WRA Species Report

Total Page:16

File Type:pdf, Size:1020Kb

WRA Species Report Designation = Low Risk WRA Score = -4 Family: Myrsinaceae Taxon: Myrsine africana Synonym: Myrsine bifaria Wall. Common Name: Cape Myrtle Myrsine microphylla Hayata African boxwood Myrsine potama D. Don Thakisa Myrsine vaccinifolia Hayata Questionaire : current 20090513 Assessor: Chuck Chimera Designation: L Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score -4 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 y 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see n Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 n 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens y=1, n=0 n 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 y Print Date: 10/6/2011 Myrsine africana (Myrsinaceae) Page 1 of 7 Designation = Low Risk WRA Score = -4 410 Tolerates a wide range of soil conditions (or limestone conditions if not a volcanic island) y=1, n=0 y 411 Climbing or smothering growth habit y=1, n=0 n 412 Forms dense thickets y=1, n=0 n 501 Aquatic y=5, n=0 n 502 Grass y=1, n=0 n 503 Nitrogen fixing woody plant y=1, n=0 n 504 Geophyte (herbaceous with underground storage organs -- bulbs, corms, or tubers) y=1, n=0 n 601 Evidence of substantial reproductive failure in native habitat y=1, n=0 n 602 Produces viable seed y=1, n=-1 y 603 Hybridizes naturally y=1, n=-1 604 Self-compatible or apomictic y=1, n=-1 n 605 Requires specialist pollinators y=-1, n=0 n 606 Reproduction by vegetative fragmentation y=1, n=-1 n 607 Minimum generative time (years) 1 year = 1, 2 or 3 years = 0, >3 4+ years = -1 701 Propagules likely to be dispersed unintentionally (plants growing in heavily trafficked y=1, n=-1 n areas) 702 Propagules dispersed intentionally by people y=1, n=-1 y 703 Propagules likely to disperse as a produce contaminant y=1, n=-1 n 704 Propagules adapted to wind dispersal y=1, n=-1 n 705 Propagules water dispersed y=1, n=-1 n 706 Propagules bird dispersed y=1, n=-1 y 707 Propagules dispersed by other animals (externally) y=1, n=-1 n 708 Propagules survive passage through the gut y=1, n=-1 y 801 Prolific seed production (>1000/m2) y=1, n=-1 n 802 Evidence that a persistent propagule bank is formed (>1 yr) y=1, n=-1 n 803 Well controlled by herbicides y=-1, n=1 804 Tolerates, or benefits from, mutilation, cultivation, or fire y=1, n=-1 y 805 Effective natural enemies present locally (e.g. introduced biocontrol agents) y=-1, n=1 Designation: L WRA Score -4 Print Date: 10/6/2011 Myrsine africana (Myrsinaceae) Page 2 of 7 Designation = Low Risk WRA Score = -4 Supporting Data: 101 1998. Friis, I,./Vollesen, K./Danske, K.. Flora of [Is the species highly domesticated? No] No evidence the Sudan-Uganda Border Area East of the Nile: catalogue of vascular plants. Kgl. Danske Videnskabernes Selskab, Copenhagen, Denmark 101 2002. Schmidt, E./Lötter, M./McCleland, W.. [Is the species highly domesticated? No] No evidence Trees and shrubs of Mpumalanga and Kruger National Park. Jacana Media, Johannesburg, South Africa 102 2011. WRA Specialist. Personal Communication. NA 103 2011. WRA Specialist. Personal Communication. NA 201 2002. Schmidt, E./Lötter, M./McCleland, W.. [Species suited to tropical or subtropical climate(s)? 2-high] "Distribution: Trees and shrubs of Mpumalanga and Kruger widespread throughout the Afromontane region, from the Western Cape through National Park. Jacana Media, Johannesburg, South Africa, eastern Zimbabwe, tropical Africa and across Asia to China." South Africa 202 2002. Schmidt, E./Lötter, M./McCleland, W.. [Quality of climate match data? 2-high] "Distribution: widespread throughout the Trees and shrubs of Mpumalanga and Kruger Afromontane region, from the Western Cape through South Africa, eastern National Park. Jacana Media, Johannesburg, Zimbabwe, tropical Africa and across Asia to China." South Africa 203 1999. Chauhan, N.S.. Medicinal and aromatic [Broad climate suitability (environmental versatility)? Yes] "The shrub is found in plants of Himachal Pradesh. Indus Publishing, the outer Himalayas from Kashmir to Nepal and Khasi hills at altitudes of 300- New Delhi 2700 m." [Elevation range exceeds 1000 m, demonstrating environmental versatility] 204 2002. Schmidt, E./Lötter, M./McCleland, W.. [Native or naturalized in regions with tropical or subtropical climates? Yes] Trees and shrubs of Mpumalanga and Kruger "Distribution: widespread throughout the Afromontane region, from the Western National Park. Jacana Media, Johannesburg, Cape through South Africa, eastern Zimbabwe, tropical Africa and across Asia to South Africa China." 205 2005. South African National Biodiversity [Does the species have a history of repeated introductions outside its natural Institute. PlantzAfrica.com - Myrsine africana. range? Yes] "Myrsine africana was introduced from the Cape into England in the http://www.plantzafrica.com/plantklm/myrsinafr.ht late seventeenth century where it was cultivated at Hampton Court in 1691 m (McClintock 1994)." 205 2005. Staples, G.W./Herbst, D.R.. A Tropical [Does the species have a history of repeated introductions outside its natural Garden Flora - Plants Cultivated in the Hawaiian range? Yes] "…grown as an ornamental in Africa and Europe and is rarely used Islands and Other Tropical Places. Bishop for bonsai in Hawaii." Museum Press, Honolulu, HI 205 2011. San Marcos Growers. Products - Myrsine [Does the species have a history of repeated introductions outside its natural africana. range? Yes] "This plant was cultivated as early as 1691 in England and was http://www.smgrowers.com/products/plants/plantd introduced in cultivation in California by Dr. Francisco Franceschi." isplay.asp?plant_id=1072 301 2007. Randall, R.P.. Global Compendium of [Naturalized beyond native range? No] No evidence, although listed as an Weeds - Myrsine africana [Online Database]. Agricultural weed of unknown impacts in South African, which is within its native http://www.hear.org/gcw/species/myrsine_african range a/ 302 2007. Randall, R.P.. Global Compendium of [Garden/amenity/disturbance weed? Possibly] Listed as a garden thug, but no Weeds - Myrsine africana [Online Database]. evidence of impacts found http://www.hear.org/gcw/species/myrsine_african a/ 303 2007. Randall, R.P.. Global Compendium of [Agricultural/forestry/horticultural weed? Possibly] M. africana listed as an Weeds - Myrsine africana [Online Database]. agricultural weed, but no evidence of impacts were found http://www.hear.org/gcw/species/myrsine_african a/ 304 2007. Randall, R.P.. Global Compendium of [Environmental weed? No] No evidence Weeds - Myrsine africana [Online Database]. http://www.hear.org/gcw/species/myrsine_african a/ 305 2007. Randall, R.P.. Global Compendium of [Congeneric weed? No] Myrsine carolinensis listed as naturalized; Weeds - Myrsine carolinensis [Online Database]. http://www.hear.org/gcw/species/myrsine_caroline nsis/ Print Date: 10/6/2011 Myrsine africana (Myrsinaceae) Page 3 of 7 Designation = Low Risk WRA Score = -4 401 2002. Schmidt, E./Lötter, M./McCleland, W.. [Produces spines, thorns or burrs? No] "Evergreen shrub or small tree, 1-2 m, Trees and shrubs of Mpumalanga and Kruger rarely to 3 m;" [No evidence] National Park. Jacana Media, Johannesburg, South Africa 402 2005. South African National Biodiversity [Allelopathic? No] "M. africana, planted with Knowltonia africana and Asparagus Institute. PlantzAfrica.com - Myrsine africana. densiflorus, makes a tough water-wise combination, while creating interesting http://www.plantzafrica.com/plantklm/myrsinafr.ht foliage contrast for texture throughout the year in the semi-shade." [No evidence, m and able to be grown with other plants] 403 2002. Schmidt, E./Lötter, M./McCleland, W.. [Parasitic? No] "Evergreen shrub or small tree, 1-2 m, rarely to 3 m;" Trees and shrubs of Mpumalanga and Kruger [Myrsinaceae. Not parasitic] National Park. Jacana Media, Johannesburg, South Africa 404 1992. Varisco,D.M./Ross, J.P./Milroy, A.. [Unpalatable to grazing animals? No] "Grazed by goats and camels" Biological Diversity Assessment of the Republic of Yemen. International Council for Bird Preservatiot, Cambridge, UK 404 2011. Rahim, I./Maselli, D./Rueff, H./Wiesmann, [Unpalatable to grazing animals? No] "Among the fodder shrubs, Cotoneaster U.. Indigenous fodder trees can increase grazing nummularia, Indigofera heterantha and Myrsine africana are considered very accessibility for landless and mobile pastoralists palatable and nutritious. However, they are available in the lowland scrubs only in northern Pakistan. Pastoralism: Research, and away from the settlements and are thus mainly used by the landless sheep Policy and Practice.
Recommended publications
  • Cytotoxicity of Aerial Parts of Indigofera Heterantha
    Vol. 12(8), pp. 77-80, 30 April, 2017 DOI: 10.5897/SRE2014.5814 Article Number: 3FADC8265368 ISSN 1992-2248 Scientific Research and Essays Copyright©2017 Author(s) retain the copyright of this article http://www.academicjournals.org/SRE Full Length Research Paper Cytotoxicity of aerial parts of Indigofera heterantha Taj Ur Rahman1*, Wajiha Liaqat2, Khanzadi Fatima Khattak3, Muhammad Iqbal Choudhary4, Atif Kamil5 and Muhammad Aurang Zeb6 1Department of Chemistry, Mohi-Ud-Din Islamic University, AJ&K, Pakistan. 2Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, K. P. K, Pakistan. 3Women University, Swabi, Pakistan. 4International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi-75270, Pakistan. 5Department of Biotechnology Abdul Wali Khan University Mardan, Pakistan. 6Department of Biochemistry Hazara University, Mansehra, Pakistan. Received 22 January, 2014; Accepted 5 May, 2016 In the ongoing phytochemical study, an effort was made to investigate cytotoxicity of various crude fractions of aerial parts of Indigofera heterantha. The results obtained revealed that all the fractions including n-hexane, ethyl acetate, methanol and residue showed brine shrimp (Artemia salina Leach) cytotoxicity activity. The data obtained revealed the medicinal importance of the plant and will help the researchers to exploit the phytochemicals for biological activities (cytotoxicity). Key words: Indigofera heterantha, cytotoxicity, aerial parts. INTRODUCTION The genus Indigofera consists of about 700 species. All lipoxygenase inhibitory activity (Sharif et al., 2005). The species are herbs or shrubs distributed throughout the species Indigofera pulchra has shown snake-venom tropical regions of the globe. In Pakistan, this genus is neutralizing activity (Abubakar et al., 2006).
    [Show full text]
  • Plant Breading
    SNA Research Conference Vol. 52 2007 Plant Breeding and Evaluation Tom Ranney Section Editor and Moderator Plant Breeding and Evaluation Section 326 SNA Research Conference Vol. 52 2007 New Callicarpa Species with Breeding Potential Ryan N. Contreras and John M. Ruter University of Georgia, Dept. of Horticulture, Tifton, GA 31793 [email protected] Index Words: beautyberry, species evaluation, ornamental plant breeding Significance to Industry: There is a great deal of available Callicarpa L. germplasm that has yet to be utilized by the nursery industry in the U.S. Taxa currently being evaluated are likely to have potential as breeding material or direct commercial marketability. With new breeding material and selections for introduction the number of beautyberry cultivars for use in southeastern gardens has the potential to expand greatly. Nature of Work: Callicarpa L. is a genus of ~150 species of shrubs and trees distributed throughout the world including warm-temperate and tropical America, SE Asia, Malaysia, Pacific Islands, and Australia (5) with the greatest concentration of species found in SE Asia, specifically the Philippine Islands (1). Of the New World species the highest concentration occurs in Cuba, with ~20 native species (1). There are currently four species commonly found in cultivation in the U.S.: C. americana L., C. bodinieri Lév., C. dichotoma (Lour.)K.Koch, and C. japonica Thunb. with a limited number of varieties or cultivars of each to choose from (3). Beautyberries, desired primarily for their handsome berries produced in fall, have been selected for white-fruiting varieties, finer textured varieties, increased berry production, and variegated foliage.
    [Show full text]
  • Mothers, Markets and Medicine Hanna Lindh
    Mothers, markets and medicine The role of traditional herbal medicine in primary women and child health care in the Dar es Salaam region, Tanzania Hanna Lindh Degree project in biology, Bachelor of science, 2015 Examensarbete i biologi 15 hp till kandidatexamen, 2015 Biology Education Centre, Uppsala University Supervisors: Sarina Veldman and Hugo de Boer 1 Abstract Traditional medicine is still the most common primary healthcare used in Tanzania, especially among women. The ethnobotanical studies performed in Tanzania have not explored women’s traditional medicine, with the result that we do not know that much about it, including if women’s usage of medicinal plants create a threat against the medicinal flora’s biodiversity or not. Field studies consisting of interviews and collections of medicinal plants were carried out in the Dar es Salaam region in Tanzania before identifying the collected specimens by DNA barcoding, literature and morphology in Uppsala, Sweden. The 33 informants belonged to 15 different ethnic groups and 79% of them had migrated to Dar es Salaam. A total of 249 plant species were mentioned for women’s healthcare and 140 for children’s healthcare. The medicinal plants frequently reported as used for women’s health and childcare during structured interviews and free-listing exercises were Senna occidentalis/ Cassia abbreviata, Zanthoxylum sp., Clausena anisata, Acalypha ornata and Ximenia sp. The most salient uses of medicinal plants by women were during pregnancy, childbirth, menstruation, to induce abortion, and for cleansing infants and treating convulsions in children. Most of the fresh specimens were collected from disturbance vegetation. The informants having most interview answers in common were the market vendors, healers and herbalists and they were the only informants that mentioned species listed as vulnerable on the IUCN Red List of Threatened Species.
    [Show full text]
  • Phytochemical Analysis of Fruit Extract of Myrsine Africana
    International Journal of Pharmacy and Pharmaceutical Sciences Academic Sciences ISSN- 0975-1491 Vol 3, Issue 4, 2011 Research Article PHYTOCHEMICAL ANALYSIS OF FRUIT EXTRACT OF MYRSINE AFRICANA VASUDHA ABBHI*, LINCY JOSEPH, MATHEW GEORGE School of Pharmaceutical Sciences, Shoolini University, Solan (H.P.) India. Email: [email protected] Received: 13 Aug 2011, Revised and Accepted: 11 Sep 2011 ABSTRACT The present paper deals with the phytochemical screening of therapeutic importance from Myrsine africana, an important medicinal plant. This study involves the preliminary screening and quantitative determination of secondary metabolites from the fruits of M.africana. The phytochemical analysis revealed the presence of saponins, tannins, flavonoids, amino acids, steroids and reducing sugar. The amount of the saponins and tannins in methanolic extracts are reported (17.5% and 4% respectively). The generated data has provided the basis for its wide use as the therapeutant both in the traditional and folk medicines. Keywords: Myrsine Africana, Fruits, Phytochemical analysis. INTRODUCTION Horticulture and Forestry, Nauni, Solan (H.P.). Voucher specimens were deposited with the Herbarium at Nauni and are entered in the In recent times, there have been increased waves of interest in the UHF-Herbarium Field book no. 5585 dated 14.09.2010. field of Research in Natural Products Chemistry1. Plants have been used as treatments for thousands of years, based on experience and Preparation of extracts folk remedies and continue to draw wide attention for their role in the treatment of mild and chronic diseases2. The plant kingdom Aqueous extract represents an enormous reservoir of biologically active compounds The aqueous extract of fruits of Myrsine africana was prepared by with various chemical structures and protective/disease preventive the method of Decoction: properties (phytochemicals).
    [Show full text]
  • Staminodes: Their Morphological and Evolutionary Significance Author(S): L
    Staminodes: Their Morphological and Evolutionary Significance Author(s): L. P. Ronse Decraene and E. F. Smets Source: Botanical Review, Vol. 67, No. 3 (Jul. - Sep., 2001), pp. 351-402 Published by: Springer on behalf of New York Botanical Garden Press Stable URL: http://www.jstor.org/stable/4354395 . Accessed: 23/06/2014 03:18 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. New York Botanical Garden Press and Springer are collaborating with JSTOR to digitize, preserve and extend access to Botanical Review. http://www.jstor.org This content downloaded from 210.72.93.185 on Mon, 23 Jun 2014 03:18:32 AM All use subject to JSTOR Terms and Conditions THE BOTANICAL REVIEW VOL. 67 JULY-SEPTEMBER 2001 No. 3 Staminodes: Their Morphological and Evolutionary Signiflcance L. P. RONSEDECRAENE AND E. F. SMETS Katholieke UniversiteitLeuven Laboratory of Plant Systematics Institutefor Botany and Microbiology KasteelparkArenberg 31 B-3001 Leuven, Belgium I. Abstract........................................... 351 II. Introduction.................................................... 352 III. PossibleOrigin of Staminodes........................................... 354 IV. A Redefinitionof StaminodialStructures .................................. 359 A. Surveyof the Problem:Case Studies .............. .................... 359 B. Evolutionof StaminodialStructures: Function-Based Definition ... ......... 367 1. VestigialStaminodes ........................................... 367 2. FunctionalStaminodes ........................................... 368 C. StructuralSignificance of StaminodialStructures: Topology-Based Definition .
    [Show full text]
  • Phylogenetics of Asterids Based on 3 Coding and 3 Non-Coding Chloroplast DNA Markers and the Utility of Non-Coding DNA at Higher Taxonomic Levels
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 24 (2002) 274–301 www.academicpress.com Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels Birgitta Bremer,a,e,* Kaare Bremer,a Nahid Heidari,a Per Erixon,a Richard G. Olmstead,b Arne A. Anderberg,c Mari Kaallersj€ oo,€ d and Edit Barkhordariana a Department of Systematic Botany, Evolutionary Biology Centre, Norbyva€gen 18D, SE-752 36 Uppsala, Sweden b Department of Botany, University of Washington, P.O. Box 355325, Seattle, WA, USA c Department of Phanerogamic Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden d Laboratory for Molecular Systematics, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden e The Bergius Foundation at the Royal Swedish Academy of Sciences, P.O. Box 50017, SE-104 05 Stockholm, Sweden Received 25 September 2001; received in revised form 4 February 2002 Abstract Asterids comprise 1/4–1/3 of all flowering plants and are classified in 10 orders and >100 families. The phylogeny of asterids is here explored with jackknife parsimony analysis of chloroplast DNA from 132 genera representing 103 families and all higher groups of asterids. Six different markers were used, three of the markers represent protein coding genes, rbcL, ndhF, and matK, and three other represent non-coding DNA; a region including trnL exons and the intron and intergenic spacers between trnT (UGU) to trnF (GAA); another region including trnV exons and intron, trnM and intergenic spacers between trnV (UAC) and atpE, and the rps16 intron.
    [Show full text]
  • Phytosociological and Ethnobotanical Attributes of Skimmia
    Int. J. Biosci. 2012 International Journal of Biosciences (IJB) ISSN: 2220-6655 (Print) 2222-5234 (Online) Vol. 2, No. 12, p. 75-84, 2012 http://www.innspub.net RESEARCH PAPER OPEN ACCESS Phytosociological and ethnobotanical attributes of Skimmia laureola Barkatullah*, Muhammad Ibrar, Ghulam Jelani, Lal Badshah Department of Botany, University of Peshawar, Peshawar, Pakistan Received: 31 October 2012 Revised: 11 November 2012 Accepted: 14 November 2012 Key words: Skimmia laureola, flavoring agent, garlands, density hectare-1. Abstract Skmmia laureola grow gregariously in shady forest at altitude ranging from 7000 to 8800 feet. Leaves are also used as coughs remedy and commercially harvested as flavoring agent in food, and in traditional healing. These are made into garlands and considered sacred culture practices. Smoke from the leaves and twig is considered demon repellent. The smoke of the dry leaves is used for nasal tract clearness. It is also used for cold, fever and headache treatment. A total of 44 species were found in association with Skimmia laureola in different localities. Seven species including Adiantum venustum, Fragaria vesica, Indigofera heterantha, Isodon rugosus, Podophyllum hexandrum, Pteridium aquilinum and Taxus baccata were found to be the constant species in all six stands studied. Density hectare-1 values showed quite large values, ranging from 312 to 4437.5. A highest value was found in Bahrain, Swat while lowest value was recorded from Tajaka-Barawal, Upper Dir. Regression analyses were carried out to find out Correlation of altitude with Density hectare-1, importance values and importance value indices.ethnobotanical studies and marketing of the plant has also been carried out.
    [Show full text]
  • Phytochemical Analysis, Antifungal and Phytotoxic Activity of Seeds of Medicinal Plant Indigofera Heterantha Wall
    Middle-East Journal of Scientific Research 8 (3): 603-605, 2011 ISSN 1990-9233 © IDOSI Publications, 2011 Phytochemical Analysis, Antifungal and Phytotoxic Activity of Seeds of Medicinal Plant Indigofera heterantha Wall. 11Ghias Uddin, Taj Ur Rehman, 1Mohammad Arfan, 1Wajiha Liaqat, 23Ghulam Mohammad and Mohammad Iqbal Choudhary 1Institute of Chemical Sciences, PNRL Laboratory, University of Peshawar, K.P.K., Peshawar, Pakistan 2Incharge Civil Veterinary Hospital Hayaseri, Dir Lower K.P.K., Peshawar, Pakistan 3International Center for Chemical and Biological Sciences HEJ Research Institute of Chemistry Universit of Karachi, Karachi-75270, Pakistan Abstract: The seeds of Indigofera heterantha are used in folk medicine for the treatment of gastrointestinal disorder and abdominal pain. Biological evaluation on the seeds extracts were carried out. The antifungal activity was tested against six fungal strains viz., Trichophyton longifusis, Candida albicans, Aspergilus flavus, Microsporum canis and Candida glaberata shows non significant activity. The phytotoxic activity was tested against the specie Lemna minor shows significant activities (50-85%) Phytotoxicity. Key words: Indigofera heterantha Antifungal activity Phytotoxic activity INTRODUCTION commonly known an (Indigo Himalayan) is a deciduous shrub 30-60 cm tall widely distributed in the About 80% of the world population used medicinal tropical region of the globe [1]. In Pakistan, it is plants for the basic needs of their health cares. The represented by 24 species. The bark of this plant is used interaction between man, plants and drugs derived from in folk medicine to treat gastrointestinal disorder and plants describe the history of mankind. Plants are abdominal pain in the Swat Valley of Pakistan [2]. The important factories of natural products used as drugs plants as well as the whole genus are a rich source of against various dieasess.
    [Show full text]
  • Potential Natural Vegetation of Eastern Africa (Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda and Zambia)
    FOREST & LANDSCAPE WORKING PAPERS 65 / 2011 Potential Natural Vegetation of Eastern Africa (Ethiopia, Kenya, Malawi, Rwanda, Tanzania, Uganda and Zambia) VOLUME 5 Description and Tree Species Composition for Other Potential Natural Vegetation Types (Vegetation Types other than Forests, Woodlands, Wooded Grasslands, Bushlands and Thickets) R. Kindt, J.-P. B. Lillesø, P. van Breugel, M. Bingham, Sebsebe Demissew, C. Dudley, I. Friis, F. Gachathi, J. Kalema, F. Mbago, V. Minani, H.N. Moshi, J. Mulumba, M. Namaganda, H.J. Ndangalasi, C.K. Ruffo, R. Jamnadass and L. Graudal Title Potential natural vegetation map of eastern Africa. Volume 5. Descrip- tion and tree species composition for other potential natural vegeta- tion types. Authors Kindt, R., Lillesø, J.-P. B., van Breugel, P., Bingham, M., Sebsebe Demissew, Dudley, C., Friis, I., Gachathi, F., Kalema, J., Mbago, F., Minani, V., Moshi, H. N., Mulumba, J., Namaganda, M., Ndangalasi, H.J., Ruffo, C. K., Jamnadass, R. and Graudal, L. Collaborating Partner World Agroforestry Centre Publisher Forest & Landscape Denmark University of Copenhagen 23 Rolighedsvej DK-1958 Frederiksberg [email protected] +45-33351500 Series - title and no. Forest & Landscape Working Paper 65-2011 ISBN ISBN 978-87-7903-555-3 Layout Melita Jørgensen Citation Kindt, R., Lillesø, J.-P. B., van Breugel, P., Bingham, M., Sebsebe Demissew, Dudley, C., Friis, I., Gachathi, F., Kalema, J., Mbago, F., Minani, V., Moshi, H. N., Mulumba, J., Namaganda, M., Ndangalasi, H.J., Ruffo, C.K., Jamnadass, R. and Graudal, L. 2011. Potential natural vegetation of eastern Africa. Volume 5: Description and tree species composition for other potential natural vegetation types.
    [Show full text]
  • Indigofera Heterantha Roots
    Int. J. Biosci. 2017 International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print) 2222-5234 (Online) http://www.innspub.net Vol. 10, No. 5, p. 355-360, 2017 RESEARCH PAPER OPEN ACCESS Phytochemical screening, anti-diabetic and antioxidant potential of methanolic extract of Indigofera heterantha roots Muhammad Aurang Zeb*1, Muhammad Sajid1, Taj Ur Rahman2, Khanzadi Fatima Khattak3, Muhammad Tariq Khan4 1Department of Biochemistry, Hazara University, Mansehra, Pakistan 2Department of Chemistry, Mohi Ud Din Islamic University, AJ & K, Pakistan 3Women University, Swabi, Pakistan 4Agency Head Quarter Hospital, Khar, Bajaur Agency, Pakistan Key words: Indigofera heterantha, Medicinal plant, Phytochemical screening, Anti-diabetic, Antioxidant http://dx.doi.org/10.12692/ijb/355-360 Article published on May 30, 2017 Abstract The aim of the current study was to detect the Phytochemical present in the methanolic extract of the plant using the biochemical tests and to evaluate the anti-diabetic and antioxidant potential of the methanolic extract of I. heterantha roots using Glucose uptake yeast in cells assay and 1, 1-diphenyl -2-picrylhydrazyl (DPPH) free radical scavenging assay. The methanolic extract showed good anti-diabetic activity with minimum increase 5.31% at 10µg/ml and maximum 53.19% at 80μg/ml glucose concentration while moderate antioxidant activity with minimum radical scavenging activity 22.00% at 200µg/ml and maximum activity 56.35% at 1000µg/ml. The results obtained revealed that this plant is very important from medicinal point of view. * Corresponding Author: Muhammad Aurang Zeb [email protected] 355 Zeb et al. Int. J. Biosci. 2017 Introduction the root bark is chewed in the mouth to relieve the I.
    [Show full text]
  • Shafiq Ahmad Tariq
    PHARMACOLOGICAL SCREENING, PHYTOCHEMICAL EVALUATION AND PHARMACOGNOSTIC STUDIES OF INDIGOFERA GERARDIANA AND CRATAEGUS SONGRICA Desertation Submitted to the Department of Pharmacy, University of Peshawar in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY IN PHARMACEUTICAL SCEINCES By SHAFIQ AHMAD TARIQ DEPARTMENT OF PHARMACY UNIVERSITY OF PESHAWAR PAKISTAN 2009 Acknowledgements ACKNOWLEDGEMENTS All kinds of admiration is for Allah Almighty WHO created the universe and bequeath the mankind with knowledge and astuteness to search for his secret. The author is thankful to him who gave the impending, audacity and patience to complete this research work. I am indebted to my research supervisor Prof. Dr Mohammad Nisar Director Institute of chemistry university of Peshawar for his guidance, valuable, suggestions and stimulating discussions as well as enthusiastic support throughout the course of this investigation. I appreciatively acknowledge Dr Raza Shah HEJ Research Institute of chemistry, International centre for chemical and Biological Sciences University of Karachi for his time and expertise that was always generously available during my research stay at HEJ Karachi. The author’s thanks goes to faculty members, department of pharmacy, Prof. Dr Abdul Wadood and Prof Dr Riaz Naseem for their interest, moral support and encouragement. With deep sense of gratitute and appreciation I would like to extend my thanks to Mr. Sirtaj and Mr Ishfaq Hameed. I owe special thanks to Dr Manzoor Ahmad Malakand University to completing this assignment. Special appreciation is due to my lab fellow Mr. Obaidollah, Mr. Saleem Ullah Khan, MrInamullah khan, Mr Ihsan Ali, Mr.Waquar Ahmad Kaleem and Mr.Mugal Qaym for their generous support and encouragement during my research period.
    [Show full text]
  • Preliminary Notes on Distribution of Himalayan Plant Elements: a Case Study from Eastern Bhutan
    Songklanakarin J. Sci. Technol. 40 (2), 370-378, Mar. - Apr. 2018 Original Article Preliminary notes on distribution of Himalayan plant elements: A case study from Eastern Bhutan Tshering Tobgye1, 2 and Kitichate Sridith1* 1 Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand 2 Yadi Higher Secondary School, Yadi, Mongar, 43003 Bhutan Received: 22 November 2016; Revised: 28 December 2016; Accepted: 5 January 2017 Abstract Vascular plant species composition surveys in the lower montane vegetation of “Korila” forest, Mongar, Eastern Bhutan, identified 124 species, which constitutes an important component of the vegetation. Findings revealed that majority of the species were herbs including pteridophytes (ferns and lycophytes) (48.3%), followed by trees (23.4%), shrubs (20.9%), small trees (4.8%), (4.8%), and climbers/creepers (2.4%). Plant species composition and the vegetation analysis showed that the vegetation falls in lower montane broad-leaf forest type containing Castanopsis spp. and Quercus spp. (Fagaceae). A vegetation comparison study of the area with lower montane forest in South-East Asia through literature revealed that the true Himalayan element distribution range ended in the North of Thailand where the Himalayan range ends. But surprisingly, the study found that some Himalayan elements could extend their southernmost distribution until North of the Peninsular Malaysia. Thus, it can be concluded that the Himalayan range had formed an important corridor. Keywords: lower montane forest, Eastern Himalaya, Bhutan; far-east Asia, plant distribution 1. Introduction the Bhutan Himalaya with intact vegetation in pristine form calls for genuine comparison of plant elements with that of Studies regarding vegetation structure, composi- Far-East Asia.
    [Show full text]