Emissary Mathematical Sciences Research Institute
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2006 Annual Report
Contents Clay Mathematics Institute 2006 James A. Carlson Letter from the President 2 Recognizing Achievement Fields Medal Winner Terence Tao 3 Persi Diaconis Mathematics & Magic Tricks 4 Annual Meeting Clay Lectures at Cambridge University 6 Researchers, Workshops & Conferences Summary of 2006 Research Activities 8 Profile Interview with Research Fellow Ben Green 10 Davar Khoshnevisan Normal Numbers are Normal 15 Feature Article CMI—Göttingen Library Project: 16 Eugene Chislenko The Felix Klein Protocols Digitized The Klein Protokolle 18 Summer School Arithmetic Geometry at the Mathematisches Institut, Göttingen, Germany 22 Program Overview The Ross Program at Ohio State University 24 PROMYS at Boston University Institute News Awards & Honors 26 Deadlines Nominations, Proposals and Applications 32 Publications Selected Articles by Research Fellows 33 Books & Videos Activities 2007 Institute Calendar 36 2006 Another major change this year concerns the editorial board for the Clay Mathematics Institute Monograph Series, published jointly with the American Mathematical Society. Simon Donaldson and Andrew Wiles will serve as editors-in-chief, while I will serve as managing editor. Associate editors are Brian Conrad, Ingrid Daubechies, Charles Fefferman, János Kollár, Andrei Okounkov, David Morrison, Cliff Taubes, Peter Ozsváth, and Karen Smith. The Monograph Series publishes Letter from the president selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. The next volume in the series will be Ricci Flow and the Poincaré Conjecture, by John Morgan and Gang Tian. Their book will appear in the summer of 2007. In related publishing news, the Institute has had the complete record of the Göttingen seminars of Felix Klein, 1872–1912, digitized and made available on James Carlson. -
The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary
The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary i Reproduction. The work may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents. In any reproduction, the original publication by the Publisher must be credited in the following manner: “First published in The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commen- tary, c 2002 by the Mathematical Association of America,” and the copyright notice in proper form must be placed on all copies. Ravi Vakil’s photo on p. 337 is courtesy of Gabrielle Vogel. c 2002 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2002107972 ISBN 0-88385-807-X Printed in the United States of America Current Printing (last digit): 10987654321 ii The William Lowell Putnam Mathematical Competition 1985–2000 Problems, Solutions, and Commentary Kiran S. Kedlaya University of California, Berkeley Bjorn Poonen University of California, Berkeley Ravi Vakil Stanford University Published and distributed by The Mathematical Association of America iii MAA PROBLEM BOOKS SERIES Problem Books is a series of the Mathematical Association of America consisting of collections of problems and solutions from annual mathematical competitions; compilations of problems (including unsolved problems) specific to particular branches of mathematics; books on the art and practice of problem solving, etc. Committee on Publications Gerald Alexanderson, Chair Roger Nelsen Editor Irl Bivens Clayton Dodge Richard Gibbs George Gilbert Art Grainger Gerald Heuer Elgin Johnston Kiran Kedlaya Loren Larson Margaret Robinson The Inquisitive Problem Solver, Paul Vaderlind, Richard K. -
A MATHEMATICIAN's SURVIVAL GUIDE 1. an Algebra Teacher I
A MATHEMATICIAN’S SURVIVAL GUIDE PETER G. CASAZZA 1. An Algebra Teacher I could Understand Emmy award-winning journalist and bestselling author Cokie Roberts once said: As long as algebra is taught in school, there will be prayer in school. 1.1. An Object of Pride. Mathematician’s relationship with the general public most closely resembles “bipolar” disorder - at the same time they admire us and hate us. Almost everyone has had at least one bad experience with mathematics during some part of their education. Get into any taxi and tell the driver you are a mathematician and the response is predictable. First, there is silence while the driver relives his greatest nightmare - taking algebra. Next, you will hear the immortal words: “I was never any good at mathematics.” My response is: “I was never any good at being a taxi driver so I went into mathematics.” You can learn a lot from taxi drivers if you just don’t tell them you are a mathematician. Why get started on the wrong foot? The mathematician David Mumford put it: “I am accustomed, as a professional mathematician, to living in a sort of vacuum, surrounded by people who declare with an odd sort of pride that they are mathematically illiterate.” 1.2. A Balancing Act. The other most common response we get from the public is: “I can’t even balance my checkbook.” This reflects the fact that the public thinks that mathematics is basically just adding numbers. They have no idea what we really do. Because of the textbooks they studied, they think that all needed mathematics has already been discovered. -
MY UNFORGETTABLE EARLY YEARS at the INSTITUTE Enstitüde Unutulmaz Erken Yıllarım
MY UNFORGETTABLE EARLY YEARS AT THE INSTITUTE Enstitüde Unutulmaz Erken Yıllarım Dinakar Ramakrishnan `And what was it like,’ I asked him, `meeting Eliot?’ `When he looked at you,’ he said, `it was like standing on a quay, watching the prow of the Queen Mary come towards you, very slowly.’ – from `Stern’ by Seamus Heaney in memory of Ted Hughes, about the time he met T.S.Eliot It was a fortunate stroke of serendipity for me to have been at the Institute for Advanced Study in Princeton, twice during the nineteen eighties, first as a Post-doctoral member in 1982-83, and later as a Sloan Fellow in the Fall of 1986. I had the privilege of getting to know Robert Langlands at that time, and, needless to say, he has had a larger than life influence on me. It wasn’t like two ships passing in the night, but more like a rowboat feeling the waves of an oncoming ship. Langlands and I did not have many conversations, but each time we did, he would make a Zen like remark which took me a long time, at times months (or even years), to comprehend. Once or twice it even looked like he was commenting not on the question I posed, but on a tangential one; however, after much reflection, it became apparent that what he had said had an interesting bearing on what I had been wondering about, and it always provided a new take, at least to me, on the matter. Most importantly, to a beginner in the field like I was then, he was generous to a fault, always willing, whenever asked, to explain the subtle aspects of his own work. -
June 2014 Society Meetings Society and Events SHEPHARD PRIZE: NEW PRIZE Meetings for MATHEMATICS 2014 and Events Following a Very Generous Tions Open in Late 2014
LONDONLONDON MATHEMATICALMATHEMATICAL SOCIETYSOCIETY NEWSLETTER No. 437 June 2014 Society Meetings Society and Events SHEPHARD PRIZE: NEW PRIZE Meetings FOR MATHEMATICS 2014 and Events Following a very generous tions open in late 2014. The prize Monday 16 June donation made by Professor may be awarded to either a single Midlands Regional Meeting, Loughborough Geoffrey Shephard, the London winner or jointly to collaborators. page 11 Mathematical Society will, in 2015, The mathematical contribution Friday 4 July introduce a new prize. The prize, to which an award will be made Graduate Student to be known as the Shephard must be published, though there Meeting, Prize will be awarded bienni- is no requirement that the pub- London ally. The award will be made to lication be in an LMS-published page 8 a mathematician (or mathemati- journal. Friday 4 July cians) based in the UK in recog- Professor Shephard himself is 1 Society Meeting nition of a specific contribution Professor of Mathematics at the Hardy Lecture to mathematics with a strong University of East Anglia whose London intuitive component which can be main fields of interest are in page 9 explained to those with little or convex geometry and tessella- Wednesday 9 July no knowledge of university math- tions. Professor Shephard is one LMS Popular Lectures ematics, though the work itself of the longest-standing members London may involve more advanced ideas. of the LMS, having given more page 17 The Society now actively en- than sixty years of membership. Tuesday 19 August courages members to consider The Society wishes to place on LMS Meeting and Reception nominees who could be put record its thanks for his support ICM 2014, Seoul forward for the award of a in the establishment of the new page 11 Shephard Prize when nomina- prize. -
Sir Andrew J. Wiles
ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society March 2017 Volume 64, Number 3 Women's History Month Ad Honorem Sir Andrew J. Wiles page 197 2018 Leroy P. Steele Prize: Call for Nominations page 195 Interview with New AMS President Kenneth A. Ribet page 229 New York Meeting page 291 Sir Andrew J. Wiles, 2016 Abel Laureate. “The definition of a good mathematical problem is the mathematics it generates rather Notices than the problem itself.” of the American Mathematical Society March 2017 FEATURES 197 239229 26239 Ad Honorem Sir Andrew J. Interview with New The Graduate Student Wiles AMS President Kenneth Section Interview with Abel Laureate Sir A. Ribet Interview with Ryan Haskett Andrew J. Wiles by Martin Raussen and by Alexander Diaz-Lopez Allyn Jackson Christian Skau WHAT IS...an Elliptic Curve? Andrew Wiles's Marvelous Proof by by Harris B. Daniels and Álvaro Henri Darmon Lozano-Robledo The Mathematical Works of Andrew Wiles by Christopher Skinner In this issue we honor Sir Andrew J. Wiles, prover of Fermat's Last Theorem, recipient of the 2016 Abel Prize, and star of the NOVA video The Proof. We've got the official interview, reprinted from the newsletter of our friends in the European Mathematical Society; "Andrew Wiles's Marvelous Proof" by Henri Darmon; and a collection of articles on "The Mathematical Works of Andrew Wiles" assembled by guest editor Christopher Skinner. We welcome the new AMS president, Ken Ribet (another star of The Proof). Marcelo Viana, Director of IMPA in Rio, describes "Math in Brazil" on the eve of the upcoming IMO and ICM. -
Robert P. Langlands Receives the Abel Prize
Robert P. Langlands receives the Abel Prize The Norwegian Academy of Science and Letters has decided to award the Abel Prize for 2018 to Robert P. Langlands of the Institute for Advanced Study, Princeton, USA “for his visionary program connecting representation theory to number theory.” Robert P. Langlands has been awarded the Abel Prize project in modern mathematics has as wide a scope, has for his work dating back to January 1967. He was then produced so many deep results, and has so many people a 30-year-old associate professor at Princeton, working working on it. Its depth and breadth have grown and during the Christmas break. He wrote a 17-page letter the Langlands program is now frequently described as a to the great French mathematician André Weil, aged 60, grand unified theory of mathematics. outlining some of his new mathematical insights. The President of the Norwegian Academy of Science and “If you are willing to read it as pure speculation I would Letters, Ole M. Sejersted, announced the winner of the appreciate that,” he wrote. “If not – I am sure you have a 2018 Abel Prize at the Academy in Oslo today, 20 March. waste basket handy.” Biography Fortunately, the letter did not end up in a waste basket. His letter introduced a theory that created a completely Robert P. Langlands was born in New Westminster, new way of thinking about mathematics: it suggested British Columbia, in 1936. He graduated from the deep links between two areas, number theory and University of British Columbia with an undergraduate harmonic analysis, which had previously been considered degree in 1957 and an MSc in 1958, and from Yale as unrelated. -
Commodity and Energy Markets Conference at Oxford University
Commodity and Energy Markets Conference Annual Meeting 2017 th th 14 - 15 June Page | 1 Commodity and Energy Markets Conference Contents Welcome 3 Essential Information 4 Bird’s-eye view of programme 6 Detailed programme 8 Venue maps 26 Mezzanine level of Andrew Wiles Building 27 Local Information 28 List of Participants 29 Keynote Speakers 33 Academic journals: special issues 34 Sponsors 35 Page | 2 Welcome On behalf of the Mathematical Institute, it is our great pleasure to welcome you to the University of Oxford for the Commodity and Energy Markets annual conference (2017). The Commodity and Energy Markets annual conference 2017 is the latest in a long standing series of meetings. Our first workshop was held in London in 2004, and after that we expanded the scope and held yearly conferences in different locations across Europe. Nowadays, the Commodity and Energy Markets conference is the benchmark meeting for academics who work in this area. This year’s event covers a wide range of topics in commodities and energy. We highlight three keynote talks. Prof Hendrik Bessembinder (Arizona State University) will talk on “Measuring returns to those who invest in energy through futures”, and Prof Sebastian Jaimungal (University of Toronto) will talk about “Stochastic Control in Commodity & Energy Markets: Model Uncertainty, Algorithmic Trading, and Future Directions”. Moreover, Tony Cocker, E.ON’s Chief Executive Officer, will share his views and insights into the role of mathematical modelling in the energy industry. In addition to the over 100 talks, a panel of academics and professional experts will discuss “The future of energy trading in the UK and Europe: a single energy market?” The roundtable is sponsored by the Italian Association of Energy Suppliers and Traders (AIGET) and European Energy Retailers (EER). -
Math Spans All Dimensions
March 2000 THE NEWSLETTER OF THE MATHEMATICAL ASSOCIATION OF AMERICA Math Spans All Dimensions April 2000 is Math Awareness Month Interactive version of the complete poster is available at: http://mam2000.mathforum.com/ FOCUS March 2000 FOCUS is published by the Mathematical Association of America in January. February. March. April. May/June. August/September. FOCUS October. November. and December. a Editor: Fernando Gouvea. Colby College; March 2000 [email protected] Managing Editor: Carol Baxter. MAA Volume 20. Number 3 [email protected] Senior Writer: Harry Waldman. MAA In This Issue [email protected] Please address advertising inquiries to: 3 "Math Spans All Dimensions" During April Math Awareness Carol Baxter. MAA; [email protected] Month President: Thomas Banchoff. Brown University 3 Felix Browder Named Recipient of National Medal of Science First Vice-President: Barbara Osofsky. By Don Albers Second Vice-President: Frank Morgan. Secretary: Martha Siegel. Treasurer: Gerald 4 Updating the NCTM Standards J. Porter By Kenneth A. Ross Executive Director: Tina Straley 5 A Different Pencil Associate Executive Director and Direc Moving Our Focus from Teachers to Students tor of Publications and Electronic Services: Donald J. Albers By Ed Dubinsky FOCUS Editorial Board: Gerald 6 Mathematics Across the Curriculum at Dartmouth Alexanderson; Donna Beers; J. Kevin By Dorothy I. Wallace Colligan; Ed Dubinsky; Bill Hawkins; Dan Kalman; Maeve McCarthy; Peter Renz; Annie 7 ARUME is the First SIGMAA Selden; Jon Scott; Ravi Vakil. Letters to the editor should be addressed to 8 Read This! Fernando Gouvea. Colby College. Dept. of Mathematics. Waterville. ME 04901. 8 Raoul Bott and Jean-Pierre Serre Share the Wolf Prize Subscription and membership questions 10 Call For Papers should be directed to the MAA Customer Thirteenth Annual MAA Undergraduate Student Paper Sessions Service Center. -
Andrew Wiles and Fermat's Last Theorem
Andrew Wiles and Fermat's Last Theorem Ton Yeh A great figure in modern mathematics Sir Andrew Wiles is renowned throughout the world for having cracked the problem first posed by Fermat in 1637: the non-existence of positive integer solutions to an + bn = cn for n ≥ 3. Wiles' famous journey towards his proof { the surprising connection with elliptic curves, the apparent success, the discovery of an error, the despondency, and then the flash of inspiration which saved the day { is known to layman and professional mathematician alike. Therefore, the fact that Sir Andrew spent his undergraduate years at Merton College is a great honour for us. In this article we discuss simple number-theoretic ideas relating to Fermat's Last Theorem, which may be of interest to current or prospective students, or indeed to members of the public. Easier aspects of Fermat's Last Theorem It goes without saying that the non-expert will have a tough time getting to grips with Andrew Wiles' proof. What follows, therefore, is a sketch of much simpler and indeed more classical ideas related to Fermat's Last Theorem. As a regrettable consequence, things like algebraic topology, elliptic curves, modular functions and so on have to be omitted. As compensation, the student or keen amateur will gain accessible insight from this section; he will also appreciate the shortcomings of these classical approaches and be motivated to prepare himself for more advanced perspectives. Our aim is to determine what can be said about the solutions to an + bn = cn for positive integers a; b; c. -
Manifold Destiny: the New Yorker
Annals of Mathematics: Manifold Destiny: The New Yorker http://www.newyorker.com/archive/2006/08/28/060828fa_fact2?pr... ANNALS OF MATHEMATICS MANIFOLD DESTINY A legendary problem and the battle over who solved it. by Sylvia Nasar and David Gruber AUGUST 28, 2006 n the evening of June 20th, several hundred physicists, including a O Nobel laureate, assembled in an auditorium at the Friendship Hotel in Beijing for a lecture by the Chinese mathematician Shing-Tung Yau. In the late nineteen-seventies, when Yau was in his twenties, he had made a series of breakthroughs that helped launch the string-theory revolution in physics and earned him, in addition to a Fields Medal—the most coveted award in mathematics—a reputation in both disciplines as a thinker of unrivalled technical power. Yau had since become a professor of mathematics at Harvard and the director of mathematics institutes in Beijing and Hong Kong, dividing his time between the United States and China. His lecture at the Friendship Hotel was part of an international conference on string theory, which he had organized with the support of the Chinese government, in part to promote the country’s recent advances in theoretical physics. (More than six thousand students attended the keynote address, which was delivered by Yau’s close friend Stephen Hawking, in the Great Hall of the People.) The subject of Yau’s talk was something that few in his audience knew much about: the Poincaré conjecture, a century-old conundrum about the characteristics of three-dimensional spheres, which, because it has important implications for mathematics and cosmology and because it has eluded all attempts at solution, is regarded by mathematicians as a holy grail. -
Mathematical Genealogy of the Wellesley College Department Of
Nilos Kabasilas Mathematical Genealogy of the Wellesley College Department of Mathematics Elissaeus Judaeus Demetrios Kydones The Mathematics Genealogy Project is a service of North Dakota State University and the American Mathematical Society. http://www.genealogy.math.ndsu.nodak.edu/ Georgios Plethon Gemistos Manuel Chrysoloras 1380, 1393 Basilios Bessarion 1436 Mystras Johannes Argyropoulos Guarino da Verona 1444 Università di Padova 1408 Cristoforo Landino Marsilio Ficino Vittorino da Feltre 1462 Università di Firenze 1416 Università di Padova Angelo Poliziano Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo 1477 Università di Firenze 1433 Constantinople / Università di Mantova Università di Mantova Leo Outers Moses Perez Scipione Fortiguerra Demetrios Chalcocondyles Jacob ben Jehiel Loans Thomas à Kempis Rudolf Agricola Alessandro Sermoneta Gaetano da Thiene Heinrich von Langenstein 1485 Université Catholique de Louvain 1493 Università di Firenze 1452 Mystras / Accademia Romana 1478 Università degli Studi di Ferrara 1363, 1375 Université de Paris Maarten (Martinus Dorpius) van Dorp Girolamo (Hieronymus Aleander) Aleandro François Dubois Jean Tagault Janus Lascaris Matthaeus Adrianus Pelope Johann (Johannes Kapnion) Reuchlin Jan Standonck Alexander Hegius Pietro Roccabonella Nicoletto Vernia Johannes von Gmunden 1504, 1515 Université Catholique de Louvain 1499, 1508 Università di Padova 1516 Université de Paris 1472 Università di Padova 1477, 1481 Universität Basel / Université de Poitiers 1474, 1490 Collège Sainte-Barbe