Cell Lineage and Cell Cycling Analyses of the 4D Micromere Using Live Imaging in the Marine Annelid Platynereis Dumerilii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Creating a Species Inventory for a Marine Protected Area: the Missing
Katherine R. Rice NOAA Species Inventory Project Spring 2018 Creating a Species Inventory for a Marine Protected Area: The Missing Piece for Effective Ecosystem-Based Marine Management Katherine R. Rice ABSTRACT Over the past decade, ecosystem-based management has been incorporated into many marine- management administrations as a marine-conservation tool, driven with the objective to predict, evaluate and possibly mitigate the impacts of a warming and acidifying ocean, and a coastline increasingly subject to anthropogenic control. The NOAA Office of National Marine Sanctuaries (ONMS) is one such administration, and was instituted “to serve as the trustee for a network of 13 underwater parks encompassing more than 600,000 square miles of marine and Great Lakes waters from Washington state to the Florida Keys, and from Lake Huron to American Samoa” (NOAA, 2015). The management regimes for nearly all national marine sanctuaries, as well as other marine protected areas, have the goal of managing and maintaining biodiversity within the sanctuary. Yet none of those sanctuaries have an inventory of their known species nor a standardized protocol for measuring or monitoring species biodiversity. Here, I outline the steps required to compile a species inventory for an MPA, but also describe some of stumbling blocks that one might encounter along the way and offer suggestions on how to handle these issues (see Appendix A: Process for Developing the MBNMS Species Inventory (PD-MBNMS)). This project consists of three research objectives: 1. Determining what species inventory efforts exist, how they operate, and their advantages and disadvantages 2. Determining the process of creating a species inventory 3. -
Positional Cues Governing Cell Migration in Leech Neurogenesis
Development 111, 993-1005 (1991) 993 Printed in Great Britain © The Company of Biologists Limited 1991 Positional cues governing cell migration in leech neurogenesis STEVEN A. TORRENCE Department of Cell and Molecular Biology, 205 LSA, University of California, Berkeley, CA 94720, USA Summary The stereotyped distribution of identified neurons and lateral-to-medial direction of their migration depend on glial cells in the leech nervous system is the product of interactions with any other cell line. However, the ability stereotyped cell migrations and rearrangements during of the migrating cells to follow their normal pathways embryogenesis. To examine the dependence of long- and to find their normal destinations does depend on distance cell migrations on positional cues provided by interactions with cells of the mesodermal cell line, which other tissues, embryos of Theromyzon rude were appears to provide positional cues that specify the examined for the effects of selective ablation of various migration pathways. embryonic cell lines on the migration and final distribution of neural and glial precursor cells descended from the bilaterally paired ectodennal cell lines desig- Key words: cell lineage, cell commitment, selective cell nated q handlets. The results suggest that neither the ablation, mesoderm, leech, neurogenesis, cell migration, commitment of q-bandlet cells to migrate nor the general positional cues. Introduction achieve their characteristic final positions in the absence of any other ectodermal cell line, they require the Individually identified neurons and glial cells occupy presence of mesodermal tissues to do so (Stuart et al. characteristic positions in the central and peripheral 1989; Torrence et al. 1989). These observations sugges- nervous systems of leeches. -
An Overview of Glossiphoniid Leech Development1
Color profile: Disabled Composite Default screen 218 Biology of neglected groups: Annelida / Biologie des groupes négligés : Annelida An overview of glossiphoniid leech development1 David A. Weisblat and Françoise Z. Huang Abstract: Dramatic advances in understanding the development of selected “model” organisms, coupled with the real- ization that genes which regulate development are often conserved between diverse taxa, have renewed interest in com- parative development and evolution. Recent molecular phylogenies seem to be converging on a new consensus “tree,” according to which higher bilaterians fall into three major groups, Deuterostoma, Ecdysozoa, and Lophotrochozoa. Commonly studied model systems for development fall almost exclusively within the first two of these groups. Glossiphoniid leeches (phylum Annelida) offer certain advantages for descriptive and experimental embryology per se, and can also serve to represent the lophotrochozoan clade. We present an overview of the development of glossiphoniid leeches, highlighting some current research questions and the potential for comparative cellular and molecular studies. Résumé : Les progrès spectaculaires de la recherche sur le développement d’organismes « modèles » sélectionnés et la constatation que les gènes régulateurs du développement sont souvent conservés d’un taxon à un autre ont ranimé l’intérêt pour leur développement et leur évolution. Les phylogénies moléculaires récentes semblent converger vers un « arbre » concensus nouveau dans lequel les organismes bilatéraux supérieurs appartiennent à l’un ou l’autre de trois groupes principaux, les Deuterostoma, les Ecdysozoa et les Lophotrochozoa. Les systèmes modèles de développement étudiés couramment appartiennent presque exclusivement aux deux premiers de ces groupes. Les sangsues glossiphonii- des (phylum Annelida) sont des sujets bien appropriés en embryologie descriptive ou expérimentale et elles peuvent également représenter le groupe des Lophotrochozoa. -
Migration of Neural Precursor Cells
The Journal of Neuroscience September 1996, 6(9): 2736-2746 Gangliogenesis in Leech Embryos: Migration of Neural Precursor Cells Steven A. Torrence and Duncan K. Stuart Department of Molecular Biology, University of California, Berkeley, Berkeley, California 94720 In the metameric CNS of leeches, identified neurons occupy axons of neurons situated in the CNS and the centripetal axons highly stereotyped positions in each segmental ganglion. Al- of neurons situated in the periphery. Some of the peripheral though many of the neural precursor cells arise near their de- neurons have been identified (Blackshaw et al., 1982; Blair, finitive positions, some arise outside the prospective domain of 1983; Braun, 1985; Rude, 1969; Stuart et al., 1986; Weisblat the segmental ganglia and thus must migrate into the CNS. and Shankland, 1985). Here, we report the results of an analysis of the role of cell The development of the leech nervous system is as stereo- migration in gangliogenesis in the leech Theromyzon rude. Seg- typed as its adult architecture. The sequence of embryonic cell mental ganglia of the ventral nerve cord arise as laterally thick- divisions is highly determinate, and developmental cell lineage ened sheets of tissue lying astride the ventral midline. Particular analyses in the glossiphoniid leeches Helobdella triserialis and identified circular and longitudinal muscle fibers, visualized by Haementeria ghilianii have shown that each of the major ec- indirect immunofluorescence using a monoclonal antibody todermal and mesodermal precursor blastomeres contributes a against leech muscle, outline the presumptive ganglionic terri- stereotyped subset of the cells in each segmental ganglion, as tories even before the ganglionic rudiments become morpholog- well as in the periphery of each segment (Kramer and Weisblat, ically distinct and serve as anatomical landmarhs to which the 1985; Weisblat et al., 1978, 1980a, 1984). -
Six3 Demarcates the Anterior-Most Developing Brain Region In
Steinmetz et al. EvoDevo 2010, 1:14 http://www.evodevojournal.com/content/1/1/14 RESEARCH Open Access Six3 demarcates the anterior-most developing brain region in bilaterian animals Patrick RH Steinmetz1,6†, Rolf Urbach2†, Nico Posnien3,7, Joakim Eriksson4,8, Roman P Kostyuchenko5, Carlo Brena4, Keren Guy1, Michael Akam4*, Gregor Bucher3*, Detlev Arendt1* Abstract Background: The heads of annelids (earthworms, polychaetes, and others) and arthropods (insects, myriapods, spiders, and others) and the arthropod-related onychophorans (velvet worms) show similar brain architecture and for this reason have long been considered homologous. However, this view is challenged by the ‘new phylogeny’ placing arthropods and annelids into distinct superphyla, Ecdysozoa and Lophotrochozoa, together with many other phyla lacking elaborate heads or brains. To compare the organisation of annelid and arthropod heads and brains at the molecular level, we investigated head regionalisation genes in various groups. Regionalisation genes subdivide developing animals into molecular regions and can be used to align head regions between remote animal phyla. Results: We find that in the marine annelid Platynereis dumerilii, expression of the homeobox gene six3 defines the apical region of the larval body, peripherally overlapping the equatorial otx+ expression. The six3+ and otx+ regions thus define the developing head in anterior-to-posterior sequence. In another annelid, the earthworm Pristina, as well as in the onychophoran Euperipatoides, the centipede Strigamia and the insects Tribolium and Drosophila,asix3/optix+ region likewise demarcates the tip of the developing animal, followed by a more posterior otx/otd+ region. Identification of six3+ head neuroectoderm in Drosophila reveals that this region gives rise to median neurosecretory brain parts, as is also the case in annelids. -
Pdumbase: a Transcriptome Database and Research Tool for Platynereis
Chou et al. BMC Genomics (2018) 19:618 https://doi.org/10.1186/s12864-018-4987-0 DATABASE Open Access PdumBase: a transcriptome database and research tool for Platynereis dumerilii and early development of other metazoans Hsien-Chao Chou1,2†, Natalia Acevedo-Luna1†, Julie A. Kuhlman1 and Stephan Q. Schneider1* Abstract Background: The marine polychaete annelid Platynereis dumerilii has recently emerged as a prominent organism for the study of development, evolution, stem cells, regeneration, marine ecology, chronobiology and neurobiology within metazoans. Its phylogenetic position within the spiralian/ lophotrochozoan clade, the comparatively high conservation of ancestral features in the Platynereis genome, and experimental access to any stage within its life cycle, make Platynereis an important model for elucidating the complex regulatory and functional molecular mechanisms governing early development, later organogenesis, and various features of its larval and adult life. High resolution RNA- seq gene expression data obtained from specific developmental stages can be used to dissect early developmental mechanisms. However, the potential for discovery of these mechanisms relies on tools to search, retrieve, and compare genome-wide information within Platynereis, and across other metazoan taxa. Results: To facilitate exploration and discovery by the broader scientific community, we have developed a web-based, searchable online research tool, PdumBase, featuring the first comprehensive transcriptome database for Platynereis dumerilii during early stages of development (2 h ~ 14 h). Our database also includes additional stages over the P. dumerilii life cycle and provides access to the expression data of 17,213 genes (31,806 transcripts) along with annotation information sourced from Swiss-Prot, Gene Ontology, KEGG pathways, Pfam domains, TmHMM, SingleP, and EggNOG orthology. -
A Transcriptional Blueprint for a Spiral-Cleaving Embryo Hsien-Chao Chou1,2, Margaret M
Chou et al. BMC Genomics (2016) 17:552 DOI 10.1186/s12864-016-2860-6 RESEARCH ARTICLE Open Access A transcriptional blueprint for a spiral-cleaving embryo Hsien-Chao Chou1,2, Margaret M. Pruitt1,3, Benjamin R. Bastin1 and Stephan Q. Schneider1* Abstract Background: The spiral cleavage mode of early development is utilized in over one-third of all animal phyla and generates embryonic cells of different size, position, and fate through a conserved set of stereotypic and invariant asymmetric cell divisions. Despite the widespread use of spiral cleavage, regulatory and molecular features for any spiral-cleaving embryo are largely uncharted. To addressthisgapweuseRNA-sequencingonthespiralian model Platynereis dumerilii to capture and quantify the first complete genome-wide transcriptional landscape of early spiral cleavage. Results: RNA-sequencing datasets from seven stages in early Platynereis development, from the zygote to the protrochophore, are described here including the de novo assembly and annotation of ~17,200 Platynereis genes. Depth and quality of the RNA-sequencing datasets allow the identification of the temporal onset and level of transcription for each annotated gene, even if the expression is restricted to a single cell. Over 4000 transcripts are maternally contributed and cleared by the end of the early spiral cleavage phase. Small early waves of zygotic expression are followed by major waves of thousands of genes, demarcating the maternal to zygotic transition shortly after the completion of spiral cleavages in this annelid species. Conclusions: Our comprehensive stage-specific transcriptional analysis of early embryonic stages in Platynereis elucidates the regulatory genome during early spiral embryogenesis and defines the maternal to zygotic transition in Platynereis embryos. -
No 158, December 2018
FROGCALL No 158, December 2018 THE FROG AND TADPOLE STUDY GROUP NSW Inc. Facebook: https://www.facebook.com/groups/FATSNSW/ Email: [email protected] Frogwatch Helpline 0419 249 728 Website: www.fats.org.au ABN: 34 282 154 794 MEETING FORMAT President’s Page Friday 7th December 2018 Arthur White 6.30 pm: Lost frogs: 2 Green Tree Frogs Litoria caerulea, seeking forever homes. Priority to new pet frog owners. Please bring your membership card and cash $50 donation. Sorry, we don’t have EFTPOS. Your current NSW NPWS amphibian licence must be sighted on the night. Rescued and adopted frogs can 2017 –2018 was another strong year for FATS. FATS is one of the few conservation groups that is man- never be released. aging to maintain its membership numbers and still be active in the community. Other societies have seen numbers fall mainly because the general public seems to prefer to look up information on the web 7.00 pm: Welcome and announcements. and not to attend meetings or seek information firsthand. It is getting harder for FATS to get people to 7.45 pm: The main speaker is John Cann, talking about turtles. be active in frog conservation but we will continue to do so for as long as we can. Last year we made the decision to start sending out four issues of FrogCall per year electronically. 8.30 pm: Frog-O-Graphic Competition Prizes Awarded. This saves FATS a lot of postage fees. Our members have informed us that when FrogCall arrives as an email attachment it is often not read, or simply ignored. -
A New Cryptic Species of Neanthes (Annelida: Phyllodocida: Nereididae)
RAFFLES BULLETIN OF ZOOLOGY 2015 RAFFLES BULLETIN OF ZOOLOGY Supplement No. 31: 75–95 Date of publication: 10 July 2015 http://zoobank.org/urn:lsid:zoobank.org:pub:A039A3A6-C05B-4F36-8D7F-D295FA236C6B A new cryptic species of Neanthes (Annelida: Phyllodocida: Nereididae) from Singapore confused with Neanthes glandicincta Southern, 1921 and Ceratonereis (Composetia) burmensis (Monro, 1937) Yen-Ling Lee1* & Christopher J. Glasby2 Abstract. A new cryptic species of Neanthes (Nereididae), N. wilsonchani, new species, is described from intertidal mudflats of eastern Singapore. The new species was confused with both Ceratonereis (Composetia) burmensis (Monro, 1937) and Neanthes glandicincta Southern, 1921, which were found to be conspecific with the latter name having priority. Neanthes glandicincta is newly recorded from Singapore, its reproductive forms (epitokes) are redescribed, and Singapore specimens are compared with topotype material from India. The new species can be distinguished from N. glandicincta by slight body colour differences and by having fewer pharyngeal paragnaths in Areas II (4–8 vs 7–21), III (11–28 vs 30–63) and IV (1–9 vs 7–20), and in the total number of paragnaths for all Areas (16–41 vs 70–113). No significant differences were found in the morphology of the epitokes between the two species. The two species have largely non-overlapping distributions in Singapore; the new species is restricted to Pleistocene coastal alluvium in eastern Singapore, while N. glandicinta occurs in western Singapore as well as in Malaysia and westward to India. Key words. polychaete, new species, taxonomy, ragworm INTRODUCTION Both species are atypical members of their respective nominative genera: N. -
Family Nereididae Marine Sediment Monitoring
Family Nereididae Marine Sediment Monitoring Puget Sound Polychaetes: Nereididae Family Nereididae Family-level characters (from Hilbig, 1994) Prostomium piriform (pear-shaped) or rounded, bearing 2 antennae, two biarticulate palps, and 2 pairs of eyes. Eversible pharynx with 2 sections, the proximal oral ring and the distal maxillary ring which possesses 2 fang-shaped, often serrated terminal jaws; both the oral and maxillary rings may bear groups of papillae or hardened paragnaths of various sizes, numbers, and distribution patterns. Peristomium without parapodia, with 4 pairs of tentacular cirri. Parapodia uniramous in the first 2 setigers and biramous thereafter; parapodia possess several ligules (strap-like lobes) and both a dorsal cirrus and ventral cirrus. Shape, size, location of ligules is distinctive. They are more developed posteriorly, so often need to see ones from median to posterior setigers. Setae generally compound in both noto- and neuropodia; some genera have simple falcigers (blunt-tipped setae)(e.g., Hediste and Platynereis); completely lacking simple capillary setae. Genus and species-level characters The kind and the distribution of the setae distinguish the genera and species. The number and distribution of paragnaths on the pharynx. Unique terminology for this family Setae (see Hilbig, 1994, page 294, for pictures of setae) o Homogomph – two prongs of even length where the two articles of the compound setae connect. o Heterogomph – two prongs of uneven length where the two articles of the compound setae connect. o Spinigers - long articles in the compound setae. o Falcigers – short articles in the compound setae. o So, there can be homogomph falcigers and homogomph spinigers, and heterogomph falcigers and heterogomph spinigers. -
Polychaeta: Nereididae) in Venezuelans Waters
Presence of Platynereis mucronata de León-González, Solís-Weiss & Valadez-Rocha, 2001 (Polychaeta: Nereididae) in Venezuelans waters MARÍA CECILIA GÓMEZ-MADURO1 & OSCAR DÍAZ-DÍAZ2* 1 Posgrado en Ciencias Marinas Instituto Oceanográfico de Venezuela. 2 Laboratorio de Biología de Poliquetos, Dpto. Biología Marina, Instituto Oceanográfico de Venezuela. *Corresponding author: [email protected] Abstract. In a study of polychaetes associated to the algae Sargassum vulgare collected in the Gulf of Cariaco, Venezuela. Seventy-five specimens of a nereidid species were examined and identified as Platyereis mucronata. With this record the distribution range of this species extends to the coast of Venezuela. Keywords: Polychaetofauna, annelids, biodiversity, distribution, nereidids. Resumen. Presencia de Platynereis mucronata de León-González, Solís-Weiss & Valadez-Rocha, 2001 (Polychaeta: Nereididae) en aguas Venezolanas. En un estudio sobre poliquetos asociados al alga Sargassum vulgarae recolectados en el Golfo de Cariaco, Venezuela, se examinaron 65 ejemplares de un neréidido e identificados como Platyereis mucronata. Con este registro se amplía el área de distribución de esta especie hasta la costa de Venezuela. Palabras clave: Poliquetofauna, anélidos, biodiversidad, distribución, neréididos. The Nereididae Lamarck, 1818 family is Liñero-Arana, 1983; Liñero-Arana & Díaz-Díaz, grouped within the order Phyllodocida, is one of the 2007; Vanegas-Espinosa et al., 2007), but only two most representative and diverse families, with over are Platynereis species (Platynereis coccinea (Delle 530 described species, belonging to 43 genera Chiaje 1822) and Platynereis dumerilii (Audouin & (Glasby et al., 2000). The nereidid polychaetes are Milne Edwards 1834)), both registered in the Gulf of primarily marine, although some species are present Cariaco (Amaral & Nonato 1975, Liñero-Arana & in brackish waters. -
Annelids, Platynereis Dumerilii In: Boutet, A
Annelids, Platynereis dumerilii In: Boutet, A. & B. Schierwater, eds. Handbook of Established and Emerging Marine Model Organisms in Experimental Biology, CRC Press Quentin Schenkelaars, Eve Gazave To cite this version: Quentin Schenkelaars, Eve Gazave. Annelids, Platynereis dumerilii In: Boutet, A. & B. Schierwater, eds. Handbook of Established and Emerging Marine Model Organisms in Experimental Biology, CRC Press. In press. hal-03153821 HAL Id: hal-03153821 https://hal.archives-ouvertes.fr/hal-03153821 Preprint submitted on 26 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annelids, Platynereis dumerilii Quentin Schenkelaars, Eve Gazave 13.1 History of the model 13.2 Geographical location 13.3 Life cycle 13.4 Anatomy 13.4.1 External anatomy of Platynereis dumerilii juvenile (atoke) worms 13.4.2 Internal anatomy of Platynereis dumerilii juvenile (atoke) worms 13.4.2.1 Nervous system: 13.4.2.2 Circulatory system 13.4.2.3 Musculature 13.4.2.4 Excretory system 13.4.2.5 Digestive system 13.4.3 External and internal anatomy of Platynereis dumerilii