case study. I will argue that issues which arise within the debate of the metaphysical possibility of time travel can be resolved by fatalism. In chapter 4 I try to refute a recent attempt which has been made to show that the past could change, even if time is one-dimensional. Ultimately, in the final chapter I will talk about a theory according to which the future might literally change. The theory provides two interesting ways to refute fatalism. I will provide an example which is supposed to favor the changing future. I’ve been told that a dissertation should have a single main thesis. Mine has it, but it has the form of a disjunction. The received view is that the future cannot change and yet fatalism is false. I want to negate this conjunction. This denial gives us a disjunction. Either we should be fatalists — and it’s not so bad after all — or we should believe that we can change the future. Hence, don’t look back in anger. Go and change your future, it might work. Chapter 1 A Journey into Fatalism In this first chapter I introduce fatalism and its different understandings. I try to make it clear in the first section that there are at least two different kinds of fatalism, here labeled lazy and modal fatalism. The following sec- tion on modal logic is needed to understand the nature of modal fatalism. I then address two classic arguments to the conclusion that modal fatalism holds, and the standard responses which are found in the literature on this topic. I then provide a new reason that should incline us to think that those two arguments do not get through. Ultimately, I will try to show that although fatalism has always been seen as an untenable doctrine because of its consequences, this is not necessarily correct. Even though lazy fa- talism does have unpleasant and seemingly fallacious implications, modal fatalism can perfectly address the problems which are usually associated to fatalism. 1.1 What Fatalism amounts to I start this section by discussing three claims. These claims are going to help us with defining lazy and modal fatalism. Ultimately, I will show why fatalism has to be taken seriously and what consequences it might seem to have. 1.1.1 Three claims We are about to start the discussion on fatalism by putting on the table three claims. The first two are admittedly vague, whereas the third is often employed as a definition of fatalism. These three claims will help us to 5 CHAPTER 1. A JOURNEY INTO FATALISM 6 provide a distinction between different kinds of fatalism. Here are the three claims. The Symmetry Thesis. There is a symmetry between the past and the future. Causal Connectedness. What happens at a time causally depends on what happens at other times. Powerlessness. Agents are powerless to do anything other than what they actually do. Let’s start with the first claim. What does it mean to say that the future is like the past? It probably depends on what we are talking about. One way to argue for the symmetry (or the asymmetry) of past and future is to put it in ontological terms. Suppose I now have to provide a full inventory of what exists. To start, it seems that I need to include all entities that exist at this very moment in time I am making the list. Should I include past entities, say Socrates, and future entities like the event of my grandson taking his first college class? Here there is disagreement. An eternalist would be willing to claim that it is reasonable to put in the inventory all past, present and future entities. He or she would probably argue for this in virtue of the fact that our best scientific theories, like special theory of relativity, treats the time-dimension in the same way the three space-dimensions are treated.
Recommended publications
  • The Wormhole Hazard
    The wormhole hazard S. Krasnikov∗ October 24, 2018 Abstract To predict the outcome of (almost) any experiment we have to assume that our spacetime is globally hyperbolic. The wormholes, if they exist, cast doubt on the validity of this assumption. At the same time, no evidence has been found so far (either observational, or theoretical) that the possibility of their existence can be safely neglected. 1 Introduction According to a widespread belief general relativity is the science of gravita- tional force. Which means, in fact, that it is important only in cosmology, or in extremely subtle effects involving tiny post-Newtonian corrections. However, this point of view is, perhaps, somewhat simplistic. Being con- arXiv:gr-qc/0302107v1 26 Feb 2003 cerned with the structure of spacetime itself, relativity sometimes poses prob- lems vital to whole physics. Two best known examples are singularities and time machines. In this talk I discuss another, a little less known, but, in my belief, equally important problem (closely related to the preceding two). In a nutshell it can be formulated in the form of two question: What princi- ple must be added to general relativity to provide it (and all other physics along with it) by predictive power? Does not the (hypothetical) existence of wormholes endanger that (hypothetical) principle? ∗Email: [email protected] 1 2 Global hyperbolicity and predictive power 2.1 Globally hyperbolic spacetimes The globally hyperbolic spacetimes are the spacetimes with especially sim- ple and benign causal structure, the spacetimes where we can use physical theories in the same manner as is customary in the Minkowski space.
    [Show full text]
  • The Causal Hierarchy of Spacetimes 3
    The causal hierarchy of spacetimes∗ E. Minguzzi and M. S´anchez Abstract. The full causal ladder of spacetimes is constructed, and their updated main properties are developed. Old concepts and alternative definitions of each level of the ladder are revisited, with emphasis in minimum hypotheses. The implications of the recently solved “folk questions on smoothability”, and alternative proposals (as recent isocausality), are also summarized. Contents 1 Introduction 2 2 Elements of causality theory 3 2.1 First definitions and conventions . ......... 3 2.2 Conformal/classical causal structure . ............ 6 2.3 Causal relations. Local properties . ........... 7 2.4 Further properties of causal relations . ............ 10 2.5 Time-separation and maximizing geodesics . ............ 12 2.6 Lightlike geodesics and conjugate events . ............ 14 3 The causal hierarchy 18 3.1 Non-totally vicious spacetimes . ......... 18 3.2 Chronologicalspacetimes . ....... 21 3.3 Causalspacetimes ................................ 21 3.4 Distinguishingspacetimes . ........ 22 3.5 Continuouscausalcurves . ...... 24 3.6 Stronglycausalspacetimes. ........ 26 ± arXiv:gr-qc/0609119v3 24 Apr 2008 3.7 A break: volume functions, continuous I ,reflectivity . 30 3.8 Stablycausalspacetimes. ....... 35 3.9 Causally continuous spacetimes . ......... 39 3.10 Causallysimplespacetimes . ........ 40 3.11 Globallyhyperbolicspacetimes . .......... 42 4 The “isocausal” ladder 53 4.1 Overview ........................................ 53 4.2 Theladderofisocausality . ....... 53 4.3 Someexamples.................................... 55 References 57 ∗Contribution to the Proceedings of the ESI semester “Geometry of Pseudo-Riemannian Man- ifolds with Applications in Physics” (Vienna, 2006) organized by D. Alekseevsky, H. Baum and J. Konderak. To appear in the volume ‘Recent developments in pseudo-Riemannian geometry’ to be published as ESI Lect. Math. Phys., Eur. Math. Soc. Publ. House, Z¨urich, 2008.
    [Show full text]
  • Chap 7 Berkovitz October 8 2016
    Chapter 7 On time, causation and explanation in the causally symmetric Bohmian model of quantum mechanics* Joseph Berkovitz University of Toronto 0 Introduction/abstract Quantum mechanics portrays the universe as involving non-local influences that are difficult to reconcile with relativity theory. By postulating backward causation, retro-causal interpretations of quantum mechanics could circumvent these influences and accordingly increase the prospects of reconciling quantum mechanics with relativity. The postulation of backward causation poses various challenges for the retro-causal interpretations of quantum mechanics and for the existing conceptual frameworks for analyzing counterfactual dependence, causation and causal explanation, which are important for studying these interpretations. In this chapter, we consider the nature of time, causation and explanation in a local, deterministic retro-causal interpretation of quantum mechanics that is inspired by Bohmian mechanics. This interpretation, the so-called ‘causally symmetric Bohmian model’, offers a deterministic, local ‘hidden-variables’ model of the Einstein- Podolsky-Rosen experiment that poses a new challenge for Reichenbach’s principle of the common cause. In this model, the common cause – the ‘complete’ state of particles at the emission from the source – screens off the correlation between its effects – the distant measurement outcomes – but nevertheless fails to explain it. Plan of the chapter: 0 Introduction/abstract 1 The background 2 The main idea of retro-causal interpretations of quantum mechanics 3 Backward causation and causal loops: the complications 4 Arguments for the impossibility of backward causation and causal loops 5 The block universe, time, backward causation and causal loops 6 On prediction and explanation in indeterministic retro-causal interpretations of quantum mechanics 7 Bohmian Mechanics ________________________ * Forthcoming ”, in C.
    [Show full text]
  • Time Travel.Pptx
    IS TIME TRAVEL POSSIBLE? ALISON FERNANDES TRINITY COLLEGE DUBLIN 2019 IS TIME TRAVEL POSSIBLE? 1. What is time travel? IS TIME TRAVEL POSSIBLE? 1. What is time travel? 2. Is time travel conceptually possible? IS TIME TRAVEL POSSIBLE? 1. What is time travel? 2. Is time travel conceptually possible? • Is time travel compatible with the nature of time? IS TIME TRAVEL POSSIBLE? 1. What is time travel? 2. Is time travel conceptually possible? • Is time travel compatible with the nature of time? • Does time travel lead to paradoxes? IS TIME TRAVEL POSSIBLE? 1. What is time travel? 2. Is time travel conceptually possible? • Is time travel compatible with the nature of time? • Does time travel lead to paradoxes? 3. Is time travel physically possible? IS TIME TRAVEL POSSIBLE? 1. What is time travel? 2. Is time travel conceptually possible? • Is time travel compatible with the nature of time? • Does time travel lead to paradoxes? 3. Is time travel physically possible? WHAT IS TIME TRAVEL? • Is it changing your temporal location as time goes on? WHAT IS TIME TRAVEL? • Is it changing your temporal location as time goes on? • Then time travel is prevalent and unavoidable. WHAT IS TIME TRAVEL? • A ‘discrepancy between time and time’ (Lewis) • A journey where are a different amount of time passes for the traveller (their ‘personal time’), and for those in the surrounds (‘external time’). • Not just that one’s experience of time changes, but all the processes we take to measure time. • https://www.youtube.com/watch?v=M0qR7BiIWJE WHAT IS TIME TRAVEL? • The ‘distance’ between two points can be different, depending on the path you take.
    [Show full text]
  • Emergence of Causality from the Geometry of Spacetimes
    GRAU DE MATEMATIQUES` Treball final de grau Emergence of Causality from the Geometry of Spacetimes Autor: Roberto Forbicia Le´on Directora: Dra. Joana Cirici Realitzat a: Departament de Matem`atiques i Inform`atica Barcelona, 21 de Juny de 2020 Abstract In this work, we study how the notion of causality emerges as a natural feature of the geometry of spacetimes. We present a description of the causal structure by means of the causality relations and we investigate on some of the different causal properties that spacetimes can have, thereby introducing the so-called causal ladder. We pay special attention to the link between causality and topology, and further develop this idea by offering an overview of some spacetime topologies in which the natural connection between the two structures is enhanced. Resum En aquest treball s'estudia com la noci´ode causalitat sorgeix com a caracter´ıstica natural de la geometria dels espaitemps. S'hi presenta una descripci´ode l'estructura causal a trav´es de les relacions de causalitat i s'investiguen les diferents propietats causals que poden tenir els espaitemps, tot introduint l'anomenada escala causal. Es posa especial atenci´oa la con- nexi´oentre causalitat i topologia, i en particular s'ofereix un resum d'algunes topologies de l'espaitemps en qu`eaquesta connexi´o´esencara m´es evident. 2020 Mathematics Subject Classification. 83C05,58A05,53C50 Acknowledgements First and foremost, I would like to thank Dr. Joana Cirici for her guidance, advice and valuable suggestions. I would also like to thank my friends for having been willing to listen to me talk about spacetime geometry.
    [Show full text]
  • A New Time-Machine Model with Compact Vacuum Core
    A new time-machine model with compact vacuum core Amos Ori Department of Physics, Technion—Israel Institute of Technology, Haifa, 32000, Israel (September 20, 2018) Abstract We present a class of curved-spacetime vacuum solutions which develope closed timelike curves at some particular moment. We then use these vacuum solutions to construct a time-machine model. The causality violation occurs inside an empty torus, which constitutes the time-machine core. The matter field surrounding this empty torus satisfies the weak, dominant, and strong en- ergy conditions. The model is regular, asymptotically-flat, and topologically- trivial. Stability remains the main open question. The problem of time-machine formation is one of the outstanding open questions in spacetime physics. Time machines are spacetime configurations including closed timelike curves (CTCs), allowing physical observes to return to their own past. In the presence of a time machine, our usual notion of causality does not hold. The main question is: Do the laws of nature allow, in principle, the creation of a time machine from ”normal” initial conditions? (By ”normal” I mean, in particular, initial state with no CTCs.) Several types of time-machine models were explored so far. The early proposals include Godel’s rotating-dust cosmological model [1] and Tipler’s rotating-string solution [2]. More modern proposals include the wormhole model by Moris, Thorne and Yurtsever [3], and Gott’s solution [4] of two infinitely-long cosmic strings. Ori [5] later presented a time-machine arXiv:gr-qc/0503077v1 17 Mar 2005 model which is asymptotically-flat and topologically-trivial. Later Alcubierre introduced the warp-drive concept [6], which may also lead to CTCs.
    [Show full text]
  • On the Dynamics of Cosmological Singularity Theo- Rems by Vaibhav Kalvakota August 25, 2020
    On the dynamics of Cosmological Singularity Theo- rems By Vaibhav Kalvakota August 25, 2020 ABSTRACT Since 1955, a lot of progress has been made in the field of Cosmology. More specifi- cally, the idea of Singularities rose into Cosmology deeply with the introduction of the Raychaudari-Komar Singularity theorem. This was a great discovery, because although it only considered fluid-matter flow, it eventually led into the discovery of the importance of the Energy-Momentum density tensor in modelling the behaviour of geodesic incom- pleteness. The next immediate achievement was the 1965 Penrose theorem. Taking con- sideration of the modelling of the theta expansion already provided by the Raychaudari theorem and the importance of Cauchy Hypersurface relations to Space-time, Sir Penrose elegantly showed how you could understand the structure of Singularities by considering null geodesics all satisfying the expansion. Sir Stephen Hawking further improvised the theorem, by considering the importance of closed trapped surfaces. He eventually showed how geodesic incompleteness arises merely by satisfying three conditions: one, there being a closed chronal hypersurface, a set of light rays re-converging or there existing a closed trapped surface. In this document, we will consider an analytical overview of the Hawking-Penrose theorem and its implications in Cosmology and the modelling of a \realistic" Cosmology model. Further, we will also side by side see how these theorems have very huge implications in Cosmology. We will also consider the Causal structures of these models. We will consider also how the Hawking-Penrose theorem extends the original Penrose theorem and models the Time Reversal Singularity of a non-static accelerating Universe.
    [Show full text]
  • Time Traveling Paradoxes Zan Bhullar Florida International University
    Acta Cogitata: An Undergraduate Journal in Philosophy Volume 5 Article 5 2018 A Practical Understanding: Time Traveling Paradoxes Zan Bhullar Florida International University Follow this and additional works at: http://commons.emich.edu/ac Part of the Philosophy Commons Recommended Citation Bhullar, Zan (2018) "A Practical Understanding: Time Traveling Paradoxes," Acta Cogitata: An Undergraduate Journal in Philosophy: Vol. 5 , Article 5. Available at: http://commons.emich.edu/ac/vol5/iss1/5 This Article is brought to you for free and open access by the Department of History and Philosophy at DigitalCommons@EMU. It has been accepted for inclusion in Acta Cogitata: An Undergraduate Journal in Philosophy by an authorized editor of DigitalCommons@EMU. For more information, please contact [email protected]. A Practical Understanding: Time Traveling Paradoxes Zan Bhullar, Florida International University Abstract The possibility for time travel inadvertently brings forth several paradoxes. Yet, despite this fact there are still those who defend its plausibility and claim that time travel remains possible. I, however, stand firm that time travel could not be possible due to the absurdities it would allow. Of the many paradoxes time travel permits, the ones I shall be demonstrating, are the causal-loop paradox, auto-infanticide or grandfather paradox, and the multiverse theory. I will begin with the causal-loop paradox, which insists that my older-self could time travel to my present and teach me how to build a time machine, dismissing the need for me to learn how to build it. Following this, I address the grandfather paradox. This argues that I could go back in time and kill my grandfather, which would entail that I never existed, yet I was still able to kill him.
    [Show full text]
  • Causal and Relativistic Loopholes in a Delayed-Choice Quantum Eraser
    Causal and relativistic loopholes in a Delayed-Choice Quantum Eraser experiment Remote sensing & mapping quantum property fluctuations of past, present & future hypersurfaces of spacetime may be possible without violation of causality by a modified DCQE device experiment By Gergely A.Nagy, Rev. 1.3, 2011 Submitted 04.01.2011 App. ‘A’ w/MDHW Theory pre-published by Idokep.hu Ltd., R&D, Science columns, article no. 984. Article Status – Manuscript. Awaiting approval/review for itl. publication (as of 04.01., 2011) Experimental status – Quantum-optics lab w/observatory needed for experimental testing Hungary Sc.Field Quantum Optics Topic Space-time quantum-interaction 1 Causal and relativistic loopholes in a Delayed-Choice Quantum Eraser experiment Remote sensing & mapping quantum property fluctuations of past, present & future hypersurfaces of spacetime may be possible without violation of causality by a modified DCQE device experiment By Gergely A. Nagy, Rev 1.3, 2011 Abstract In this paper we show that the ‘Delayed Choice Quantum Eraser Experiment’, 1st performed by Yoon-Ho Kim, R. Yu, S.P. Kulik, Y.H. Shih, designed by Marlan O. Scully & Drühl in 1982-1999, features topological property that may prohibit, by principle, the extraction of future-related or real-time information from the detection of the signal particle on the delayed choice of its entangled idler twin(s). We show that such property can be removed, and quantum-level information from certain hypersurfaces of spacetime may be collected in the present, without resulting in any paradox or violation of causality. We point out, that such phenomenon could also be used to realize non-retrocausal, superluminar (FTL) communication as well.
    [Show full text]
  • Causal Loops
    Causal Loops Logically Consistent Correlations, Time Travel, and Computation Doctoral Dissertation submitted to the Faculty of Informatics of the Università della Svizzera italiana in partial fulfillment of the requirements for the degree of Doctor of Philosophy presented by Ämin Baumeler under the supervision of Prof. Stefan Wolf March 2017 Dissertation Committee Prof. Antonio Carzaniga Università della Svizzera italiana, Switzerland Prof. Robert Soulé Università della Svizzera italiana, Switzerland Prof. Caslavˇ Brukner Universität Wien, Austria Prof. William K. Wootters Williams College, USA Dissertation accepted on 30 March 2017 Prof. Stefan Wolf Research Advisor Università della Svizzera italiana, Switzerland Prof. Walter Binder and Prof. Michael Bronstein PhD Program Director i I certify that except where due acknowledgement has been given, the work pre- sented in this thesis is that of the author alone; the work has not been submitted previ- ously, in whole or in part, to qualify for any other academic award; and the content of the thesis is the result of work which has been carried out since the official commence- ment date of the approved research program. Ämin Baumeler Lugano, 30 March 2017 ii To this dedication iii iv To my parents, Hanspeter and Zohra v In some remote corner of the sprawling universe, twinkling among the countless solar systems, there was once a star on which some clever animals invented knowledge. It was the most arrogant, most mendacious minute in world history, but it was only a minute. After nature caught its breath a little, the star froze, and the clever animals had to die. And it was time, too: for although they boasted of how much they had come to know, in the end they realized they had gotten it all wrong.
    [Show full text]
  • Causal Loops in Time Travel
    Causal Loops in Time Travel Nicolae Sfetcu February 9, 2019 Sfetcu, Nicolae, " Causal loops in time travels", SetThings (February 9, 2019), MultiMedia Publishing (ed.), DOI: 10.13140/RG.2.2.17802.31680, ISBN: 978-606-033-195-7, URL = https://www.telework.ro/en/e-books/causal-loops-in-time-travel/ Email: [email protected] This article is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/. A translation of: Sfetcu, Nicolae, " Buclele cauzale în călătoria în timp", SetThings (2 februarie 2018), MultiMedia Publishing (ed.), DOI: 10.13140/RG.2.2.21222.52802, ISBN 978-606-033-148-3, URL = https://www.telework.ro/ro/e-books/buclele-cauzale-calatoria-timp/ Nicolae Sfetcu: Causal Loops in Time Travel Abstract In this paper I analyze the possibility of time traveling based on several specialized works, including those of Nicholas J.J. Smith ("Time Travel", The Stanford Encyclopedia of Philosophy”), (Smith 2016) William Grey (”Troubles with Time Travel”), (Grey 1999) Ulrich Meyer (”Explaining causal loops”), (Meyer 2012) Simon Keller and Michael Nelson (”Presentists should believe in time-travel”), (Keller and Nelson 2010) Frank Arntzenius and Tim Maudlin ("Time Travel and Modern Physics"), (Arntzenius and Maudlin 2013) and David Lewis (“The Paradoxes of Time Travel”). (Lewis 1976) The paper begins with an introduction in which I make a short presentation of the time travel, and continues with a history of the concept of time travel, main physical aspects of time travel, including backward time travel in general relativity and quantum physics, and time travel in the future, then a presentation of the grandfather paradox that is approached in almost all specialized works, followed by a section dedicated to the philosophy of time travel, and a section in which I analyze causal loops for time travel.
    [Show full text]
  • The Curious Link Between Free Will & Time Travel
    10 Journal of Student Research The Curious Link Between Free Will & Time Travel 11 Toward Magnetic Nanoparticle Synthesis and Characterization for Medical The Curious Link Between Free Will & Time Applications Jamie Kuhns Travel Faculty Advisor: Dr. Marlann Patterson ............................................................ 109 A Case Study of California’s Syringe Exchange Programs on Illicit Opioid Use Gina Roznak1 Johanna Peterson Sophomore, Business Administration Faculty Advisor: Dr. Tina Lee ............................................................................. 117 Advisor: Dr. Kevin Drzakowski Tradition and Modernization: The Survival of the Japanese Kimono Pakou Vang Faculty Advisor: Dr. Sheri Marnell .................................................................... 133 Abstract Wearable Technology and its Benefits in Urban Settings Philosophers have debated the meaning of free will and if people have free Vong Hang will at all. Despite the years of discussion, no one can be sure if free will exists. When Faculty Advisor: Jennifer Astwood .................................................................... 151 time travel is added to the equation, the discussion becomes even more complicated. Why Do You Taste So Ugly: Examination of Flavor on Perceived Attractiveness While it is currently impossible to willfully travel through time in the real world, the Alison Rivers and Madelyn Wozney relationship between free will and time travel can be explored in fictional stories. By Faculty Advisor: Dr. Chelsea Lovejoy ...............................................................
    [Show full text]