A Ada Interface
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent [19] [11] E Patent Number: Re
United States Patent [19] [11] E Patent Number: Re. 33,629 Palmer et a1. [45] Reissued Date of Patent: Jul. 2, 1991 [54] NUMERIC DATA PROCESSOR 1973, IEEE Transactions on Computers vol. C-22, pp. [75] Inventors: John F. Palmer, Cambridge, Mass; 577-586. Bruce W. Ravenel, Nederland, Co1o.; Bulman, D. M. "Stack Computers: An Introduction," Ra? Nave, Haifa, Israel May 1977, Computer pp. 18-28. Siewiorek, Daniel H; Bell, C. Gordon; Newell, Allen, [73] Assignee: Intel Corporation, Santa Clara, Calif. “Computer Structures: Principles and Examples," 1977, [21] Appl. No.: 461,538 Chapter 29, pp. 470-485 McGraw-Hill Book Co. Palmer, John F., “The Intel Standard for Floatin [22] Filed: Jun. 1, 1990 g-Point Arithmetic,“ Nov. 8-11, 1977, IEEE COMP SAC 77 Proceedings, 107-112. Related US. Patent Documents Coonen, J. T., "Speci?cations for a Proposed Standard Reissue of: t for Floating-Point Arithmetic," Oct. 13, 1978, Mem. [64] Patent No.: 4,338,675 #USB/ERL M78172, pp. 1-32. Issued: Jul. 6, 1982 Pittman, T. and Stewart, R. G., “Microprocessor Stan Appl. No: 120.995 dards,” 1978, AFIPS Conference Proceedings, vol. 47, Filed: Feb. 13, 1980 pp. 935-938. “7094-11 System Support For Numerical Analysis,“ by [51] Int. Cl.-‘ ........................ .. G06F 7/48; G06F 9/00; William Kahan, Dept. of Computer Science, Univ. of G06F 11/00 Toronto, Aug. 1966, pp. 1-51. [52] US. Cl. .................................. .. 364/748; 364/737; “A Uni?ed Decimal Floating-Point Architecture For 364/745; 364/258 The Support of High-Level Languages,‘ by Frederic [58] Field of Search ............. .. 364/748, 745, 737, 736, N. -
Faster Math Functions, Soundly
Faster Math Functions, Soundly IAN BRIGGS, University of Utah, USA PAVEL PANCHEKHA, University of Utah, USA Standard library implementations of functions like sin and exp optimize for accuracy, not speed, because they are intended for general-purpose use. But applications tolerate inaccuracy from cancellation, rounding error, and singularities—sometimes even very high error—and many application could tolerate error in function implementations as well. This raises an intriguing possibility: speeding up numerical code by tuning standard function implementations. This paper thus introduces OpTuner, an automatic method for selecting the best implementation of mathematical functions at each use site. OpTuner assembles dozens of implementations for the standard mathematical functions from across the speed-accuracy spectrum. OpTuner then uses error Taylor series and integer linear programming to compute optimal assignments of function implementation to use site and presents the user with a speed-accuracy Pareto curve they can use to speed up their code. In a case study on the POV-Ray ray tracer, OpTuner speeds up a critical computation, leading to a whole program speedup of 9% with no change in the program output (whereas human efforts result in slower code and lower-quality output). On a broader study of 37 standard benchmarks, OpTuner matches 216 implementations to 89 use sites and demonstrates speed-ups of 107% for negligible decreases in accuracy and of up to 438% for error-tolerant applications. Additional Key Words and Phrases: Floating point, rounding error, performance, approximation theory, synthesis, optimization 1 INTRODUCTION Floating-point arithmetic is foundational for scientific, engineering, and mathematical software. This is because, while floating-point arithmetic is approximate, most applications tolerate minute errors [Piparo et al. -
Ramanujan As a Patient
Proc. Indian Acad. Sci. (Math. Sci.), Voi. 93, Nos 2 & 3, December 1984, pp. 79-100 Printed in India. Ramanujan as a patient R A RANKIN Department of Mathematics, University of Glasgow, Glasgow GI2 8QW, Scotland 1. Introduction In this article I attempt to give as full a picture as possible of Srinivasa Ramanujan's medical history during his time in England. The account is based largely on unpublished letters and documents housed in various libraries, and on information extracted from the records of public bodies. In my earlier paper [12] I was concerned mainly with his notebooks and manuscripts, although I did give a brief description of the nursing homes in which he was a patient, based on information available to me at the time. What might be called Ramanujan's domestic history is well documented [1, 5, 7, 8, 9, 10, 14], at any rate as regards incident, if not exact date, so that, in the interests of brevity, I recall only those events that have a direct bearing on my subject. I also take the opportunity (in w to amplify and extend some of the material included in [12], in the light of information more recently received, and to make a number of general comments. The source to which most frequent reference is made is the collection of unpublished papers and documents written by, or concerning, Ramanujan (1887-1920), which were passed on by G H Hardy (1877-1947) and J E Littlewood (1885-1977) to G N Watson (1886-1965) and are now housed in the Wren Library of Trinity College, Cambridge, where at one time all four were Fellows. -
Version 13.0 Release Notes
Release Notes The tool of thought for expert programming Version 13.0 Dyalog is a trademark of Dyalog Limited Copyright 1982-2011 by Dyalog Limited. All rights reserved. Version 13.0 First Edition April 2011 No part of this publication may be reproduced in any form by any means without the prior written permission of Dyalog Limited. Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Dyalog Limited reserves the right to revise this publication without notification. TRADEMARKS: SQAPL is copyright of Insight Systems ApS. UNIX is a registered trademark of The Open Group. Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation. All other trademarks and copyrights are acknowledged. iii Contents C H A P T E R 1 Introduction .................................................................................... 1 Summary........................................................................................................................... 1 System Requirements ....................................................................................................... 2 Microsoft Windows .................................................................................................... 2 Microsoft .Net Interface .............................................................................................. 2 Unix and Linux .......................................................................................................... -
GT-2 Launch Scheduled This Week the Launch of the Unmanned Azimuth of 105 Degrees
VOL. 4 NO. 7 MANNED SPACECRAFT CENTER, HOUSTON, TEXAS JANUARY 20, 1965 GT-2 Launch Scheduled This Week The launch of the unmanned azimuth of 105 degrees. Space- seats were not armed for ejec- additional buoyancy until the Ocmini spacecraft 2 I(JT-2). craft separation was to be fol- tion. Both seats were clamped to spacecraft could be lifted aboard _hich _as postponed December lowed by a turn-around and the seat rails to minimize vibra- the aircraft carrier by a crane. 9. x_a,_ scheduled to ha_e been maneuver to retroattitude. The tion damage to the trey, simula- The main parachute for land- launched no earlier than vcstcr- rctrorockets, though not needed tars. ing the GT-2 spacecraft is an day from Complex 19 at Cape to perform this mission, were to l'rimc recovery ship for the 84-foot-diameter ringsail chute Kenned}, Fla. be _,equencc fired 62 seconds missionis the USS l_akeCham- designed to provide stable de- The _crvo ,,alxe flange that after _,pacecraft ",eparation. plain, the aircraft carrier that scent at a vertical velocity of 30 11 cracked, causing a delay in the The panel instruments _ere to recovered A_tronaut Alan fcet per second at sea level. flight, along _ith other ,,ervo be monitored during the GT-2 Shepard's Freedom 7spacecraft. The parachute deploys and xalve,, on the Titan ll, were re mb, sion by three 16ram black May 5. 1961. supports the spacecraft verti- placcd_ilh hcaxicrandstronger and x_hite motion picture U.S. Naval forces were to be tally for 22 seconds, then the forging,, and certain modifica- camera,, mounted on the crev, deployed along the flight path single point suspension is re- 'i! tions_cre made in the hydraulic simulator pallets, with another with recovery of the spacecraft leased permitting the,,pacecraft sy,dcm, camera recording the command programmed to take place about to reposition to a two-point The modilied Ti'tan 11 booster pilot's viev_ out the left window, 800 miles east of San Juan, bridle suspension. -
F:He UNIVAC®490 Real-Time Sysf:Em
GENERAL DESCRIPTION.. f:he UNIVAC®490 Real-Time Sysf:em o • GENERAL DESCRIPTION UNIVAC 490 Real-Time Sys-tem © 1961 • SPERRY RAND CORPORATION Contents 1. UNIVAC 490 REAL-TIME SYSTEM The Real-Time Concept. ............ ........................................... 1 General Characteristics of the Real-Time System.................... ...... ... .. 2 High-Speed Communications Linkage........................................... 2 Data Storage Facilities. 2 Features and Applications ...................................................... 2 Processing Interrupt..... .......... .. ....... .. .. .. .. ... ... ... .. .... .. .. .. 2 Solid-State Design ........................................................... 3 Computer-to-Computer Configurations....................................... 3 High-Speed Random Access Storage.................... ... ............... ... 3 A "Time Conscious" System ................................................. 3 Incremental Clock...................................................... ..... 3 Incremental Interrupt Clock........................... ............ ...... ..... 3 Day Clock................................................................... 3 High Internal Computing Speeds........................................... .. 4 Equipment Enclosure..................................................... ... 4 Flexible Input-Output Facilities.......................................... ..... 4 Automatic Programming ..................................................... 4 Floating-Point Arithmetic ................................................... -
Sperry Corporation, UNIVAC Division Photographs and Audiovisual Materials 1985.261
Sperry Corporation, UNIVAC Division photographs and audiovisual materials 1985.261 This finding aid was produced using ArchivesSpace on September 14, 2021. Description is written in: English. Describing Archives: A Content Standard Audiovisual Collections PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library Sperry Corporation, UNIVAC Division photographs and audiovisual materials 1985.261 Table of Contents Summary Information .................................................................................................................................... 3 Historical Note ............................................................................................................................................... 4 Scope and Content ......................................................................................................................................... 5 Arrangement ................................................................................................................................................... 6 Administrative Information ............................................................................................................................ 6 Related Materials ........................................................................................................................................... 7 Controlled Access Headings .......................................................................................................................... 8 Bibliography -
Ramanujan: Matemático Genial Desde La Pobreza Extrema
Rev.R.Acad.Cienc.Exact.Fís.Nat. (Esp) Vol. 107, Nº. 1-2, pp 43-54, 2014 XVI Programa de Promoción de la Cultura Científica y Tecnológica RAMANUJAN: MATEMÁTICO GENIAL DESDE LA POBREZA EXTREMA. MANUEL LÓPEZ PELLICER Real Academia de Ciencias Exactas, Físicas y Naturales. Valverde, 22. 28004 Madrid. 1. ENTORNO FAMILIAR. Srinivasa Aiyangar Ramanujan nació en Erode, cer- ca de Madrás, el 22 de diciembre de 1887. La India luchaba por su independencia desde 1857, mediante revueltas contra los ingleses. El héroe pacifista de la independencia fue Mohandas Karamchand Gandhi1, héroe pacifista de la independencia de la India, cono- cido como Mahatma Gandhi, que vivió entre 1869 y 1948. Ramanujan no conoció la independencia de la India, que se produjo el 15 de agosto de 1947. Su familia era muy pobre, aunque pertenecía a la casta Brahmin, que era una casta alta. Su padre era contable en un comercio de telas de Kumbakonam y su madre, apreciada por su buen criterio derivado de su gran sentido común, era hija de un modesto oficial del juzgado de Erodo. Su abuelo sufrió la lepra. Figura 1. Srinivasa Aiyangar Ramanujan. 1887-1920. 1 Desde 1918 perteneció al movimiento nacionalista hindú, utilizó la huelga de hambre como método de lucha social. Influido por León Tolstoi rechazó la lucha armada, predicando la no violencia para vencer al dominio británico, defendiendo la fidelidad a los dictados de la conciencia y el retorno a las tradiciones hinduistas. Su encarcelamiento en varias ocasiones le convirtió en un héroe nacional. En 1944 Gandi y su esposa Kasturba sufrieron arresto domiciliario en el Palacio del Aga Khan, donde ella murió en 1944, mientras que Gandhi realizaba veintiún días de ayuno. -
Yscrys 1.Pdf
Across the Colonial Divide: Friendship in the British Empire, 1875-1940 by You-Sun Crystal Chung A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (History and Women’s Studies) in the University of Michigan 2014 Doctoral Committee: Associate Professor Kali A. K. Israel, Chair Professor Adela Pinch Professor Helmut Puff Associate Professor Damon Salesa, University of Auckland © You-Sun Crystal Chung 2014 To my parents, Hyui Kyung Choi and Sye Kyun Chung, My brother June Won Fred Chung, And the memory of my grandmother Junghwa Kim ii Acknowledgements First, I would like to thank my committee Kali Israel, Adela Pinch, Damon Salesa, and especially Helmut Puff, for his generosity and insight since the inception of this project. Leslie Pincus also offered valuable encouragement when it was most keenly felt. This dissertation would not have been possible without the everyday support provided by Lorna Altstetter, Diana Denney, Aimee Germain, and especially Kathleen King. I have been fortunate throughout the process to be sustained by the friendship of those from home as well as those those I met at Michigan. My thanks to those who have demonstrated for me the strength of old ties: Jinok Baek, Yongran Byun Bang Sunghoon, Jeeyun Cho, Kyungeun Cho, Hae mi Choi, Hyewon Choi, Soonyoung Choi, Woojin Choi, Sue Young Chung, Yoonie Chung, YoonYoung Hwang, Jiah Hyun, Won Sun Hyun, Hailey Jang, Claire Kim, Kim Daeyoung, Max Kepler, Eun Hyung Kim, Hyunjoo Kim, Hye Young Kim, Jiwon Kang, Kim Jeongyeon, Jungeun Kim, Minju Kim, Minseung Kim, Nayeon Kim, Soojeong Kim, Woojae Kim, Bora Lee, Dae Jun Lee, Haeyeon Lee, Philip W. -
Version 0.2.1 Copyright C 2003-2009 Richard P
Modern Computer Arithmetic Richard P. Brent and Paul Zimmermann Version 0.2.1 Copyright c 2003-2009 Richard P. Brent and Paul Zimmermann This electronic version is distributed under the terms and conditions of the Creative Commons license “Attribution-Noncommercial-No Derivative Works 3.0”. You are free to copy, distribute and transmit this book under the following conditions: Attribution. You must attribute the work in the manner specified • by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Noncommercial. You may not use this work for commercial purposes. • No Derivative Works. You may not alter, transform, or build upon • this work. For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to the web page below. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. For more information about the license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Preface This is a book about algorithms for performing arithmetic, and their imple- mentation on modern computers. We are concerned with software more than hardware — we do not cover computer architecture or the design of computer hardware since good books are already available on these topics. Instead we focus on algorithms for efficiently performing arithmetic operations such as addition, multiplication and division, and their connections to topics such as modular arithmetic, greatest common divisors, the Fast Fourier Transform (FFT), and the computation of special functions. -
Recapping a Decade of IT Legacy Committee Accomplishments
Measuring Success = Volunteer Hours! Recapping a Decade of IT Legacy Committee Accomplishments. December 2015 ©2015, Lowell A. Benson for the VIP Club. Measuring Success = Volunteer Hours! December 6, 2015 The VIP Club's Why, What, and Who. From our constitution MISSION: The VIP CLUB is a social and service organization dedicated to enriching the lives of the members through social interaction and dissemination of information. GOALS: The CLUB shall provide an opportunity for social interaction of its members. The CLUB shall provide services and information appropriate to the interest of its members. The CLUB shall provide a mechanism for member services to the community. The CLUB shall provide a forum for information on the heritage and on-going action of the heritage companies (Twin Cities based Univac/Unisys organizations and the predecessor and successor firms). MEMBERS are former employees and their spouses of Twin-Cities- based Univac / Unisys organizations and predecessor or successor business enterprises who are retired or eligible to retire, and are at least 55 years of age - Membership is voluntary. Payment of annual dues is a condition of membership. Each membership unit (retiree and spouse) is entitled to one vote. The CLUB maintains a master file of all members. This master file is the property of the CLUB and is used for communication with members and for facility access. We dedicate this booklet/article to ‘Ole’ and our VIP Club founder, Millie Gignac. ©2015, LABenson for the VIP Club Measuring Success = Volunteer Hours! Introduction The VIP Club's Information Technology (IT) Legacy Committee started in October 2005 when LMCO's Richard 'Ole' Olson brought a Legacy committee idea to the VIP Club's board. -
Unitary and Symmetric Structure in Deep Neural Networks
University of Kentucky UKnowledge Theses and Dissertations--Mathematics Mathematics 2020 Unitary and Symmetric Structure in Deep Neural Networks Kehelwala Dewage Gayan Maduranga University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0002-6626-9024 Digital Object Identifier: https://doi.org/10.13023/etd.2020.380 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Maduranga, Kehelwala Dewage Gayan, "Unitary and Symmetric Structure in Deep Neural Networks" (2020). Theses and Dissertations--Mathematics. 77. https://uknowledge.uky.edu/math_etds/77 This Doctoral Dissertation is brought to you for free and open access by the Mathematics at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Mathematics by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.