Course Syllabus STA 101 INTRODUCTION to STATISTICS

Total Page:16

File Type:pdf, Size:1020Kb

Course Syllabus STA 101 INTRODUCTION to STATISTICS Course Syllabus STA 101 INTRODUCTION TO STATISTICS Number of ECTS credits: 6 Time and Place: Tuesdays 16:30-18:00 &Thursdays 16:30-1800, VeCo 3 Contact Details for Professor Name of Professor: Maja Micevska Scharf, PhD E-mail: [email protected] Office hours: Tuesdays 15:30-16:30, Faculty Space, and by appointment CONTENT OVERVIEW Syllabus Section Page Course Prerequisites and Course Description 2 Course Learning Objectives 2 Overview Table: Link between MLO, CLO, Teaching Methods, 3 Assignments and Feedback Main Course Material 4-5 Workload Calculation for this Course 6 Course Assessment: Assignments Overview and Grading Scale 7 Description of Assignments, Activities and Deadlines 8 Rubrics: Transparent Criteria for Assessment 9-10 Policies for Attendance, Later Work, Academic Honesty, Turnitin 11-12 Course Schedule – Overview Table 13 Detailed Session-by-Session Description of Course 14-21 1 Course Prerequisites (if any) High-school algebra . Course Description Statistics is the art of using data to make numerical conjectures about problems. Descriptive statistics is the art of summarizing data. Topics include: histograms, the average, the standard deviation, the normal curve, correlation. Much statistical reasoning depends on the theory of probability. Topics include: chance models, expected value, standard error, probability histograms, convergence to the normal curve. Statistical inference is the art of making valid generalisations from samples. Topics include: estimation, measurement error, tests of statistical significance Further description This is an introductory course in statistics designed to provide students with the basic concepts of data analysis and statistical computing. Topics covered include basic descriptive measures, measures of association, probability theory, confidence intervals, and hypothesis testing. The main objective is to provide students with pragmatic tools for assessing statistical claims and conducting their own statistical analyses. Course Learning Objectives (CLO) At the end of this course, students should be able to: In terms of knowledge: ➢ Demonstrate their understanding of descriptive statistics by practical application of quantitative reasoning and data visualization ➢ Demonstrate their knowledge of the basics of inferential statistics by making valid generalizations from sample data In terms of skills ➢ Use R and Excel to conduct statistical analysis ➢ Recognize pitfalls in using statistical methodology In terms of attitudes, students should develop in this course: ➢ Critical attitudes, which are necessary for “life-long learning” ➢ Greater appreciation for the importance of statistical literacy in today’s data rich world 2 LINK BETWEEN MAJOR OBJECTIVES, COURSE OBJECTIVES, TEACHING METHODS, ASSIGNMENTS AND FEEDBACK (BA in Business Studies ) Summary: Number of assignments used in this course: 4 Number of Feedback occasions in this course (either written or oral): 4 Number and Types of Teaching Methods: 5 Major Learning Course Learning Methods Methods (and Type, Timing Objectives objectives addressing used to numbers/types and Instances the Major Objectives Teach Course of assignments) of Feedback (testable learning Objectives used to test given to objectives) these learning Student objectives A1: Demonstrate Lectures, problem Midterm exam, Written and oral The bachelor knows and understanding of descriptive solving activities in homework feedback from the is able to apply common statistics by practical class and at assignments instructor within a qualitative and application of quantitative home, videos and week of HW quantitative research reasoning and data textbook online submission and one methods and is able to visualization resources week after the apply these in the field of exams business studies Lectures, problem Final exam, Written and oral A2: Demonstrate knowledge solving activities in homework feedback from the of the basics of inferential class and at assignments instructor within a statistics by making valid home, videos and week of HW generalizations from sample textbook online submission and one data resources week after the exams B1: Use R and Excel to Lectures, problem Homework Written and oral conduct statistical analysis solving activities in assignments feedback from the class and at instructor within a home, videos and week of HW textbook online submission and one resources week after the exams B2: Recognize pitfalls in Lectures, problem Homework Written and oral using statistical methodology solving activities in assignments feedback from the class and at instructor within a home, videos and week of HW textbook online submission and one resources week after the exams Apply knowledge of Demonstrate their ability to Lectures, problem Homework Written and oral different functional fields interpret statistical outputs to solving exercises assignments feedback from the of business to analysis of inform business-oriented instructor within a business-oriented decisions week of HW problems and solutions submission and one week after the exams 3 Main Course Materials (please note that you can find the readings for each week and session in the Course Schedule section below): The course material consists of powerpoint presentations, lecture notes and readings from the textbook. Powerpoint presentations will be made available after the respective classes have taken place. A week-by-week overview of the course readings can be found in the section below. The syllabus, powerpoint presentations and important messages will be uploaded to the Vesalius portal ‘Pointcarré’. Students are expected to visit this site regularly to keep abreast of course evolutions. The professor is expected to upload relevant material in a timely manner. Course material marked as ‘suggested readings’ and ‘additional sources’ is helpful for research and to gain an increased understanding, but is not mandatory. This material can be found online or will be made available upon individual request. Textbook: For learning statistical concepts, the required textbook is by David M. Dietz, Christopher D. Barr, and Mine Cetinkaya-Rundel (2015). OpenIntro Statistics, American Institute for Mathematics. It is also available online for free as a pdf. (https://www.openintro.org/stat/textbook.php) For learning R, the recommended textbook is Nicholas J. Horton, Daniel T. Kaplan, and Randall Pruim (2015). A Student’s Guide to R It is available online via this link: https://cran.r-project.org/doc/contrib/Horton+Pruim+Kaplan_MOSAIC- StudentGuide.pdf For assignments and in-class activities you will be required to install: - R (available for a free download at https://www.r-project.org/). It is also recommended to install RStudio. R is the underlying programming language, while RStudio is a set of integrated tools that makes working with R much easier. Both are free, open-source, and used widely by statisticians. To install RStudio, go to the following link: https://www.rstudio.com/products/rstudio/download/ - A recent version of Microsoft Excel with the Analysis ToolPak installed (this is a separate component which might not be installed in the “typical installation” of Excel) Recommended References books: Freedman, David, Robert Pisani, & Roger Pervis (2007). Statistics. New York: W. W. Norton. James, Gareth, Daniela Witten, Trevor Hastie, & Robert Tibshirani (2013). An Introduction to Statistical Learning: With Applications in R. New York: Springer. Kabacoff, Robert (2015). R In Action: Data Analysis and Graphics with R. Shelter Island, NY: Manning Publications Co. 4 Active Learning and Intensive ‘Reading around the Subject’: Additional Sources, Recommended Journals and Websites: Learning should be an active and self-motivated experience. Students who passively listen to lectures, copy someone else’s notes, and limit their readings to required chapters are unlikely to develop their critical thinking and expand their personal knowledge system. At the exam, these students often fail to demonstrate a critical approach. Students are strongly recommended to have an updated understanding of developments related to this course and related to their wider Major. Active and engaged learning will turn out to be enriching to the overall course and class discussions. Students are invited to deepen their understanding of both theoretical and current issues from a variety of sources. Please find a list of suggestions compassing the entire course below. You are encouraged to read and browse in the leading journals of your discipline. Leading Journals in Business Studies Journal of International Business Studies; Journal of Management Studies; Journal of Marketing; Academy of Management Review; Accounting, Organizations and Society; Accounting Review; Administrative Science Quarterly; American Economic Review; Contemporary Accounting Research; Econometrica; Entrepreneurship Theory and Practice; Harvard Business Review; Human Relations; Human Resource Management; Information Systems Research; Journal of Accounting and Economics; Journal of Accounting Research; Journal of Applied Psychology; Journal of Business Ethics’ Journal of Business Venturing; Journal of Consumer Psychology; Journal of Consumer Research; Journal of Finance; Journal of Financial and Quantitative Analysis; Journal of Financial Economics; Journal of Management; Journal of Management Information Systems; Journal of Marketing Research; Journal of Operations Management; Journal of Political Economy; Journal of the Academy of Marketing Science; Management Science;
Recommended publications
  • Simple Mean Weighted Mean Or Harmonic Mean
    MultiplyMultiply oror Divide?Divide? AA BestBest PracticePractice forfor FactorFactor AnalysisAnalysis 77 ––10 10 JuneJune 20112011 Dr.Dr. ShuShu-Ping-Ping HuHu AlfredAlfred SmithSmith CCEACCEA Los Angeles Washington, D.C. Boston Chantilly Huntsville Dayton Santa Barbara Albuquerque Colorado Springs Ft. Meade Ft. Monmouth Goddard Space Flight Center Ogden Patuxent River Silver Spring Washington Navy Yard Cleveland Dahlgren Denver Johnson Space Center Montgomery New Orleans Oklahoma City Tampa Tacoma Vandenberg AFB Warner Robins ALC Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com PRT-70, 01 Apr 2011 ObjectivesObjectives It is common to estimate hours as a simple factor of a technical parameter such as weight, aperture, power or source lines of code (SLOC), i.e., hours = a*TechParameter z “Software development hours = a * SLOC” is used as an example z Concept is applicable to any factor cost estimating relationship (CER) Our objective is to address how to best estimate “a” z Multiply SLOC by Hour/SLOC or Divide SLOC by SLOC/Hour? z Simple, weighted, or harmonic mean? z Role of regression analysis z Base uncertainty on the prediction interval rather than just the range Our goal is to provide analysts a better understanding of choices available and how to select the right approach Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com PR-70, 01 Apr 2011 Approved for Public Release 2 of 25 OutlineOutline Definitions
    [Show full text]
  • Hydraulics Manual Glossary G - 3
    Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B.
    [Show full text]
  • Notes on Calculating Computer Performance
    Notes on Calculating Computer Performance Bruce Jacob and Trevor Mudge Advanced Computer Architecture Lab EECS Department, University of Michigan {blj,tnm}@umich.edu Abstract This report explains what it means to characterize the performance of a computer, and which methods are appro- priate and inappropriate for the task. The most widely used metric is the performance on the SPEC benchmark suite of programs; currently, the results of running the SPEC benchmark suite are compiled into a single number using the geometric mean. The primary reason for using the geometric mean is that it preserves values across normalization, but unfortunately, it does not preserve total run time, which is probably the figure of greatest interest when performances are being compared. Cycles per Instruction (CPI) is another widely used metric, but this method is invalid, even if comparing machines with identical clock speeds. Comparing CPI values to judge performance falls prey to the same prob- lems as averaging normalized values. In general, normalized values must not be averaged and instead of the geometric mean, either the harmonic or the arithmetic mean is the appropriate method for averaging a set running times. The arithmetic mean should be used to average times, and the harmonic mean should be used to average rates (1/time). A number of published SPECmarks are recomputed using these means to demonstrate the effect of choosing a favorable algorithm. 1.0 Performance and the Use of Means We want to summarize the performance of a computer; the easiest way uses a single number that can be compared against the numbers of other machines.
    [Show full text]
  • Cross-Sectional Skewness
    Cross-sectional Skewness Sangmin Oh∗ Jessica A. Wachtery June 18, 2019 Abstract This paper evaluates skewness in the cross-section of stock returns in light of pre- dictions from a well-known class of models. Cross-sectional skewness in monthly returns far exceeds what the standard lognormal model of returns would predict. In spite of the fact that cross-sectional skewness is positive, aggregate market skewness is negative. We present a model that accounts for both of these facts. This model also exhibits long-horizon skewness through the mechanism of nonstationary firm shares. ∗Booth School of Business, The University of Chicago. Email: [email protected] yThe Wharton School, University of Pennsylvania. Email: [email protected]. We thank Hendrik Bessembinder, John Campbell, Marco Grotteria, Nishad Kapadia, Yapai Zhang, and seminar participants at the Wharton School for helpful comments. 1 Introduction Underlying the cross-section of stock returns is a universe of heterogeneous entities com- monly referred to as firms. What is the most useful approach to modeling these firms? For the aggregate market, there is a wide consensus concerning the form a model needs to take to be a plausible account of the data. While there are important differences, quantitatively successful models tend to feature a stochastic discount factor with station- ary growth rates and permanent shocks, combined with aggregate cash flows that, too, have stationary growth rates and permanent shocks.1 No such consensus exists for the cross-section. We start with a simple model for stock returns to illustrate the puzzle. The model is not meant to be the final word on the cross-section, but rather to show that the most straightforward way to extend the consensus for the aggregate to the cross-section runs quickly into difficulties both with regard to data and to theory.
    [Show full text]
  • Math 140 Introductory Statistics
    Notation Population Sample Sampling Math 140 Distribution Introductory Statistics µ µ Mean x x Standard Professor Bernardo Ábrego Deviation σ s σ x Lecture 16 Sections 7.1,7.2 Size N n Properties of The Sampling Example 1 Distribution of The Sample Mean The mean µ x of the sampling distribution of x equals the mean of the population µ: Problems usually involve a combination of the µx = µ three properties of the Sampling Distribution of the Sample Mean, together with what we The standard deviation σ x of the sampling distribution of x , also called the standard error of the mean, equals the standard learned about the normal distribution. deviation of the population σ divided by the square root of the sample size n: σ Example: Average Number of Children σ x = n What is the probability that a random sample The Shape of the sampling distribution will be approximately of 20 families in the United States will have normal if the population is approximately normal; for other populations, the sampling distribution becomes more normal as an average of 1.5 children or fewer? n increases. This property is called the Central Limit Theorem. 1 Example 1 Example 1 Example: Average Number Number of Children Proportion of families, P(x) of Children (per family), x µx = µ = 0.873 What is the probability that a 0 0.524 random sample of 20 1 0.201 σ 1.095 σx = = = 0.2448 families in the United States 2 0.179 n 20 will have an average of 1.5 3 0.070 children or fewer? 4 or more 0.026 Mean (of population) 0.6 µ = 0.873 0.5 0.4 Standard Deviation 0.3 σ =1.095 0.2 0.1 0.873 0 01234 Example 1 Example 2 µ = µ = 0.873 Find z-score of the value 1.5 Example: Reasonably Likely Averages x x − mean z = = What average numbers of children are σ 1.095 SD σ = = = 0.2448 reasonably likely in a random sample of 20 x x − µ 1.5 − 0.873 n 20 = x = families? σx 0.2448 ≈ 2.56 Recall that the values that are in the middle normalcdf(−99999,2.56) ≈ .9947 95% of a random distribution are called So in a random sample of 20 Reasonably Likely.
    [Show full text]
  • 4.1 What Is an Average? Example
    STAT1010 – mean (or average) Chapter 4: Describing data ! 4.1 Averages and measures of center " Describing the center of a distribution ! 4.2 Shapes of distributions " Describing the shape ! 4.3 Quantifying variation " Describing the spread of a distribution 1 4.1 What is an average? ! In statistics, we generally use the term mean instead of average, and the mean has a specific formula… mean = sum of all values total number of values ! The term average could be interpreted in a variety of ways, thus, we’ll focus on the mean of a distribution or set of numbers. 2 Example: Eight grocery stores sell the PR energy bar for the following prices: $1.09 $1.29 $1.29 $1.35 $1.39 $1.49 $1.59 $1.79 Find the mean of these prices. Solution: The mean price is $1.41: $1.09 + $1.29 + $1.29 + $1.35 + $1.39 + $1.49 + $1.59 + $1.79 mean = 8 = $1.41 3 1 STAT1010 – mean (or average) Example: Octane Rating n = 40 87.4, 88.4, 88.7, 88.9, 89.3, 89.3, 89.6, 89.7 89.8, 89.8, 89.9, 90.0, 90.1, 90.3, 90.4, 90.4 90.4, 90.5, 90.6, 90.7, 91.0, 91.1, 91.1, 91.2 91.2, 91.6, 91.6, 91.8, 91.8, 92.2, 92.2, 92.2 92.3, 92.6, 92.7, 92.7, 93.0, 93.3, 93.7, 94.4 4 Example: Octane Rating Technical Note (short hand formula for the mean): Let x1, x2, …, xn represent n values.
    [Show full text]
  • STANDARDS and GUIDELINES for STATISTICAL SURVEYS September 2006
    OFFICE OF MANAGEMENT AND BUDGET STANDARDS AND GUIDELINES FOR STATISTICAL SURVEYS September 2006 Table of Contents LIST OF STANDARDS FOR STATISTICAL SURVEYS ....................................................... i INTRODUCTION......................................................................................................................... 1 SECTION 1 DEVELOPMENT OF CONCEPTS, METHODS, AND DESIGN .................. 5 Section 1.1 Survey Planning..................................................................................................... 5 Section 1.2 Survey Design........................................................................................................ 7 Section 1.3 Survey Response Rates.......................................................................................... 8 Section 1.4 Pretesting Survey Systems..................................................................................... 9 SECTION 2 COLLECTION OF DATA................................................................................... 9 Section 2.1 Developing Sampling Frames................................................................................ 9 Section 2.2 Required Notifications to Potential Survey Respondents.................................... 10 Section 2.3 Data Collection Methodology.............................................................................. 11 SECTION 3 PROCESSING AND EDITING OF DATA...................................................... 13 Section 3.1 Data Editing ........................................................................................................
    [Show full text]
  • Glossary of Transportation Construction Quality Assurance Terms
    TRANSPORTATION RESEARCH Number E-C235 August 2018 Glossary of Transportation Construction Quality Assurance Terms Seventh Edition TRANSPORTATION RESEARCH BOARD 2018 EXECUTIVE COMMITTEE OFFICERS Chair: Katherine F. Turnbull, Executive Associate Director and Research Scientist, Texas A&M Transportation Institute, College Station Vice Chair: Victoria A. Arroyo, Executive Director, Georgetown Climate Center; Assistant Dean, Centers and Institutes; and Professor and Director, Environmental Law Program, Georgetown University Law Center, Washington, D.C. Division Chair for NRC Oversight: Susan Hanson, Distinguished University Professor Emerita, School of Geography, Clark University, Worcester, Massachusetts Executive Director: Neil J. Pedersen, Transportation Research Board TRANSPORTATION RESEARCH BOARD 2017–2018 TECHNICAL ACTIVITIES COUNCIL Chair: Hyun-A C. Park, President, Spy Pond Partners, LLC, Arlington, Massachusetts Technical Activities Director: Ann M. Brach, Transportation Research Board David Ballard, Senior Economist, Gellman Research Associates, Inc., Jenkintown, Pennsylvania, Aviation Group Chair Coco Briseno, Deputy Director, Planning and Modal Programs, California Department of Transportation, Sacramento, State DOT Representative Anne Goodchild, Associate Professor, University of Washington, Seattle, Freight Systems Group Chair George Grimes, CEO Advisor, Patriot Rail Company, Denver, Colorado, Rail Group Chair David Harkey, Director, Highway Safety Research Center, University of North Carolina, Chapel Hill, Safety and Systems
    [Show full text]
  • Probability and Statistics Activity: Your Average Joe TEKS
    Mathematics TEKS Refinement 2006 – 6-8 Tarleton State University Probability and Statistics Activity: Your Average Joe TEKS: (6.10) Probability and statistics. The student uses statistical representations to analyze data. The student is expected to: (B) identify mean (using concrete objects and pictorial models), median, mode, and range of a set of data; (6.11) Underlying processes and mathematical tools. The student applies Grade 6 mathematics to solve problems connected to everyday experiences, investigations in other disciplines, and activities in and outside of school The student is expected to: (D) select tools such as real objects, manipulatives, paper/pencil, and technology or techniques such as mental math, estimation, and number sense to solve problems. Overview: In this activity, students will answer a question about the average number of letters in a first name. Using linking cubes, students will physically model the mean, median, and mode of the number of letters in their first names. Definitions will be formulated for these terms by referring to the physical activities used to determine their value. Example: to find the median, we first arranged ourselves in order from the shortest first name to the longest first name. Finally, students will be given a problem to solve in pairs, and then solution strategies will be shared with the class. Materials: Linking cubes Grid paper Transparencies 1-4 Handout 1 Calculator Grouping: Large group and pairs of students Time: Two 45-minute class periods Lesson: Procedures Notes 1. (5 minutes) Discuss the meaning of the Possible question: word “average” and how it is used in statistics.
    [Show full text]
  • Descriptive Statistics
    Statistics: Descriptive Statistics When we are given a large data set, it is necessary to describe the data in some way. The raw data is just too large and meaningless on its own to make sense of. We will sue the following exam scores data throughout: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 45, 67, 87, 21, 43, 98, 28, 23, 28, 75 Summary Statistics We can use the raw data to calculate summary statistics so that we have some idea what the data looks like and how sprad out it is. Max, Min and Range The maximum value of the dataset and the minimum value of the dataset are very simple measures. The range of the data is difference between the maximum and minimum value. Range = Max Value − Min Value = 98 − 21 = 77 Mean, Median and Mode The mean, median and mode are measures of central tendency of the data (i.e. where is the center of the data). Mean (µ) The mean is sum of all values divided by how many values there are N 1 X 45 + 67 + 87 + 21 + 43 + 98 + 28 + 23 + 28 + 75 xi = = 51.5 N i=1 10 Median The median is the middle data point when the dataset is arranged in order from smallest to largest. If there are two middle values then we take the average of the two values. Using the data above check that the median is: 44 Mode The mode is the value in the dataset that appears most. Using the data above check that the mode is: 28 Standard Deviation The standard deviation (σ) measures how spread out the data is.
    [Show full text]
  • The Case of the Disappearing Skewness
    THE CASE OF THE DISAPPEARING SKEWNESS * Preliminary Matthieu Gomez Valentin Haddad Erik Loualiche Columbia University UCLA & NBER University of Minnesota June 15, 2020 Abstract A well-known observation about firm-level returns is that they are positively skewed. We show that this positive skewness has slowly disappeared towards the end of the 20th century. In the 21st century, the distribution of idiosyncratic re- turns is symmetric. Using the entire cross-section of firms, we investigate possible explanations for the source of this change. This inquiry leaves us with a puzzle: none of the standard rationales behind the asymmetry of firm returns seem able to explain this phenomenon. Instead, the disappearance of skewness is present in firms of all types. *Gomez: [email protected]; Haddad: [email protected]; Loualiche: [email protected]. 1 Introduction Individual stock returns are positively skewed. This claim has a long history in the finance literature. As early as McEnally (1974), researchers have noted the asymmetry of firm-level returns, with larger and rarer good outcomes than bad outcomes. This observation has led to a large body of work arguing that this asymmetry plays an important role in shaping investor deci- sions. For example, if investors desire positively skewed gambles, they might choose not to diversify and invest in high-skew stocks, a view developed, for example, in Co- nine Jr and Tamarkin(1981) and Barberis and Huang(2008). In equilibrium this desire for skewness should be reflected in expected return, which Boyer, Mitton, and Vorkink(2010) and Conrad, Dittmar, and Ghysels(2013) document. In this paper, we update this classic claim.
    [Show full text]
  • Chapter 3 : Central Tendency
    Chapter 3 : Central Tendency OiOverview • Definition: Central tendency is a statistical measure to determine a single score tha t dfidefines the center of a distribution. – The goal of central tendency is to find the single score that is most typical or most representative of the entire group. – Measures of central tendency are also useful for making comparisons between groups of individuals or between sets of figures. • For example, weather data indicate that for Seattle, Washington, the average yearly temperature is 53° and the average annual precipitation is 34 inches. OiOverview cont. – By comparison, the average temperature in Phoenix, Arizona, is 71 ° and the average precipitation is 7.4 inches. • Clearly, there are problems defining the "center" of a distribution. • Occasionally, you will find a nice, neat distribution like the one shown in Figure 3.2(a), for which everyone will agree on the center. (See next slide.) • But you should realize that other distr ibut ions are possible and that there may be different opinions concerning the definition of the center. (See in two slides) OiOverview cont. • To deal with these problems, statisticians have developed three different methods for measuring central tendency: – Mean – MdiMedian – Mode OiOverview cont. Negatively Skewed Distribution Bimodal Distribution The Mean • The mean for a population will be identified by the Greek letter mu, μ (pronounced "mew"), and the mean for a sample is identified by M or (read "x- bar"). • Definition: The mean for a distribution is the sum of the scores divided by the number of scores. • The formula for the population mean is • The formula for the sample mean uses symbols that signify sample values: The Mean cont.
    [Show full text]