2048 Innosoft BCP: 13 J. Klensin Obsoletes: 1521, 1522, 1590 MCI Category: Best Current Practice J
Total Page:16
File Type:pdf, Size:1020Kb
Network Working Group N. Freed Request for Comments: 2048 Innosoft BCP: 13 J. Klensin Obsoletes: 1521, 1522, 1590 MCI Category: Best Current Practice J. Postel ISI November 1996 Multipurpose Internet Mail Extensions (MIME) Part Four: Registration Procedures Status of this Memo This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements. Distribution of this memo is unlimited. Abstract STD 11, RFC 822, defines a message representation protocol specifying considerable detail about US-ASCII message headers, and leaves the message content, or message body, as flat US-ASCII text. This set of documents, collectively called the Multipurpose Internet Mail Extensions, or MIME, redefines the format of messages to allow for (1) textual message bodies in character sets other than US-ASCII, (2) an extensible set of different formats for non-textual message bodies, (3) multi-part message bodies, and (4) textual header information in character sets other than US-ASCII. These documents are based on earlier work documented in RFC 934, STD 11, and RFC 1049, but extends and revises them. Because RFC 822 said so little about message bodies, these documents are largely orthogonal to (rather than a revision of) RFC 822. Freed, et. al. Best Current Practice [Page 1] RFC 2048 MIME Registration Procedures November 1996 This fourth document, RFC 2048, specifies various IANA registration procedures for the following MIME facilities: (1) media types, (2) external body access types, (3) content-transfer-encodings. Registration of character sets for use in MIME is covered elsewhere and is no longer addressed by this document. These documents are revisions of RFCs 1521 and 1522, which themselves were revisions of RFCs 1341 and 1342. An appendix in RFC 2049 describes differences and changes from previous versions. Table of Contents 1. Introduction ......................................... 3 2. Media Type Registration .............................. 4 2.1 Registration Trees and Subtype Names ................ 4 2.1.1 IETF Tree ......................................... 4 2.1.2 Vendor Tree ....................................... 4 2.1.3 Personal or Vanity Tree ........................... 5 2.1.4 Special `x.' Tree ................................. 5 2.1.5 Additional Registration Trees ..................... 6 2.2 Registration Requirements ........................... 6 2.2.1 Functionality Requirement ......................... 6 2.2.2 Naming Requirements ............................... 6 2.2.3 Parameter Requirements ............................ 7 2.2.4 Canonicalization and Format Requirements .......... 7 2.2.5 Interchange Recommendations ....................... 8 2.2.6 Security Requirements ............................. 8 2.2.7 Usage and Implementation Non-requirements ......... 9 2.2.8 Publication Requirements .......................... 10 2.2.9 Additional Information ............................ 10 2.3 Registration Procedure .............................. 11 2.3.1 Present the Media Type to the Community for Review 11 2.3.2 IESG Approval ..................................... 12 2.3.3 IANA Registration ................................. 12 2.4 Comments on Media Type Registrations ................ 12 2.5 Location of Registered Media Type List .............. 12 2.6 IANA Procedures for Registering Media Types ......... 12 2.7 Change Control ...................................... 13 2.8 Registration Template ............................... 14 3. External Body Access Types ........................... 14 3.1 Registration Requirements ........................... 15 3.1.1 Naming Requirements ............................... 15 Freed, et. al. Best Current Practice [Page 2] RFC 2048 MIME Registration Procedures November 1996 3.1.2 Mechanism Specification Requirements .............. 15 3.1.3 Publication Requirements .......................... 15 3.1.4 Security Requirements ............................. 15 3.2 Registration Procedure .............................. 15 3.2.1 Present the Access Type to the Community .......... 16 3.2.2 Access Type Reviewer .............................. 16 3.2.3 IANA Registration ................................. 16 3.3 Location of Registered Access Type List ............. 16 3.4 IANA Procedures for Registering Access Types ........ 16 4. Transfer Encodings ................................... 17 4.1 Transfer Encoding Requirements ...................... 17 4.1.1 Naming Requirements ............................... 17 4.1.2 Algorithm Specification Requirements .............. 18 4.1.3 Input Domain Requirements ......................... 18 4.1.4 Output Range Requirements ......................... 18 4.1.5 Data Integrity and Generality Requirements ........ 18 4.1.6 New Functionality Requirements .................... 18 4.2 Transfer Encoding Definition Procedure .............. 19 4.3 IANA Procedures for Transfer Encoding Registration... 19 4.4 Location of Registered Transfer Encodings List ...... 19 5. Authors' Addresses ................................... 20 A. Grandfathered Media Types ............................ 21 1. Introduction Recent Internet protocols have been carefully designed to be easily extensible in certain areas. In particular, MIME [RFC 2045] is an open-ended framework and can accommodate additional object types, character sets, and access methods without any changes to the basic protocol. A registration process is needed, however, to ensure that the set of such values is developed in an orderly, well-specified, and public manner. This document defines registration procedures which use the Internet Assigned Numbers Authority (IANA) as a central registry for such values. Historical Note: The registration process for media types was initially defined in the context of the asynchronous Internet mail environment. In this mail environment there is a need to limit the number of possible media types to increase the likelihood of interoperability when the capabilities of the remote mail system are not known. As media types are used in new environments, where the proliferation of media types is not a hindrance to interoperability, the original procedure was excessively restrictive and had to be generalized. Freed, et. al. Best Current Practice [Page 3] RFC 2048 MIME Registration Procedures November 1996 2. Media Type Registration Registration of a new media type or types starts with the construction of a registration proposal. Registration may occur in several different registration trees, which have different requirements as discussed below. In general, the new registration proposal is circulated and reviewed in a fashion appropriate to the tree involved. The media type is then registered if the proposal is acceptable. The following sections describe the requirements and procedures used for each of the different registration trees. 2.1. Registration Trees and Subtype Names In order to increase the efficiency and flexibility of the registration process, different structures of subtype names may be registered to accomodate the different natural requirements for, e.g., a subtype that will be recommended for wide support and implementation by the Internet Community or a subtype that is used to move files associated with proprietary software. The following subsections define registration "trees", distinguished by the use of faceted names (e.g., names of the form "tree.subtree...type"). Note that some media types defined prior to this document do not conform to the naming conventions described below. See Appendix A for a discussion of them. 2.1.1. IETF Tree The IETF tree is intended for types of general interest to the Internet Community. Registration in the IETF tree requires approval by the IESG and publication of the media type registration as some form of RFC. Media types in the IETF tree are normally denoted by names that are not explicitly faceted, i.e., do not contain period (".", full stop) characters. The "owner" of a media type registration in the IETF tree is assumed to be the IETF itself. Modification or alteration of the specification requires the same level of processing (e.g. standards track) required for the initial registration. 2.1.2. Vendor Tree The vendor tree is used for media types associated with commercially available products. "Vendor" or "producer" are construed as equivalent and very broadly in this context. Freed, et. al. Best Current Practice [Page 4] RFC 2048 MIME Registration Procedures November 1996 A registration may be placed in the vendor tree by anyone who has need to interchange files associated with the particular product. However, the registration formally belongs to the vendor or organization producing the software or file format. Changes to the specification will be made at their request, as discussed in subsequent sections. Registrations in the vendor tree will be distinguished by the leading facet "vnd.". That may be followed, at the discretion of the registration, by either a media type name from a well-known producer (e.g., "vnd.mudpie") or by an IANA-approved designation of the producer's name which is then followed by a media type or product designation (e.g., vnd.bigcompany.funnypictures). While public exposure and review of media types to be registered in the vendor tree is not required, using the ietf-types list for review is strongly encouraged to improve the quality of those specifications. Registrations in the vendor tree may be submitted directly to the IANA. 2.1.3. Personal or Vanity Tree Registrations for