REPRODUCTIVE BIOLOGY in AQUACULTURE a Proposa1 for an International Collaborative Programme of Research

Total Page:16

File Type:pdf, Size:1020Kb

REPRODUCTIVE BIOLOGY in AQUACULTURE a Proposa1 for an International Collaborative Programme of Research IUBS REPRODUCTIVE BIOLOGY IN AQUACULTURE A Proposa1 for an International Collaborative Programme of Research Edited by P. G. W. J. van Oordt REPRODUCTIVE BIOLOGY IN AQUACULTURE A Proposal for an International Collaborative Programme of Research B Y P. G. W. J. van Oordt with the collaboration of J. Benzie, R. Billard, W. H. Clark jr., H. J. Th Goos, C. L. Hew, D. E. Morse, Y. Nagahama, R. E. Peter Y. Shaoyi and T. Younès Special Issue No26 Biology International The International Union of Biological Sciences News Magazine "Give a man a fish, and he has food for one day; teach a man to breed fish, and he has food for himself and his family for the rest of their lives. " (Paraphrase of a Chinese Proverb) TABLE OF CONTENTS 01. Table of Contents 02. Foreword 03. Suminary 03.01. History 03.02. Rationale 03.03. Objectives 03.04. Structure 04. Introduction 04.01. Preparation of the RBA Programme 04.02. An IUBS Symposium on Reproductive Biology in Aquaculture, Taipei, Apnl 1991 05. Rationale of the RBA Programme 05.01. Aquaculture for Food and Nature Conservation 05.02. RBA Research 06. General Objectives of the RBA Programme 06.01. Objective 1: Understanding and Control of the Development, Growth, Differentiation and Maturation of the Reproductive System 06.02. Objective 2: Understanding and Control of Gamete Physiology, Fertilization, and Early Embryonic Development 06.03. Objective 3: Improven-ientof Aquaculture by Hybridization, Polyploidy, Cloning and Genetic Manipulation 07. Subdivision of the RBA Programme 08. Implementation of the RBA Programme 09. Extension of the RBA Programme 10. Organization of the RBA Programme 11. Future Activities: RBA Symposia in 1991 & 1992 12. References 13. Participants; Addresses and Main Research Country names are used according to the list of Ordinary Members of the International Council of Scientific Unions (ICSU) in the ICSU Yearbook 1990, for the sake of brevity and common usage, Gd are not intended to carry political or diplomatic iniplications. FOREWORD Following the resolution of the 23rd IUBS General Assembly in Canberra, Australia, in 1988, a feasibility study was undertaken in order to launch an international collaborative research programme in the broader area of reproduction and resources, with specific emphasis on reproductive biology in aquaculture. This "Special Issue" of Biology Iniernational on "Reproductive Biology in Aquaculture: A Proposa1for an International Collahorative Programme of Research", represents the final outcome of a series of meetings, discussions and contacts made during the period 1989-1991. This proposa1 will be submitted to the 24th General Assembly of the Union, to be held on 1-6 September, 1991, in Amsterdam, the Netherlands. There are various people and organizations who contributed to the success of this endeavour, and it is my pleasure, on behalf of the IUBS, to begin with the acknowledgement of the invaluable contribution of Professor P.G.W.J. van Oordt, Chairman of the IUBS Cornmittee in the Netherlands. Professor van Oordt devoted his considerable time and energy to help this programme take shape, resulting in the construction of a wide international network of distinguished scientists in the area of reproductive biology and aquaculture. Also, 1 would like to express Our most sincere thanks to Professor C.-H. Chou, Chairman of the IUBS Committee, Academia Sinica, Taiwan, as well as the Cornmittee Members, for their kind support and cooperation in the organization of the "International Symposium on Reproductive Biology in Aquaculture" in Taipei, 22-27 April, 1991, which represented an important step towards the development of this programme. Finally, Our appreciation and gratitude to the International Council of Scientific Unions (ICSU), and in particular, the Biological Sciences' Working Group which met at the ICSU General Assembly, 1990, in Sofia, Bulgaria. It was at that time this programme was provided sponsorship and financial support as a common ground for cooperation between the IUBS and the ICSU Scientific Cornmittees for Biotechnology (COBTOTECH), and for the Application of Science to Agriculture, Forestry and Aquaculture (CASAFA). Tala1 Younes Executive Secretary, IUBS 03. SUMMARY 03.01. History Following discussions during the 23rd General Assembly in Canberra, October 1988, the Executive Committee of the IUBS allowed P.G.W.J. van Oordt to look into the feasibility of an international scientific programme in the field of Reproductive Biology in Aquaculture (RBA). Contacting colleagues in many centres of RBA research, resulted in more than 130 positive reactions from RBA research teams in 24 countries. Important aspects of the RBA Programme were discussed during the "International Symposium on Reproductive Biology in Aquaculture" in Taipei, 22-27 April 1991 , organized by the Academia Sinica in Taipei and its IUBS committee. 03.02. Rationale The rapidly expanding human population of the earth consumes increasing amounts of food; not only food grown on land, but also food from natural aquatic ecosystems. A further exploitation of lakes, rivers and seas will lead to destruction of ecosystems and species extinction. Moreover, in many places water pollution has made aquatic food unacceptable for human consumption. Aquaculture is the obvious alternative as it can provide large quantities of healthier, protein rich food. Aquaculture, however, needs a sound scientific basis. One of its important issues is the reproduction of aquatic animals under husbandry conditions. International cooperation in RBA research will enhance the understanding of reproductive processes in fish, molluscs, crustaceans and other fish farm animals, will lead to successful introduction of new species, and will induce the development of new techniques for solving practical problems of reproduction in aquaculture. 03.03. Objectives The main objectives of the RBA Programme are: 1.- to control de development, growth, differentiation and maturation of the reproductive system; 2.- to understand and to control gametogenesis, gamete physiology, fertilization and early embryonic development; 3.- to develop and improve techniques for hybridization, polyploidy, cloning and genetic manipulation, in species of aquacultural importance. These objectives will contribute to: A.- the development and dissemination of biological containment mechanisms in aquaculture; B.- the transfer from model systems to practical application for control of the reproductive cycle; C.- the optimalization of aquaculture production by the enhancement of the efficiency and yield on a species-specific basis; D.- the diversification of aquaculture production; E.- the protection of ecosystems by the prevention of the release of experimental organisms, and the prevention of biological invasions; F.- the protection of aquatic biological diversity and conservation of the gene pool of aquatic species. 03.04. Structure For practical reasons the three objectives will be pursued in three Subprogrammes, i.e. 1) Reproductive Physiology, II) Gamete Physiology, and III) Cytogenetics and Genetic Manipulation. Each subprogramme will have a Coordinating Committee. These committees will a.0. advise on the development of research and training programmes, organize workshops and symposia, and report annually on the progress of the subprogramme. The RBA Programme as such will be led by a Steering Committee. It a.0. appoints the members of the subprogramme committees; it assists in the drawing up of proposals for research and training projects; it assists in finding funds for such projects; it sees to it that regular intra- and intergroup meetings are organized; it reports anncially on the RBA Programme to the Executive Committee of the IUBS; and it establishes and promotes contacts with other relevant organizations, including other IUBS programmes, as may be useful for the RBA Programme itself. 04. INTRODUCTION 04.01. Preparation of the RBA Programme The Executive Committee of the IUBS, meeting in Canberra, Australia, on 23 October 1988, immediately after the 23rd General Assembly, allowed the Professors B. Baccetti, D.F. Roberts and P.G.W.J. van Oordt to look into the possibility of international cooperation in the fields of lnsect Reproduction, Human Reproduction and Reproductive Biology in Aquaculture, respectively, within the scope of a future international scientific programme of the IUBS on "Reproduction and Resources". During the meeting of the Executive Cornmittee in Paris in February 1989, it became clear that sufficient support for such a programme had only been found among scientists studying reproductive biology in aquaculture. Therefore, the Executive Committee asked Van Oordt to continue his investigations of this matter, and to coordinate the work necessary for the preparation of a proposal for an international scientific programme of the IUBS on "Reproductive Biology in Aquaculture" (RBA). A first preparatory meeting was held in Utrecht in August 1989, in the presence of Drs. R. Billard (Paris), B. Borg (Stockholm), K.-H. Chang (Taipei), H.J.Th. Goos (Utrecht), C.-C. Huang (Taipei), E.A. Huisman (Wageningen), Y. Nagahama (Okasaki), P.G.W.J. van Oordt (Utrecht), Yan Shaoyi (Beijing) and T. Younès (Paris). During that meeting a preparatory committee was formed, consisting of Drs. R. Billard, Y. Nagahama, R.E. Peter (Edmonton), P.G.W.J. van Oordt and T. Younes; and an invitation was received from the IUBS Committee of China in Taipei for a preparatory symposium in Taipei in April 1991. An introductory paper on the
Recommended publications
  • INTRODUCTION to REPRODUCTIVE HEALTH and the ENVIRONMENT (Draft for Review)
    TRAINING FOR THE HEALTH SECTOR [Date…Place…Event…Sponsor…Organizer] INTRODUCTION TO REPRODUCTIVE HEALTH AND THE ENVIRONMENT (Draft for review) Training Module 1 Children's Environmental Health Public Health and the Environment World Health Organization www.who.int/ceh November 2011 1 <<NOTE TO USER: Please add details of the date, time, place and sponsorship of the meeting for which you are using this presentation in the space indicated.>> <<NOTE TO USER: This is a large set of slides from which the presenter should select the most relevant ones to use in a specific presentation. These slides cover many facets of the issue. Present only those slides that apply most directly to the local situation in the region or country.>> <<NOTE TO USER: This module presents several examples of risk factors that affect reproductive health. You can find more detailed information in other modules of the training package that deal with specific risk factors, such as lead, mercury, pesticides, persistent organic pollutants, endocrine disruptors, occupational exposures; or disease outcomes, such as developmental origins of disease, reproductive effects, neurodevelopmental effects, immune effects, respiratory effects, and others.>> <<NOTE TO USER: For more information on reproductive health, please visit the website of the Department of Reproductive Health and Research at WHO: www.who.int/reproductivehealth/en/>> 1 Reproductive Health and the Environment (Draft for review) LEARNING OBJECTIVES After this presentation individuals should be able to understand, recognize, and know: Basic components of reproductive health Basic hormone and endocrine functions Reproductive physiology Importance of environmental exposures on reproductive health endpoints 2 <<READ SLIDE.>> According to the formal definition by the World Health Organization (WHO), health is more than absence of illness.
    [Show full text]
  • Reproductive Biology of the Stingray Hypanus Marianae , an Endemic
    ReproduCtive Biology of the stingray Hypanus marianae, an endemic species from Southwestern Tropical Atlantic Ocean Biologia Reprodutiva da raia Hypanus marianae, uma espécie endêmica do SudOeste do Oceano Atlântico Tropical Biología reproductiva de la raya Hypanus marianae, una especie endémica del suROeste del Océano Atlántico Tropical Ana Rita Onodera Palmeira Nunes1 Getulio Rincon1,2 Ricardo de Souza Rosa3 Jorge Luiz Silva Nunes1 Abstract The Brazilian Large-eyed stingray Hypanus marianae is the smallest species of the family Dasyatidae in Brazil. This study aims to provide data on the reproductive biology of this species captured in artisanal fisheries from Ceará State. A total of 299 individuals of H. marianae were recorded at monitoring landings and adult male to female sex ratio was significantly different (1:2.9), indicating a possible spatial segregation between males and females. The size range was from 13.0 to 36.2cm in disc width (DW). Females reached greater size and body mass (36.2cm DW and 1855g) than males (29.3cm DW and 915g). The reproductive system analyses were based on 81 preserved specimens. The DW50 parameter was estimated at 26.1cm DW for females, and 23.8cm DW for males. Only the left uterus is functional, and birth size was estimated at 13.0–14.0cm DW. Vitellogenesis occurred concurrently with a short gestation (shorter than 6 months) and uterine fecundity is only one embryo per reproductive cycle, which seems to be asynchronous. Keywords: maturity, fecundity, birth, embryos, Dasyatidae. Resumo A raia Mariquita Hypanus marianae é a menor espécie da família Dasyatidae no Brasil e este trabalho tem como objetivo reportar informações acerca da sua biologia reprodutiva a partir de capturas da pesca artesanal no estado do Ceará.
    [Show full text]
  • Hughes and Shelton: the Fathers of Fish Respiration
    © 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 3191-3192 doi:10.1242/jeb.095513 CLASSICS Hughes and Shelton: the oxygen carried in the blood is usually 1984) and studies of gas exchange in far greater than that in an equivalent elasmobranchs and birds also owe much fathers of fish respiration volume of water. Hughes and Shelton to the analysis by Hughes and Shelton. concluded, therefore, that water flow As fish gas exchange systems became over the gills must be much higher than better understood and described, blood flow through the gills to deliver mammalian terms such as V (ventilation), the required rate of oxygen transfer for Q (blood flow) and the V/Q ratio were metabolism. Hughes and Shelton adopted to facilitate comparison between introduced the term ‘capacity rate ratio’ different gas exchange systems so that (ratio of flow × oxygen content of blood the terms ‘capacity rate ratio’, and and water) and analyzed the effects of ‘effectiveness of transfer’ have largely this on oxygen transfer. They also disappeared from discussions of gas introduced the term ‘effectiveness of exchange. transfer’, defined as the actual rate of Fish Respiration oxygen transfer in relation to the At the time of the review, knowledge David Randall discusses George Hughes maximum possible rate of transfer. There of the blood circulation in fish was and Graham Shelton’s classic paper ‘Respiratory mechanisms and their were insufficient data for a detailed limited. Fish had been placed in sealed nervous control in fish’, published in analysis, but what they pointed out was chambers and the extent to which Advances in Comparative Physiology and that effectiveness depended on the oxygen could be removed from the Biochemistry in 1962.
    [Show full text]
  • Female and Male Gametogenesis 3 Nina Desai , Jennifer Ludgin , Rakesh Sharma , Raj Kumar Anirudh , and Ashok Agarwal
    Female and Male Gametogenesis 3 Nina Desai , Jennifer Ludgin , Rakesh Sharma , Raj Kumar Anirudh , and Ashok Agarwal intimately part of the endocrine responsibility of the ovary. Introduction If there are no gametes, then hormone production is drastically curtailed. Depletion of oocytes implies depletion of the major Oogenesis is an area that has long been of interest in medicine, hormones of the ovary. In the male this is not the case. as well as biology, economics, sociology, and public policy. Androgen production will proceed normally without a single Almost four centuries ago, the English physician William spermatozoa in the testes. Harvey (1578–1657) wrote ex ovo omnia —“all that is alive This chapter presents basic aspects of human ovarian comes from the egg.” follicle growth, oogenesis, and some of the regulatory mech- During a women’s reproductive life span only 300–400 of anisms involved [ 1 ] , as well as some of the basic structural the nearly 1–2 million oocytes present in her ovaries at birth morphology of the testes and the process of development to are ovulated. The process of oogenesis begins with migra- obtain mature spermatozoa. tory primordial germ cells (PGCs). It results in the produc- tion of meiotically competent oocytes containing the correct genetic material, proteins, mRNA transcripts, and organ- Structure of the Ovary elles that are necessary to create a viable embryo. This is a tightly controlled process involving not only ovarian para- The ovary, which contains the germ cells, is the main repro- crine factors but also signaling from gonadotropins secreted ductive organ in the female.
    [Show full text]
  • Human Reproduction: Clinical, Pathologic and Pharmacologic Correlations
    HUMAN REPRODUCTION: CLINICAL, PATHOLOGIC AND PHARMACOLOGIC CORRELATIONS 2008 Course Co-Director Kirtly Parker Jones, M.D. Professor Vice Chair for Educational Affairs Department of Obstetrics and Gynecology Course Co-Director C. Matthew Peterson, M.D. Professor and Chair Department of Obstetrics and Gynecology 1 Welcome to the course on Human Reproduction. This syllabus has been recently revised to incorporate the most recent information available and to insure success on national qualifying examinations. This course is designed to be used in conjunction with our website which has interactive materials, visual displays and practice tests to assist your endeavors to master the material. Group discussions are provided to allow in-depth coverage. We encourage you to attend these sessions. For those of you who are web learners, please visit our web site that has case studies, clinical/pathological correlations, and test questions. http://libarary.med.utah.edu/kw/human_reprod 2 TABLE OF CONTENTS Page Lectures/Examination................................................................................................................................... 5 Schedule........................................................................................................................................................ 6 Faculty .......................................................................................................................................................... 9 Groups, Workshop.....................................................................................................................................
    [Show full text]
  • The Reproductive Biology, Condition and Feeding Ecology of the Skipjack, Katsuwonus Pelamis, in the Western Indian Ocean
    The reproductive biology, condition and feeding ecology of the skipjack, Katsuwonus pelamis, in the Western Indian Ocean Maitane Grande Mendizabal PhD Thesis Department of Zoology and Animal Cell Biology 2013 The reproductive biology, condition and feeding ecology of the skipjack, Katsuwonus pelamis , in the Western Indian Ocean Tesi zuzendariak, Hilario Murua eta Nathalie Bodin Maitane Grande Mendizabal 2013ko Apirilaren 26ª TESIAREN ZUZENDARIAREN BAIMENA TESIA AURKEZTEKO Hilario Murua Aurizenea jaunak, 34108169-C I.F.Z. zenbakia duenak “The reproductive biology, condition and feeding ecology of the skipjack; Katsuwonus pelamis , in the Western Indian Ocean” izenburua duen doktorego-tesiaren zuzendari naizenak, tesia aurkezteko baimena ematen dut, defendatua izateko baldintzak betetzen dituelako. Maitane Grande Mendizabal doktoregai andreak egin du aipaturiko tesia, AZTI Tecnalia-ko Itsas-Ikerketa sailean. Pasaia, 2013(e)ko Apirilaren 23a TESIAREN ZUZENDARIA Iz.: Hilario Murua Aurizenea TESIAREN ZUZENDARIAREN BAIMENA TESIA AURKEZTEKO Nathalie Bodin andreak, pasaporte zenbakia: 07AX12437 eta 060537202886 I.F.Z . zenbakia duenak “The reproductive biology, condition and feeding ecology of the skipjack, Katsuwonus pelamis , in the Western Indian Ocean” izenburua duen doktorego-tesiaren zuzendari naizenak, tesia aurkezteko baimena ematen dut, defendatua izateko baldintzak betetzen dituelako. Maitane Grande Mendizabal doktoregai andreak egin du aipaturiko tesia, AZTI Tecnalia-ko Itsas Ikerketa sailean. Victoria, Seychelles, 2013(e)ko Apirilaren
    [Show full text]
  • Review Male Gamete Survival at Stake: Causes and Solutions
    RBMOnline - Vol 17. No 6. 2008 866-880 Reproductive BioMedicine Online; www.rbmonline.com/Article/3415 on web 23 October 2008 Review Male gamete survival at stake: causes and solutions Ashok Agarwal is a Professor in the Lerner College of Medicine at Case Western Reserve University and the Director of Center for Reproductive Medicine, and the Clinical Andrology Laboratory at The Cleveland Clinic, Cleveland, Ohio, United States. He has published over 400 scientific articles, reviews and book chapters in different areas of andrology, male/ female infertility and fertility preservation. His research program is known internationally for its focus on disease-oriented cutting edge research in the field of human reproduction. His team has presented over 700 papers at national and international meetings and more than 150 scientists, clinicians and biologists have received their training in his laboratory. Dr Ashok Agarwal Alex C Varghese1, Stefan S du Plessis1,2, Ashok Agarwal1,3 1Reproductive Research Centre, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA; 2Division of Medical Physiology, University of Stellenbosch, Tygerberg, South Africa 3Correspondence: Andrology Laboratory and the Reproductive Research Centre, Glickman Urological and Kidney Institute and Department of Obstetrics-Gynecology, Cleveland Clinic, 9500 Euclid Avenue, Desk A19.1, Cleveland, Ohio 44195, USA; Tel: (216) 444–9485; Fax: (216) 445–6049; e-mail: [email protected] Abstract Over the years, the development of assisted reproductive technology to bypass male factor infertility has improved drastically. Considered one of the most perplexing disorders in the reproductive field, male factor infertility is prevalent and may be on the rise. Unfortunately, its aetiology remains elusive.
    [Show full text]
  • Leigh SC, Papastamatiou Y, and DP German. 2017. the Nutritional
    Rev Fish Biol Fisheries (2017) 27:561–585 DOI 10.1007/s11160-017-9481-2 REVIEWS The nutritional physiology of sharks Samantha C. Leigh . Yannis Papastamatiou . Donovan P. German Received: 28 December 2016 / Accepted: 9 May 2017 / Published online: 25 May 2017 Ó Springer International Publishing Switzerland 2017 Abstract Sharks compose one of the most diverse Keywords Digestive efficiency Á Digestive and abundant groups of consumers in the ocean. biochemistry Á Gastrointestinal tract Á Microbiome Á Consumption and digestion are essential processes for Spiral intestine Á Stable isotopes obtaining nutrients and energy necessary to meet a broad and variable range of metabolic demands. Despite years of studying prey capture behavior and Introduction feeding habits of sharks, there has been little explo- ration into the nutritional physiology of these animals. Sharks make up one of the most abundant and diverse To fully understand the physiology of the digestive groups of consumers in the ocean (Fig. 1, Compagno tract, it is critical to consider multiple facets, including 2008). They may play an important ecological role in the evolution of the system, feeding mechanisms, energy fluxes in marine environments and in impact- digestive morphology, digestive strategies, digestive ing the biodiversity of lower trophic levels that we biochemistry, and gastrointestinal microbiomes. In depend on as a food and economic resource (e.g., each of these categories, we make comparisons to Wetherbee et al. 1990; Corte´s et al. 2008). However, what is currently known about teleost nutritional beyond prey capture methods and dietary analyses, the physiology, as well as what methodology is used, and nutritional physiology of sharks is woefully under- describe how similar techniques can be used in shark studied.
    [Show full text]
  • The Egg and the Sperm: How Science Has Constructed a Romance Based on Stereotypical Male- Female Roles Author(S): Emily Martin Reviewed Work(S): Source: Signs, Vol
    The Egg and the Sperm: How Science Has Constructed a Romance Based on Stereotypical Male- Female Roles Author(s): Emily Martin Reviewed work(s): Source: Signs, Vol. 16, No. 3 (Spring, 1991), pp. 485-501 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/3174586 . Accessed: 06/04/2012 21:00 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Signs. http://www.jstor.org THE EGG AND THE SPERM:HOW SCIENCEHAS CONSTRUCTED A ROMANCEBASED ON STEREOTYPICAL MALE-FEMALEROLES EMILYMARTIN The theory of the human body is always a part of a world- picture.... The theory of the human body is always a part of a fantasy. [JAMESHILLMAN, The Myth of Analysis]' As an anthropologist, I am intrigued by the possibility that culture shapes how biological scientists describe what they discover about the naturalworld. If this were so, we would be learning about more than the natural world in high school biology class; we would be learning about cultural beliefs and practices as if they were part of nature.
    [Show full text]
  • Physiology of Elasmobranch Fishes: Structure and Interaction with Environment: Volume 34A Copyright R 2016 Elsevier Inc
    6 SWIMMING MECHANICS AND ENERGETICS OF ELASMOBRANCH FISHES GEORGE V. LAUDER VALENTINA DI SANTO 1. Introduction 2. Elasmobranch Locomotor Diversity 3. Elasmobranch Kinematics and Body Mechanics 4. Hydrodynamics of Elasmobranch Locomotion 5. The Remarkable Skin of Elasmobranchs and Its Locomotor Function 6. Energetics of Elasmobranch Locomotion 7. Climate Change: Effects on Elasmobranch Locomotor Function 8. Conclusions The remarkable locomotor capabilities of elasmobranch fishes are evident in the long migrations undertaken by many species, in their maneuverability, and in specialized structures such as the skin and shape of the pectoral and caudal fins that confer unique locomotor abilities. Elasmobranch locomotor diversity ranges from species that are primarily benthic to fast open-ocean swimmers, and kinematics and hydrodynamics are equally diverse. Many elongate-bodied shark species exhibit classical undulatory patterns of deformation, while skates and rays use their expanded wing-like locomotor structures in oscillatory and undulatory modes. Experimental hydrodynamic analysis of pectoral and caudal fin function in leopard sharks shows that pectoral fins, when held in the typical cruising position, do not generate lift forces, but are active in generating torques during unsteady swimming. The heterocercal (asymmetrical) tail shape generates torques that would rotate the body around the center of mass except for counteracting torques generated by the ventral body surface and head. The skin of sharks, with its hard surface denticles embedded in a flexible skin, alters flow dynamics over the surface and recent experimental data suggest that shark skin both reduces drag and enhances thrust on oscillating propulsive surfaces such as the tail. Analyses of elasmobranch 219 Physiology of Elasmobranch Fishes: Structure and Interaction with Environment: Volume 34A Copyright r 2016 Elsevier Inc.
    [Show full text]
  • Reproductive Biology Spermatogenesis and Biochemical Characteristics of Male Sparid Fish Dentex Dentex from the South Eastern Mediterranean Coast
    Egyptian Journal of Aquatic Research (2016) xxx, xxx–xxx HOSTED BY National Institute of Oceanography and Fisheries Egyptian Journal of Aquatic Research http://ees.elsevier.com/ejar www.sciencedirect.com FULL LENGTH ARTICLE Reproductive biology spermatogenesis and biochemical characteristics of male sparid fish Dentex dentex from the south eastern Mediterranean coast S.S. Assem, R.F. Ismail, A.F. Fahmy, H.S. El-Sayed, M.A. Al-Absawey *, N.M. Abou Shabana National Institute of Oceanography & Fisheries Alex, Egypt Received 12 July 2015; revised 30 August 2015; accepted 25 November 2015 KEYWORDS Abstract The present study focuses on reproductive biology parameters and histological and fine Dentex dentex; structure investigations of testes maturation, in respect to steroid hormones and fatty acids’ profile. Spermatogenesis; All males over 30 cm in length were found to be mature. Gonadosomatic index (GSI) of males Ultrastructure; increased progressively to reach a peak value in May and June. In Dentex dentex, the spermatogo- Fatty acids; nia were detected throughout the year in the peripheral zone of the testes. Spermatocytes are char- Steroid hormones acterized by large nuclei with higher electron density and a layer of cytoplasm. The nuclei of spermatids were characterized by a condensed chromatin material. The early spermatid had a cen- tral nucleus and a large number of mitochondria. One big mitochondrion lies beneath the head of the sperm. The seasonal change of serum testosterone correlates with gonadal development. The presence of nearly ripe and ripe male D. dentex coincides with the surge of testosterone and the decrease in estradiol continues throughout the spawning periods.
    [Show full text]
  • The Reproductive Biology of Lodgepole Pine
    The Reproductive Biology of Lodgepole Pine March 2006 The Reproductive Biology of Lodgepole Pine Author: John N. Owens Prepared for the Forest Genetics Council of British Columbia Published March 2006 Library and Archives Canada Cataloguing in Publication Data Owens, John N., 1936– The reproductive biology of lodgepole pine FGC extension note ; 07 “Author: John N. Owens.”--P. “Prepared for Forest Genetics Council of British Columbia.”--P. Also available on the Internet. Includes bibliographical references: p. ISBN 0-7726-5342-9 1. Lodgepole pine – British Columbia – Reproduction. I. Title. II. Forest Renewal BC. III. Forest Genetics Council of British Columbia. IV. Title. V. Series. QK494.5.P66O93 2006 585’.213 C2005-960090-X About the Forest Genetics Council of British Columbia The Forest Genetics Council of BC (FGC) is a multi-stakeholder group representing the forest industry, Ministry of Forests and Range, Canadian Forest Service, and universities. Council’s mandate is to champion forest gene resource management in British Columbia, to oversee strategic and business planning for a cooperative provincial forest gene resource management program, and to advise the Chief Forester on forest gene resource management policies. Acknowledgements Funding support for this publication was provided by the British Columbia Ministry of Forests and Range, through the Forest Investment Account for the Forest Genetics Council of BC. Earlier studies on which most of the publication is based were supported by Forest Renewal BC, The Science Council of BC, and the Natural Sciences and Engineering Council of Canada. Gratitude is extended to the many provincial and federal agencies, private industries and the University of Victoria that have supported over many years the research upon which this publication is based, and the research assistants and associates, technicians, graduate students and post-doctoral fellows who carried out or assisted in much of the research.
    [Show full text]