Notes on Secamonoideae (Apocynaceae) in Africa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work. -
Ixoroideae– Rubiaceae
IAWA Journal, Vol. 21 (4), 2000: 443–455 WOOD ANATOMY OF THE VANGUERIEAE (IXOROIDEAE– RUBIACEAE), WITH SPECIAL EMPHASIS ON SOME GEOFRUTICES by Frederic Lens1, Steven Jansen1, Elmar Robbrecht2 & Erik Smets1 SUMMARY The Vanguerieae is a tribe consisting of about 500 species ordered in 27 genera. Although this tribe is mainly represented in Africa and Mada- gascar, Vanguerieae also occur in tropical Asia, Australia, and the isles of the Pacific Ocean. This study gives a detailed wood anatomical de- scription of 34 species of 15 genera based on LM and SEM observa- tions. The secondary xylem is homogeneous throughout the tribe and fits well into the Ixoroideae s.l. on the basis of fibre-tracheids and dif- fuse to diffuse-in-aggregates axial parenchyma. The Vanguerieae in- clude numerous geofrutices that are characterised by massive woody branched or unbranched underground parts and slightly ramified un- branched aboveground twigs. The underground structures of geofrutices are not homologous; a central pith is found in three species (Fadogia schmitzii, Pygmaeothamnus zeyheri and Tapiphyllum cinerascens var. laetum), while Fadogiella stigmatoloba shows central primary xylem which is characteristic of roots. Comparison of underground versus aboveground wood shows anatomical differences in vessel diameter and in the quantity of parenchyma and fibres. Key words: Vanguerieae, Rubiaceae, systematic wood anatomy, geo- frutex. INTRODUCTION The Vanguerieae (Ixoroideae–Rubiaceae) is a large tribe consisting of about 500 spe- cies and 27 genera. Tropical Africa is the centre of diversity (about 80% of the species are found in Africa and Madagascar), although the tribe is also present in tropical Asia, Australia, and the isles of the Pacific Ocean (Bridson 1987). -
Thesis for the Degree MM. 3. ' WARREN DOUG STEVENS
-.“,' .- -~.L‘v LOGANIACEAE. AND BUDD it! DISTRtCT, MYSORE STATE, INDIA . Thesis for the Degree MM. 3. MICHIGAN STATE UNIVERSITY ' WARREN DOUG STEVENS ‘ 197-1 ‘ 1 ' o ,. ' . a a I ‘ . ' . n a I _ - u . I . .t . I . - . ,, v ., .. - . ' _ ’ a > 1 . _ ' on '- ' t . o . .. v, , . , . A . ‘,'_. '0' . .t. , a . - , n ." .. ' . , - . ,~, . .. ., . , . .“ . r f . - ..- u 'l 'O' ' c I . A '0 ‘on ' - o A. .,. " ' ‘ - ow l I l’ I o, ,, . ...-:. ..-’ .- . ,, A . o .-'A .. ‘. o.. ' '-'.ui -n "' »/-- ...: -- 2-: .- o O ’I' . ‘ "l"'.n , o . I , p«,., O ‘5 '0. " " . l .. .. o ll 0 I‘ § .- . .. , , . o .‘ . , ... I. - - 0 n "u"- at -.4 Q o o. a "' -- -. 1.. n -~: ---t~ . ‘ c o -:. ' ,. - ..|.', ., .> -.' on - . .r . , . ._a . ..-.,-. - o . v~ a. u ’ ' ' ' r‘,: -- . ‘-' ' -‘ - . - . .-<t - - ., .. .o I -'~'.»- 9. a v. , o v . ... , .. ._. a . _, ._. ‘4 ".- I u .¢ ""r’n'¢ I. v -.m:m-.r.n-wm . ‘V ’ o l '0 -u .,.. ..._,, v , . , V ,. .. 0 3 gr. I - (lav- C : . 9 .0 .II 0.: o .t . ... o l ! i. U) 1.1!. 0 ~ ‘ IV! .A 1 . o .l o - .. n 4 .- ».o 1 0"?- ‘."lfl'v. ' n -' 1', . ... I n o A . .5 0 f O - . 1.. ., u ’_ .' I:.':o lllmu 0!. -, -I: -.. ... 9 ~ « :l 'a ' 1! LIE R A R Y Michigan Stats University ABSTRACT THE ASCLEPIADACEAE, APOCYNACEAE, LOGANIACEAE, AND BUDDLEIACEAE IN HASSAN DISTRICT, MYSORE STATE, INDIA By Warren Douglas Stevens A floristic treatment for the Asclepiadaceae, Apocynaceae. Loganiaceae. and Buddleiaceae in Hassan District. Mysore State. India is presented. The treatment includes keys, brief nomen- clatural citations and synonymys, descriptions. distributions. and specimen citations. -
Albuca Spiralis
Flowering Plants of Africa A magazine containing colour plates with descriptions of flowering plants of Africa and neighbouring islands Edited by G. Germishuizen with assistance of E. du Plessis and G.S. Condy Volume 62 Pretoria 2011 Editorial Board A. Nicholas University of KwaZulu-Natal, Durban, RSA D.A. Snijman South African National Biodiversity Institute, Cape Town, RSA Referees and other co-workers on this volume H.J. Beentje, Royal Botanic Gardens, Kew, UK D. Bridson, Royal Botanic Gardens, Kew, UK P. Burgoyne, South African National Biodiversity Institute, Pretoria, RSA J.E. Burrows, Buffelskloof Nature Reserve & Herbarium, Lydenburg, RSA C.L. Craib, Bryanston, RSA G.D. Duncan, South African National Biodiversity Institute, Cape Town, RSA E. Figueiredo, Department of Plant Science, University of Pretoria, Pretoria, RSA H.F. Glen, South African National Biodiversity Institute, Durban, RSA P. Goldblatt, Missouri Botanical Garden, St Louis, Missouri, USA G. Goodman-Cron, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, RSA D.J. Goyder, Royal Botanic Gardens, Kew, UK A. Grobler, South African National Biodiversity Institute, Pretoria, RSA R.R. Klopper, South African National Biodiversity Institute, Pretoria, RSA J. Lavranos, Loulé, Portugal S. Liede-Schumann, Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany J.C. Manning, South African National Biodiversity Institute, Cape Town, RSA A. Nicholas, University of KwaZulu-Natal, Durban, RSA R.B. Nordenstam, Swedish Museum of Natural History, Stockholm, Sweden B.D. Schrire, Royal Botanic Gardens, Kew, UK P. Silveira, University of Aveiro, Aveiro, Portugal H. Steyn, South African National Biodiversity Institute, Pretoria, RSA P. Tilney, University of Johannesburg, Johannesburg, RSA E.J. -
Kew Science Publications for the Academic Year 2017–18
KEW SCIENCE PUBLICATIONS FOR THE ACADEMIC YEAR 2017–18 FOR THE ACADEMIC Kew Science Publications kew.org For the academic year 2017–18 ¥ Z i 9E ' ' . -,i,c-"'.'f'l] Foreword Kew’s mission is to be a global resource in We present these publications under the four plant and fungal knowledge. Kew currently has key questions set out in Kew’s Science Strategy over 300 scientists undertaking collection- 2015–2020: based research and collaborating with more than 400 organisations in over 100 countries What plants and fungi occur to deliver this mission. The knowledge obtained 1 on Earth and how is this from this research is disseminated in a number diversity distributed? p2 of different ways from annual reports (e.g. stateoftheworldsplants.org) and web-based What drivers and processes portals (e.g. plantsoftheworldonline.org) to 2 underpin global plant and academic papers. fungal diversity? p32 In the academic year 2017-2018, Kew scientists, in collaboration with numerous What plant and fungal diversity is national and international research partners, 3 under threat and what needs to be published 358 papers in international peer conserved to provide resilience reviewed journals and books. Here we bring to global change? p54 together the abstracts of some of these papers. Due to space constraints we have Which plants and fungi contribute to included only those which are led by a Kew 4 important ecosystem services, scientist; a full list of publications, however, can sustainable livelihoods and natural be found at kew.org/publications capital and how do we manage them? p72 * Indicates Kew staff or research associate authors. -
Apocynaceae, Secamonoideae) from Borneo
BLUMEA 49: 129–133 Published on 3 May 2004 doi: 10.3767/000651904X486232 A NEW SPECIES OF SECAMONE (APOCYNACEAE, SECAMONOIDEAE) FROM BORNEO JENS KLACKENBERG Naturhistoriska riksmuseet, Sektionen för fanerogambotanik, Box 50007, SE-10405 Stockholm, Sweden; e-mail: [email protected] SUMMARY A new species of Secamone (Apocynaceae, Secamonoideae), S. badia Klack. from Sarawak, Malaysia, is described and illustrated. The distinctness of the genera Toxocarpus and Genianthus in relation to Secamone is also discussed. Key words: Apocynaceae, Secamone, Toxocarpus, Borneo, new species. INTRODUCTION During a worldwide revision of subfamily Secamonoideae (Apocynaceae) I came across a specimen from Borneo that does not fit into any known taxon and must be described as a new species of Secamone R.Br. Secamone consists of suffrutescent twiners or small scrambling herbs to rarely erect shrublets with usually white to yellow small flowers. The genus is distributed in southern and tropical Africa as well as in Madagascar and on several smaller islands in the Indian Ocean. In Asia it is found in Sri Lanka and southern India to the Himalayas, and from southern China in the northwest through South East Asia to eastern Australia and New Caledonia (Goyder, 1992; Klackenberg, 1992a, b, 2001). Asian Secamonoideae have not been the object of more comprehensive taxonomic work on subfamily (tribe) level since Tsiang (1939) revised this group. Secamonoideae are characterized by translators bearing four pollinia, not two as in Asclepiadoideae, nor furnished with a spoon-like pollen carrier as in Periplocoideae (see Endress & Bruyns (2000) for a classification of Apocynaceae with Asclepiadaceae included). In Asia four genera have been recognized in Secamonoideae, viz. -
The Red List of Rhododendrons
The Red List of Rhododendrons Douglas Gibbs, David Chamberlain and George Argent BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) is a membership organization linking botanic gardens in over 100 countries in a shared commitment to biodiversity conservation, sustainable use and environmental education. BGCI aims to mobilize botanic gardens and work with partners to secure plant diversity for the well-being of people and the planet. BGCI provides the Secretariat for the IUCN/SSC Global Tree Specialist Group. Published by Botanic Gardens Conservation FAUNA & FLORA INTERNATIONAL (FFI) , founded in 1903 and the International, Richmond, UK world’s oldest international conservation organization, acts to conserve © 2011 Botanic Gardens Conservation International threatened species and ecosystems worldwide, choosing solutions that are sustainable, are based on sound science and take account of ISBN: 978-1-905164-35-6 human needs. Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. THE GLOBAL TREES CAMPAIGN is undertaken through a partnership between FFI and BGCI, working with a wide range of other The designation of geographical entities in this document and the presentation of the material do not organizations around the world, to save the world’s most threatened trees imply any expression on the part of the authors and the habitats in which they grow through the provision of information, or Botanic Gardens Conservation International delivery of conservation action and support for sustainable use. -
Asclepiadospermum Gen. Nov., the Earliest Fossil Record Of
RESEARCH ARTICLE Asclepiadospermum gen. nov., the earliest fossil record of Asclepiadoideae (Apocynaceae) from the early Eocene of central Qinghai-Tibetan Plateau, and its biogeographic implications Cédric Del Rio1,2, Teng-Xiang Wang1,3, Jia Liu1,2, Shui-Qing Liang1,4, Robert A. Spicer1,5, Fei-Xiang Wu6, Zhe-Kun Zhou1,2,7, and Tao Su1,2,3,8 Manuscript received 29 September 2019; revision accepted 18 PREMISE: Apocynaceae is common in the fossil record, especially as seed remains from the November 2019. Neogene of Europe and North America, but rare in Asia. Intrafamilial assignment is difficult 1 CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna due to the lack of diagnostic characters, and new fossil and modern data are needed to Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, understand the paleobiogeography of this group. Yunnan 666303, China 2 Center of Conservation Biology / Economic Botany / Plant METHODS: We studied three Apocynaceae seed impressions from the Lower Eocene Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Niubao Formation, Jianglang village, Bangor County, central Qinghai-Tibetan Plateau. Mengla 666303, China Morphological data from living and fossil species were phylogenetically mapped to enable 3 University of Chinese Academy of Sciences, Beijing 100049, China systematic assignment. 4 Public Technology Service Center, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan RESULTS: We describe a new genus, Asclepiadospermum gen. nov., and two new species, 666303, China A. marginatum sp. nov. and A. ellipticum sp. nov. These species are characterized by an 5 School of Environment, Earth and Ecosystem Sciences, The Open elliptical seed, a margin surrounding the central part of the seed, and polygonal, irregular, University, Milton Keynes MK7 6AA, UK and small epidermal cells, and differ mainly in terms of the size of the margin and the 6 Key Laboratory of Vertebrate Evolution and Human shape of the apex. -
<I>Secamone</I> (<I>Apocynaceae
Blumea 55, 2010: 231–241 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE doi:10.3767/000651910X540018 New species and combinations of Secamone (Apocynaceae, Secamonoideae) from South East Asia J. Klackenberg1 Key words Abstract Five new species of Secamone (Apocynaceae, Secamonoideae) from Malaysia and Indonesia, viz. S. lenticellata from Sarawak, S. coronata and S. longituba from Kalimantan, S. sumatrana from Sumatra, and Apocynaceae S. kunstleri from the Malayan Peninsula, are described, illustrated and compared with related taxa. Furthermore, Indonesia ten new combinations are proposed: Secamone curtisii, S. glabrescens, S. griffithii, S. lagenifera, S. langkawiensis, Malaysia S. penangiana, S. rhopalophora, S. scortechinii, S. siamensis and S. spirei. new combinations new species Published on 19 October 2010 Secamone Toxocarpus INTRODUCTION DESCRIPTION OF NEW TAXA During continuing studies of subfamily Secamonoideae (Apo 1. Secamone lenticellata Klack., sp. nov. — Fig. 1; Map 1 cynaceae) for Flora Malesiana I have come across some Species haec Secamonae griffithii (Decne.) Klack., S. glabrescenti (M.R.Hend.) specimens from Borneo, Sumatra and the Malayan Peninsula Klack. et S. badiae Klack. similis inflorescentiis apicem versus ad ramulis that do not fit into any known taxon and are here described as floribus in fasciculos dispositis, sed differt lenticellis prominentibus et lobis five new species of Secamone R.Br. The paleotropic genus corollae ad basim non nisi breve coalescentibus. — Typus: Chai S.30061 Secamone is distributed in tropical as well as in southern Africa, (holo L), Malaysia, Sarawak, G. Api, Ulu Melinau, 4th Division, c. 120 m being particularly species rich in Madagascar (Goyder 1992, alt., 2 Sept. 1970. Klackenberg 1992b, 2001). -
Enabling Evolutionary Studies at Multiple Scales in Apocynaceae Through Hyb-Seq
APPLICATION ARTICLE Enabling evolutionary studies at multiple scales in Apocynaceae through Hyb-Seq Shannon C. K. Straub1,4 , Julien Boutte1, Mark Fishbein2 , and Tatyana Livshultz3 Manuscript received 1 July 2020; revision accepted 12 September PREMISE: Apocynaceae is the 10th largest flowering plant family and a focus for study of 2020. plant–insect interactions, especially as mediated by secondary metabolites. However, it has 1 Department of Biology, Hobart and William Smith Colleges, 300 few genomic resources relative to its size. Target capture sequencing is a powerful approach Pulteney Street, Geneva, New York 14456, USA for genome reduction that facilitates studies requiring data from the nuclear genome in non- 2 Department of Plant Biology, Ecology, and Evolution, Oklahoma model taxa, such as Apocynaceae. State University, 301 Physical Sciences, Stillwater, Oklahoma 74078, USA METHODS: Transcriptomes were used to design probes for targeted sequencing of putatively 3 Department of Biodiversity, Earth, and Environmental Sciences single-copy nuclear genes across Apocynaceae. The sequences obtained were used to assess and the Academy of Natural Sciences, Drexel University, 1900 the success of the probe design, the intrageneric and intraspecific variation in the targeted Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103, USA genes, and the utility of the genes for inferring phylogeny. 4Author for correspondence: [email protected] RESULTS: From 853 candidate nuclear genes, 835 were consistently recovered in single Citation: Straub, S. C. K., J. Boutte, M. Fishbein, and T. Livshultz. copy and were variable enough for phylogenomics. The inferred gene trees were useful for 2020. Enabling evolutionary studies at multiple scales in coalescent-based species tree analysis, which showed all subfamilies of Apocynaceae as Apocynaceae through Hyb-Seq. -
Revision of the Malagasy Genus Calyptranthera (Asclepiadaceae)
Revision of the Malagasy genus Calyptranthera (Asclepiadaceae) Jens KLACKENBERG Naturhistoriska riksmuseet, Sektionen for fanerogambotanik, Box 50007, S-104 05 Stockholm, Sweden. [email protected] ABSTRACT The Malagasy endemic genus Calyptranthera (Asclepiadaceae) is revised. Five species are recognized. Four new species are described, viz. C. baronii, C. bre- vicaudata, C. grandiflora and C. pubipetala. The morphological structure of KEYWORDS the flower is discussed and a key, descriptions, the distribution and drawings Calyptranthera, of all taxa are given. A hypothesis of the cladistic relationship of the species is Asclepiadaceae, Madagascar. presented. Phytogeography and vicariance patterns are discussed. RÉSUMÉ Révision du genre Calyptranthera (Asclepiadaceae), endémique de Madagascar. Cinq espèces sont reconnues. Quatre nouvelles espèces sont décrites : C. baronii, C. brevicaudata, C. grandiflora et C. pubipetala. La structure morphologique de la fleur est discutée ; une clé de détermination, les descriptions, la distribution et des illustrations de tous les taxons sont MOTS CLÉS données. Une hypothèse indiquant les affinités phylogénétiques des espèces Calyptranthera, Asclepiadaceae, est proposée. Les données relatives à la phytogéographie et à la vicariance Madagascar. sont discutées. ADANSONIA, sér. 3 • 1997 • 19(1) 21 Klackenberg J. INTRODUCTION MATERIAL AND METHODS This study is based on herbarium material from K, The genus Calyptrantbera was described recent MO and P herbaria (abbreviations according to ly (KLACKENBERG 1996a: 27) from only one col HOLMGREN et al. 1990). All specimens cited have lection with few flowers. This species had been studied. The species concept used in this revision conforms previously been placed in Toxocarpus. After to KLACKENBERG (1992b: 597) and the spellings of having examined unidentified Asclepiadaceae geographical names are in accordance with the guide material from the Kew, Missouri and Paris herba lines given in KLACKENBERG (1992a: 7). -
Field Identification and Phytochemical Uses of Oxystelma Esculentum (L.F
Journal of Pharmacognosy and Phytochemistry 2019; 8(3): 3730-3737 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2019; 8(3): 3730-3737 Field identification and phytochemical uses of Received: 04-03-2019 Accepted: 06-04-2019 Oxystelma esculentum (L.f.) Sm.: A rare wetland climber of Odisha State, India Muktipada Panda Department of Botany, Regional Institute of Education, Bhubaneswar (RIE-NCERT, Muktipada Panda BBSR), Odisha, India Abstract This study reports presence of Oxystelma esculentum (L.f.) Sm. (Subfamily: Asclepiadoideae), a very rare wetland climber from coastal areas of Odisha state, India. This is the first time report and the species can be identified in the field having characters like, a climber with milky latex, opposite leaves, pointed leaf tip, white (outside) and pink (inside) colored flowers, pointed petal tips with hairy edges, presence of pollinia, smooth follicular fruit with many hairy small seeds. The plant is restricted to abandoned, tide influenced canal and river banks of Subarnarekha River near to Kasaphal estuary, Balasore. The plant is host specific and more frequently found associated with Ipomoea carnea Jacq. and rarely with Ficus hispida Linn.f., Vitex negundo Linn., Ludwigia octovalvis (Jacq.) Raven, Clerodendrum inermi (Linn.) Gaertn. and Sesbania bispinosa (Jacq.) W.F. Wight, etc. This plant has strong phyto-medicinal constituents and used for remedies from cancer, hepatitis, kidney disorders, stress-related disorders and various microbial infections. Habitat degradation and loss of host species are two major causes for the disappearance of O. esculentum (L.f.) Sm. Habitat conservation and finding alternative in-vitro technique for its artificial propagation will help for long term conservation of this indigenous flora of the state.