Hughes and Shelton: the Fathers of Fish Respiration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Leigh SC, Papastamatiou Y, and DP German. 2017. the Nutritional
Rev Fish Biol Fisheries (2017) 27:561–585 DOI 10.1007/s11160-017-9481-2 REVIEWS The nutritional physiology of sharks Samantha C. Leigh . Yannis Papastamatiou . Donovan P. German Received: 28 December 2016 / Accepted: 9 May 2017 / Published online: 25 May 2017 Ó Springer International Publishing Switzerland 2017 Abstract Sharks compose one of the most diverse Keywords Digestive efficiency Á Digestive and abundant groups of consumers in the ocean. biochemistry Á Gastrointestinal tract Á Microbiome Á Consumption and digestion are essential processes for Spiral intestine Á Stable isotopes obtaining nutrients and energy necessary to meet a broad and variable range of metabolic demands. Despite years of studying prey capture behavior and Introduction feeding habits of sharks, there has been little explo- ration into the nutritional physiology of these animals. Sharks make up one of the most abundant and diverse To fully understand the physiology of the digestive groups of consumers in the ocean (Fig. 1, Compagno tract, it is critical to consider multiple facets, including 2008). They may play an important ecological role in the evolution of the system, feeding mechanisms, energy fluxes in marine environments and in impact- digestive morphology, digestive strategies, digestive ing the biodiversity of lower trophic levels that we biochemistry, and gastrointestinal microbiomes. In depend on as a food and economic resource (e.g., each of these categories, we make comparisons to Wetherbee et al. 1990; Corte´s et al. 2008). However, what is currently known about teleost nutritional beyond prey capture methods and dietary analyses, the physiology, as well as what methodology is used, and nutritional physiology of sharks is woefully under- describe how similar techniques can be used in shark studied. -
Physiology of Elasmobranch Fishes: Structure and Interaction with Environment: Volume 34A Copyright R 2016 Elsevier Inc
6 SWIMMING MECHANICS AND ENERGETICS OF ELASMOBRANCH FISHES GEORGE V. LAUDER VALENTINA DI SANTO 1. Introduction 2. Elasmobranch Locomotor Diversity 3. Elasmobranch Kinematics and Body Mechanics 4. Hydrodynamics of Elasmobranch Locomotion 5. The Remarkable Skin of Elasmobranchs and Its Locomotor Function 6. Energetics of Elasmobranch Locomotion 7. Climate Change: Effects on Elasmobranch Locomotor Function 8. Conclusions The remarkable locomotor capabilities of elasmobranch fishes are evident in the long migrations undertaken by many species, in their maneuverability, and in specialized structures such as the skin and shape of the pectoral and caudal fins that confer unique locomotor abilities. Elasmobranch locomotor diversity ranges from species that are primarily benthic to fast open-ocean swimmers, and kinematics and hydrodynamics are equally diverse. Many elongate-bodied shark species exhibit classical undulatory patterns of deformation, while skates and rays use their expanded wing-like locomotor structures in oscillatory and undulatory modes. Experimental hydrodynamic analysis of pectoral and caudal fin function in leopard sharks shows that pectoral fins, when held in the typical cruising position, do not generate lift forces, but are active in generating torques during unsteady swimming. The heterocercal (asymmetrical) tail shape generates torques that would rotate the body around the center of mass except for counteracting torques generated by the ventral body surface and head. The skin of sharks, with its hard surface denticles embedded in a flexible skin, alters flow dynamics over the surface and recent experimental data suggest that shark skin both reduces drag and enhances thrust on oscillating propulsive surfaces such as the tail. Analyses of elasmobranch 219 Physiology of Elasmobranch Fishes: Structure and Interaction with Environment: Volume 34A Copyright r 2016 Elsevier Inc. -
Behavioral Assessment of the Visual Capabilities of Fish
Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in Encyclopedia of Fish Physiology: From Genome to Environment, published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Schuster S., Machnik P., and Schulze W. (2011) Behavioral Assessment of the Visual Capabilities of Fish. In: Farrell A.P., (ed.), Encyclopedia of Fish Physiology: From Genome to Environment, volume 1, pp. 143–149. San Diego: Academic Press. ª 2011 Elsevier Inc. All rights reserved. Author's personal copy Behavioral Assessment of the Visual Capabilities of Fish S Schuster, P Machnik, and W Schulze, University of Bayreuth, Bayreuth, Germany ª 2011 Elsevier Inc. All rights reserved. Introduction Detecting and Analyzing Movement Recognizing Objects Detecting Polarized Light Detecting Color Conclusion Spatial Vision Further Reading Glossary Optomotor response When an extended visual Color constancy The capability to assign a unique pattern moves, animals often reduce retinal image color to an object, regardless of the spectrum of the motion by moving themselves. -
Fish Physiology and Ecology: the Contribution of the Leigh Laboratory to the Collision of Paradigms
Fish physiology and ecology: the contribution of the Leigh Laboratory to the collision of paradigms Author Pankhurst, NW, Herbert, NA Published 2013 Journal Title New Zealand Journal of Marine and Freshwater Research DOI https://doi.org/10.1080/00288330.2013.808236 Copyright Statement © 2013 Taylor & Francis. This is an electronic version of an article published in New Zealand Journal of Marine and Freshwater Research, Volume 47, Issue 3, 2013, Pages 392-408. New Zealand Journal of Marine and Freshwater Research is available online at: http:// www.tandfonline.com with the open URL of your article. Downloaded from http://hdl.handle.net/10072/56178 Griffith Research Online https://research-repository.griffith.edu.au Fish physiology and ecology: the contribution of the Leigh Laboratory to the collision of paradigms. N W Pankhursta and N A Herbertb aAustralian Rivers Institute, Griffith University, Gold Coast, Qld 4222 Australia; bLeigh Marine Laboratory, Institute of Marine Science, The University of Auckland, Warkworth 0941, New Zealand The often pragmatic division of studies of function (physiology), and the regulation of distribution and abundance of organisms (ecology), as laboratory and field studies respectively, can create an unhelpful intellectual division that runs the risk of ignoring the interaction of physiology, behaviour and environment that regulates the lives of animals in the wild. This review examines the historical and current contribution of ecophysiological research conducted from the University of Auckland’s Leigh Laboratory in bridging these paradigms, and generating new insights into animal function and community organisation. The assessment focusses on endocrine control processes, and metabolic and behavioural responses of fish to artificial and natural stressors, and examines tracks of future research needed to underpin understanding of likely effects of predicted environmental change on individuals and populations. -
The Multifunctional Gut of Fish
THE MULTIFUNCTIONAL GUT OF FISH 1 Zebrafish: Volume 30 Copyright r 2010 Elsevier Inc. All rights reserved FISH PHYSIOLOGY DOI: This is Volume 30 in the FISH PHYSIOLOGY series Edited by Anthony P. Farrell and Colin J. Brauner Honorary Editors: William S. Hoar and David J. Randall A complete list of books in this series appears at the end of the volume THE MULTIFUNCTIONAL GUT OF FISH Edited by MARTIN GROSELL Marine Biology and Fisheries Department University of Miami-RSMAS Miami, Florida, USA ANTHONY P. FARRELL Faculty of Agricultural Sciences The University of British Columbia Vancouver, British Columbia Canada COLIN J. BRAUNER Department of Zoology The University of British Columbia Vancouver, British Columbia Canada AMSTERDAM • BOSTON • HEIDELBERG • LONDON • OXFORD NEW YORK • PARIS • SAN DIEGO • SAN FRANCISCO SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA First edition 2011 Copyright r 2011 Elsevier Inc. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (þ44) (0) 1865 843830; fax (þ44) (0) 1865 853333; email: [email protected]. Alternatively, visit the Science and Technology Books website at www.elsevierdirect.com/rights for further information Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. -
The Hormonal Control of Osmoregulation in Teleost Fish
Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in Encyclopedia of Fish Physiology: From Genome to Environment, published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial McCormick S.D. (2011) The Hormonal Control of Osmoregulation in Teleost Fish. In: Farrell A.P., (ed.), Encyclopedia of Fish Physiology: From Genome to Environment, volume 2, pp. 1466–1473. San Diego: Academic Press. ª 2011 Elsevier Inc. All rights reserved. Author's personal copy HORMONAL CONTROLS Hormonal Control of Metabolism and Ionic Regulation Contents The Hormonal Control of Osmoregulation in Teleost Fish Corticosteroids The Hormonal Control of Osmoregulation in Teleost Fish S D McCormick, USGS, Conte Anadromous Fish Research Center, Turners Falls, MA, USA Published by Elsevier Inc. Introduction: Salt and Water Balance in Fish Thyroid Hormones Cortisol The Special Case of Anadromy Prolactin Summary Growth Hormone and IGF-I Further Reading Glossary Insulin-like growth factor-I (IGF-I) A protein Adrenocorticotrophic hormone (ACTH) A protein hormone produced in the liver in response to growth hormone produced in the pituitary that causes release of hormone and acting on growth and ion regulation. -
Acid–Base Regulation, Branchial Transfers
J. exp. Biol. 193, 79–95 (1994) 79 Printed in Great Britain © The Company of Biologists Limited 1994 ACID–BASE REGULATION, BRANCHIAL TRANSFERS AND RENAL OUTPUT IN A MARINE TELEOST FISH (THE LONG- HORNED SCULPIN MYOXOCEPHALUS OCTODECIMSPINOSUS) DURING EXPOSURE TO LOW SALINITIES JAMES B. CLAIBORNE, JULIE S. WALTON AND DANA COMPTON-MCCULLOUGH Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA and The Mount Desert Island Biological Laboratory, Salsbury Cove, ME 04672, USA Accepted 24 March 1994 Summary A number of studies have implied a linkage between acid–base and ion exchanges in both freshwater and seawater fish, although little is known about the branchial and renal acid–base transfers involved as the animals move between different salinities. To investigate the role of these transfers in a marine teleost fish as it is exposed to a dilute environment, we measured plasma acid–base values and net movements from fish to + 2 + water of NH4 , HCO3 and H in long-horned sculpin (Myoxocephalus octodecimspinosus) placed in 100%, 20%, 8% or 4% sea water for 24–48h. Renal excretion of H+ was also monitored in fish exposed to 4% sea water. Sculpin proved to be somewhat euryhaline for they were able to maintain plasma ion and acid–base transfers in hypo-osmotic (20%) sea water, but could not tolerate greater dilutions for more than several days. Plasma pH and carbon dioxide concentration (CCO·) increased in the 20% and 8% dilution groups, with CCO· nearly doubling (control, 4.56mmol l21; 8% group, 8.56mmol l21) as a result of a combined increase in the partial 2 2 pressure of plasma CO2 (PCO·) and [HCO3 ]. -
Fish Physiology, Toxicology, and Water Quality
Fish Physiology, Toxicology, and Water Quality Proceedings of the Ninth International Symposium, Capri, Italy, April 24-28, 2006 R E S E A R C H A N D D E V E L O P M E N T EPA/600/R-07/010 February 2007 Fish Physiology, Toxicology, and Water Quality Proceedings of the Ninth International Symposium, Capri, Italy, April 24-28, 2006 Edited by 1Colin J. Brauner, 1Kim Suvajdzic, 2Goran Nilsson, 1David Randall 1Department of Zoology, University of British Columbia, Canada 2University of Oslo, Norway Published by Ecosystems Research Division Athens, Georgia 30605 U.S. Environmental Protection Agency Office of Research and Development Washington, DC 20460 ABSTRACT Scientists from Europe, North America and South America convened in Capri, Italy, April 24-28, 2006 for the Ninth International Symposium on Fish Physiology, Toxicology, and Water Quality. The subject of the meeting was “Eutrophication: The toxic effects of ammonia, nitrite and the detrimental effects of hypoxia on fish.” These proceedings include 22 papers presented over a 3-day period and discuss eutrophication, ammonia and nitrite toxicity and the effects of hypoxia on fish with the aim of understanding the effects of eutrophication on fish. The ever increasing human population and the animals raised for human consumption discharge their sewage into rivers and coastal waters worldwide. This is resulting in eutrophication of rivers and coastal waters everywhere. Eutrophication is associated with elevated ammonia and nitrite levels, both of which are toxic, and the water often becomes hypoxic. Aquatic hypoxia has been shown to reduce species diversity and reduce total biomass. -
New Insights from Larval and Air-Breathing Fish
Respiratory Physiology & Neurobiology 184 (2012) 293–300 Contents lists available at SciVerse ScienceDirect Respiratory Physiology & Neurobiology j ournal homepage: www.elsevier.com/locate/resphysiol Review Ontogeny and paleophysiology of the gill: New insights from larval and ଝ air-breathing fish a,∗ b Colin J. Brauner , Peter J. Rombough a Department of Zoology, University of British Columbia, Vancouver, BC V6 T 1Z4, Canada b Department of Biology, Brandon University, Brandon, MB R7A 4X8, Canada a r t i c l e i n f o a b s t r a c t Article history: There are large changes in gill function during development associated with ionoregulation and gas Accepted 17 July 2012 exchange in both larval and air-breathing fish. Physiological studies of larvae indicate that, contrary to accepted dogma but consistent with morphology, the initial function of the gill is primarily ionoreg- Keywords: ulatory and only secondarily respiratory. In air-breathing fish, as the gill becomes progressively less Fish important in terms of O2 uptake with expansion of the air-breathing organ, it retains its roles in CO2 Gill excretion, ion exchange and acid–base balance. The observation that gill morphology and function is Ontogeny strongly influenced by ionoregulatory needs in both larval and air-breathing fish may have evolutionary Larva Air-breathing implications. In particular, it suggests that the inability of the skin to maintain ion and acid–base balance as protovertebrates increased in size and became more active may have been more important in driving Gas exchange Ion exchange gill development than O2 insufficiency. Gill remodeling © 2012 Elsevier B.V. -
Culturing African Lungfish (Protopterus Sp) in Uganda: Prospects, Performance in Tanks, Potential Pathogens, and Toxicity of Salt and Formalin
Culturing African Lungfish (Protopterus sp) in Uganda: Prospects, Performance in tanks, potential pathogens, and toxicity of salt and formalin by John Kiremerwa Walakira A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama December 14th, 2013 Keywords: African lungfish, aquaculture, exogenous feed, diseases, Salt and Formalin effects. Copyright 2013 by John Kiremerwa Walakira Approved by Joseph J. Molnar, Co-chair, Professor, Agricultural Economics and Rural Sociology Jeffery S. Terhune, Co-chair, Associate Professor, School of Fisheries, Aquaculture and Aquatic Sciences Ronald P. Phelps, Associate Professor, School of Fisheries, Aquaculture and Aquatic Sciences Curtis M. Jolly, Professor, Agricultural Economics and Rural Sociology Abstract Culturing species resilient to drought and stressful water quality conditions may be a significant part of the future of African aquaculture. Air breathing fishes potentially have a role in low-management culture systems for small farms because dissolved oxygen does not threaten the fish crop. The African lungfish (Protopterus sp) is advantageous because it is: an indigenous fish with good flesh quality, an air-breather, and a biocontrol agent against schistosome vector snails. Wild lungfish stocks are declining and national strategies to protect its natural population are lacking. Lungfish is highly valued as food, has certain nutraceutical benefits and supports livelihoods of many communities in Uganda. A variety of lungfish products on markets include fried pieces (54%), cured/smoked fish (28%), whole fresh gutted fish (10%) and soup (8%). Lungfish products are increasingly found alongside tilapia and Nile perch in rural and urban markets with cured products being exported to Kenya, DRC and Southern Sudan. -
Shark Recreational Fisheries
Ambio DOI 10.1007/s13280-016-0856-8 REVIEW Shark recreational fisheries: Status, challenges, and research needs Austin J. Gallagher , Neil Hammerschlag, Andy J. Danylchuk, Steven J. Cooke Received: 1 July 2016 / Revised: 16 October 2016 / Accepted: 23 November 2016 Abstract For centuries, the primary manner in which Cowx 2006; Lewin et al. 2006; Cooke et al. 2014). humans have interacted with sharks has been fishing. A Therefore, there have been calls to better recognize the role combination of their slow-growing nature and high use- of recreational fisheries in contemporary ecosystem-based values have resulted in population declines for many species fisheries management (FAO 2012). Recreational fishing around the world, and to date the vast majority of fisheries- accounts for an estimated 10% of the total global fishing related work on sharks has focused on the commercial sector. harvest, with estimates of 47 million fish landed per year Shark recreational fishing remains an overlooked area of (Cooke and Cowx 2004). Moreover, there is evidence that research despite the fact that these practices are popular recreational catches can exceed their commercial counter- globally and could present challenges to their populations. parts in some parts (McPhee et al. 2002; Schroeder and Here we provide a topical overview of shark recreational Love 2002), and the collapse of certain fisheries have even fisheries, highlighting their history and current status. While been attributed to recreational fishing (Post et al. 2002). recreational fishing can provide conservation benefits under Due to their relatively low reproductive output, high certain circumstances, we focus our discourse on the extinction risk, and intrinsic vulnerabilities to overexploitation, relatively understudied, potentially detrimental impacts there is a growing and urgent research need to understand the these activities may have on shark physiology, behavior, impacts of fisheries interactions on marine predators such as and fitness. -
Euryhalinity in an Evolutionary Context Eric T
University of Connecticut OpenCommons@UConn EEB Articles Department of Ecology and Evolutionary Biology 2013 Euryhalinity in an Evolutionary Context Eric T. Schultz University of Connecticut - Storrs, [email protected] Stephen D. McCormick USGS Conte Anadromous Fish Research Center, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/eeb_articles Part of the Comparative and Evolutionary Physiology Commons, Evolution Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Schultz, Eric T. and McCormick, Stephen D., "Euryhalinity in an Evolutionary Context" (2013). EEB Articles. 29. https://opencommons.uconn.edu/eeb_articles/29 RUNNING TITLE: Evolution and Euryhalinity Euryhalinity in an Evolutionary Context Eric T. Schultz Department of Ecology and Evolutionary Biology, University of Connecticut Stephen D. McCormick USGS, Conte Anadromous Fish Research Center, Turners Falls, MA Department of Biology, University of Massachusetts, Amherst Corresponding author (ETS) contact information: Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT 06269-3043 USA [email protected] phone: 860 486-4692 Keywords: Cladogenesis, diversification, key innovation, landlocking, phylogeny, salinity tolerance Schultz and McCormick Evolution and Euryhalinity 1. Introduction 2. Diversity of halotolerance 2.1. Empirical issues in halotolerance analysis 2.2. Interspecific variability in halotolerance 3. Evolutionary transitions in euryhalinity 3.1. Euryhalinity and halohabitat transitions in early fishes 3.2. Euryhalinity among extant fishes 3.3. Evolutionary diversification upon transitions in halohabitat 3.4. Adaptation upon transitions in halohabitat 4. Convergence and euryhalinity 5. Conclusion and perspectives 2 Schultz and McCormick Evolution and Euryhalinity This chapter focuses on the evolutionary importance and taxonomic distribution of euryhalinity. Euryhalinity refers to broad halotolerance and broad halohabitat distribution.