Paper Title (Use Style: Paper Title)

Total Page:16

File Type:pdf, Size:1020Kb

Paper Title (Use Style: Paper Title) VCE: A New Personated Virtual Cluster Engine for Cluster Computing Mohsen Sharifi, Masoud Hassani Ehsan Mousavi Khaneghah, Seyedeh Leili Mirtaheri Computer Engineering Department Computer Engineering Department Iran University of Science and Technology Iran University of Science and Technology Tehran, Iran Tehran, Iran [email protected], [email protected] [email protected], [email protected] Abstract— Virtualization addresses the problem of making more On the other hand, there are typically three types of owners, efficient use of available computer resources. Recently, virtual who use their workstations mostly for: clusters try either to virtualize a single physical cluster into (1) Sending and receiving email and preparing multiple independent virtual clusters to provide a virtual server documents. as a highly scalable and highly available server built on a cluster (2) Software development, editing, compiling, debugging of real servers, or to share physical clusters to offer economies of scale and more effective use of resources by multiplexing. and testing. However, since programs running on a cluster demonstrate (3) Running compute-intensive applications. different types of requirements as their executions proceeds, such as support for intensive processing, security, and massive data Cluster computing tries to steal spare cycles from (1) and communications, it is therefore quite unrealistic to assume that a (2) to provide resources for (3). However, this requires statically configured cluster with a predetermined number of overcoming the ownership hurdle - people are very protective nodes with specific features and support can do any good for of their workstations. To do this usually requires organizational such programs. This paper presents a different usage for mandate that computers are to be used in this way. Stealing virtualization in the context of distributed computing using cycles outside standard work hours (e.g. overnight) is easy, but virtual clusters, called Virtual Cluster Engine (VCE), that stealing idle cycles during work hours without impacting provides a computing environment that can be both statistically interactive use (both CPU and memory) is much harder. and dynamically (re)organized according to the needs and requirements of programs, so that they can achieve the best There are more motivations for using cluster computing in possible performance as they suit themselves, indeed within the addition to the above initiative: constraints of available resources. Feasibility of the proposed The communications bandwidth between workstations architecture for VCE has been studied on an experimental is increasing as new networking technologies and platform using seven real machines, VMWare ESX, VMotion, protocols are implemented in LANs and WANs. and VMWare programming kit, and a number of virtual machines. On average, 20% improvement on response times Workstation clusters are easier to integrate into under VCE was experienced. existing networks than special parallel computers. Surveys show utilization of CPU cycles of desktop Keyword: Virtualization, Virtual Cluster, Cluster Computation, workstations is typically <10%. Distributed Computing, Operating System Performance of workstations and PCs is rapidly improving I. INTRODUCTION As performance grows, percent utilization will Generally speaking, there have been three ways to improve decrease even further distributed computing performance: Organizations are reluctant to buy large supercomputers, due to the large expense and short Work harder by using faster hardware, e.g. reducing useful life span. the time per instruction. The development tools for workstations are more Work smarter by using optimized algorithms and mature than the contrasting proprietary solutions for techniques. parallel computers - mainly due to the non-standard Get help from multiple computers to solve problems nature of many parallel systems. faster. Workstation clusters are a cheap and readily available alternative to specialized High Performance Computing (HPC) platforms. Use of clusters of workstations as a distributed provide a context for our proposition. Section 3 presents the compute resource is a very cost-effective incremental architecture of a new personated Virtual Cluster Engine for growth of system. cluster computing, called VCE. Section 4 studies the feasibility of VCE through experimentation. Section 5 concludes the Some of the key operational benefits of clustering include: paper. System High Availability (HA). Offers inherent high system availability due to the redundancy of II. RELATED WORK hardware, operating systems, and applications. Virtualization addresses the problem of making more Hardware Fault Tolerance. Redundancy for most efficient use of available computer resources. This is done by system components (e.g. disk-RAID), including both providing an abstraction layer which maps real resources to hardware and software. virtual resources. Virtualization solutions have existed for more Operating System (OS) and Application Reliability. than forty years. For example, the IBM VM/370 project from Running multiple copies of the OS and applications, the early sixties used virtualization to expose a virtual and through this redundancy System/370 machine to the user. There is a wealth of Scalability. Adding servers to the cluster or by adding virtualization technologies like: QEMU [3], BOCHS [4], more clusters to the network as the need arises or OpenVZ [5], coLinux [6], Xen [7], and a lot more. In this paper CPU to SMP. we are not going to focus on any particular technology or High Performance. Running cluster enabled programs. present any new virtualization technology, but rather intend to put forward a different usage for virtualization in the context of There are so many applications for cluster computing too, distributed computing using virtual clusters. including: The common place technologies on virtual clusters, like Numerous Scientific and Engineering Applications. COD [1], VPC [8], ZONE.NET [9], LVS [2], NLB [10,11], Parametric Simulations. SV [12], VS [13], GVC [14] and many more try either to Business Applications, like E-commerce Applications virtualize a single physical cluster into multiple independent (Amazon.com, eBay.com), Database Applications virtual clusters to provide a virtual server as a highly scalable (Oracle on cluster), and Decision Support Systems. and highly available server built on a cluster of real servers, or Internet Applications, like Web serving/searching, to share physical clusters to offer economies of scale and more Infowares (yahoo.com, AOL.com), ASPs effective use of resources by multiplexing. (Application Service Providers), eMail, eChat, VCE presents a new perspective and usage for cluster ePhone, eBook, eCommerce, eBank, eSociety, virtualization based on virtual cluster technology. Virtual eAnything, and Computing Portals. clusters were originally used for educational purposes in cases Mission Critical Applications, like Command Control where physical resources were not sufficient to run (new) systems, banks, nuclear reactor control, star-war, and systems or applications. A recurrent example is to deploy a handling life threatening situations. virtualizer, like Xen and VMWare [15], on a single computer to create a number of virtual machines interconnected by a Given this introductory background, what does a cluster virtual switch, allowing variety of experimentations on the really mean? A cluster is a type of parallel or distributed single computer as though they run on a real network. processing system, which consists of a collection of Nowadays, virtual clusters are mostly used for real interconnected stand-alone or complete computers computation. Advances in multi-processor and multi-core cooperatively working together as a single, integrated technology, increased maintenance costs of real machines, computing resource. The general focus nowadays is mostly (as scalability and flexibility of virtual machines, capability of in this paper) on MIMD model, using general purpose dynamically transferring machine state from one machine to processors or multi-computers. another, has attracted industry and academia to use virtual machines extensively in the construction of virtual clusters in Clusters have been subjected to virtualization in various support of real computations. ways, either to virtualize a single physical cluster into multiple independent virtual clusters [1], or to share physical clusters to offer economies of scale and more effective use of resources by Dinda [16] presents a case for grid computing based on the multiplexing [2]. In this paper we are not going to focus on any use of virtual machines. This was the first successful technique particular cluster virtualization technology or present a new that deployed a bank of virtual machines in support of varieties of tasks. It was however restricted in that assignment of virtual cluster virtualization technology, but rather intend to put machines to tasks were only allowed once and only upon start forward a different usage for virtualization in the context of of computation. VCE furthers this capability by allowing run- distributed computing using virtual clusters. We introduce a time cluster reorganization (i.e., reassignment of virtual completely different perspective of cluster virtualization. machines to tasks) even after the start of computation. The rest of paper is organized as follows. A number of Foster
Recommended publications
  • The First Attempt Our Next Attempt Conclusion
    Dr. Henry Neeman, Director of Oscer Chris Franklin, Computer Science undergrad, IT employee Dr. Horst Severini, Associate Director for Remote & Heterogeneous Computing Joshua Alexander, Computer Engineering undergrad, IT employee What is Condor®? The first attempt ® Condor is a program developed by the University of Wisconsin to allow desktop computers to The initial solution we devised was to install VMWare® within a native Linux install, and then to install Windows inside VMWare®. The steps harness idle time to perform computationally intensive operations. See were: “http://www.cs.wisc.edu/condor/” for more information about Condor®. 1. Install Linux as the native host operating system Why do you need it? 2. Install Condor inside Linux 3. Install VMWare® inside Linux ® Condor® provides free computing cycles for scientific and research use, which extends current 4. Install Windows inside VMWare super-computing resources by adding additional computing time. We installed this solution on approximately 200 lab computers across OU’s campus during the summer of 2005. During testing, we noticed a significant performance decrease using Windows inside VMWare®. To alleviate this problem, we changed VMWare® to use raw disk mode. This mode significantly increased disk performance inside VMWare®. If this is so simple, why can’t I just install it? Once we deployed VMWare® in the labs, several more issues appeared: ® Most scientific and research programs are designed for Linux, but most desktops are running • CD/DVD Burning from inside VMWare did
    [Show full text]
  • Virtual Environment for Ipv6 Analysis
    Virtual Environment for IPv6 Analysis ____________________________ Ricardo Alexander Saladrigas Advisor: Dr. Anna Calveras Barcelona DEDICATION To my parents, for giving me opportunities of immeasurable value and supporting me and my farfetched ideas. To my near family, for their accumulated efforts of improving our collective life. And to Maria Alexandra Siso, Robert Baumgartner, Alyssa Juday and Marc Ramirez for keeping me sane. i ACKNOWLEDGMENTS I extend my gratitude to everyone that has made my work possible. I express my thanks to the communities of VirtualBox, StackOverflow, ServerFault and Ubuntu Help as well as the Reddit communities for Linux and Networking for answering all my technical questions in detail and without prejudice I would like to thank Dr Anna Calveras for her guidance and patience. ii RESUMEN Nuestro objetivo fue la creación de una red compuesta de máquinas virtuales conectadas de forma específica a través de interfaces virtuales y con una seria de protocolos pre configurados que permiten la fácil creación de túneles IPv6 y traductores IPv6 a IPv4. Esta red les permitirá a profesores y estudiantes analizar y observar trafico IPv6 real sin la necesidad de una red física. La red está compuesta de múltiples Máquinas Virtuales Ubuntu y una Máquina Virtual Windows 7. La red puede ser fácilmente instalada en un ordenador corriendo Ubuntu o una distribución basada en Ubuntu. Un USB arrancable fue desarrollado para usar la red en un ordenador sin la necesidad de una instalación o de un sistema operativo especifico. Todas las máquinas virtuales Linux pueden fácilmente ser controladas a través de una terminal sin necesidad de clave utilizando una serie de scripts.
    [Show full text]
  • Comparison of Platform Virtual Machines - Wikipedia
    Comparison of platform virtual machines - Wikipedia... http://en.wikipedia.org/wiki/Comparison_of_platform... Comparison of platform virtual machines From Wikipedia, the free encyclopedia The table below compares basic information about platform virtual machine (VM) packages. Contents 1 General Information 2 More details 3 Features 4 Other emulators 5 See also 6 References 7 External links General Information Name Creator Host CPU Guest CPU Bochs Kevin Lawton any x86, AMD64 CHARON-AXP Stromasys x86 (64 bit) DEC Alphaserver CHARON-VAX Stromasys x86, IA-64 VAX x86, x86-64, SPARC (portable: Contai ners (al so 'Zones') Sun Microsystems (Same as host) not tied to hardware) Dan Aloni helped by other Cooperati ve Li nux x86[1] (Same as parent) developers (1) Denal i University of Washington x86 x86 Peter Veenstra and Sjoerd with DOSBox any x86 community help DOSEMU Community Project x86, AMD64 x86 1 of 15 10/26/2009 12:50 PM Comparison of platform virtual machines - Wikipedia... http://en.wikipedia.org/wiki/Comparison_of_platform... FreeVPS PSoft (http://www.FreeVPS.com) x86, AMD64 compatible ARM, MIPS, M88K GXemul Anders Gavare any PowerPC, SuperH Written by Roger Bowler, Hercul es currently maintained by Jay any z/Architecture Maynard x64 + hardware-assisted Hyper-V Microsoft virtualization (Intel VT or x64,x86 AMD-V) OR1K, MIPS32, ARC600/ARC700, A (can use all OVP OVP Imperas [1] [2] Imperas OVP Tool s x86 (http://www.imperas.com) (http://www.ovpworld compliant models, u can write own to pu OVP APIs) i Core Vi rtual Accounts iCore Software
    [Show full text]
  • Cooperative Linux
    Cooperative Linux Dan Aloni [email protected] Abstract trol on the physical hardware, where the other is provided only with virtual hardware abstrac- tion. From this point on in the paper I’ll refer In this paper I’ll describe Cooperative Linux, a to these two kernels as the host operating sys- port of the Linux kernel that allows it to run as tem, and the guest Linux VM respectively. The an unprivileged lightweight virtual machine in host can be every OS kernel that exports basic kernel mode, on top of another OS kernel. It al- primitives that provide the Cooperative Linux lows Linux to run under any operating system portable driver to run in CPL0 mode (ring 0) that supports loading drivers, such as Windows and allocate memory. or Linux, after minimal porting efforts. The pa- per includes the present and future implemen- The special CPL0 approach in Cooperative tation details, its applications, and its compar- Linux makes it significantly different than ison with other Linux virtualization methods. traditional virtualization solutions such as Among the technical details I’ll present the VMware, plex86, Virtual PC, and other meth- CPU-complete context switch code, hardware ods such as Xen. All of these approaches work interrupt forwarding, the interface between the by running the guest OS in a less privileged host OS and Linux, and the management of the mode than of the host kernel. This approach VM’s pseudo physical RAM. allowed for the extensive simplification of Co- operative Linux’s design and its short early- 1 Introduction beta development cycle which lasted only one month, starting from scratch by modifying the vanilla Linux 2.4.23-pre9 release until reach- Cooperative Linux utilizes the rather under- ing to the point where KDE could run.
    [Show full text]
  • Virtualisation Open Source État De L'art
    Virtualisation open source État de l'art Jean Charles Delépine <[email protected]> Université de Picardie Direction des Infrastructures et des systèmes d'Information Une jungle d'acronymes Xen QEMU Vmware Vserver KVM UML VirtualBox OPENVZ Lguest HyperV Définition « La virtualisation est l'ensemble des techniques matérielles et/ou logicielles qui permettent de faire fonctionner sur une seule machine plusieurs systèmes d'exploitation et/ou plusieurs applications, séparément les uns des autres, comme s'ils fonctionnaient sur des machines physiques distinctes. » (wikipedia) Pourquoi faire ? Utilisation optimale des ressources Installation, déploiement et migration facile des machines virtuelles d'une machine physique à une autre. Économie, mutualisation, … Tests, développement, … Sécurisation Un service : un serveur ! Quelle virtualisation ? Émulateurs: simulation complète de la machine ex. QEmu, Hercules Virtualisation complète: Réutilise le processeur natif quand c'est possible OS client non modifie, requiers support matériel Para-virtualisation: OS client recompilé pour la machine virtuelle Conteneurs: Techniques de virtualisation Problème Le jeu d'instruction du i386 n'est pas virtualisable Émulation complète (QEmu) Contrôle total, mais lent Réécriture du code au vol (VMWare) Plus rapide mais très complexe Paravirtualisation Recompilation pour la plateforme virtuelle, idéal Virtualisation matérielle Isolateur Chroot : isolation par changement de racine; BSD Jail : isolation en espace utilisateur ; Linux-VServer : isolation des processus
    [Show full text]
  • Supporting Multiple Oses with OS Switching
    Supporting Multiple OSes with OS Switching Jun Sun1, Dong Zhou, Steve Longerbeam2 [email protected] DoCoMo USA Labs 3240 Hillview Ave., Palo Alto, CA 94304, USA Abstract—People increasingly put more than one OSes into a user typically installs Virtual Machine (VM) monitor their computers and devices like mobile phones. Multi-boot and related management software. With the help of and virtualization are two common technologies for this VM software the user can further install several purpose. In this paper we promote a new approach called different OSes onto the same computer. The VM OS switching. With OS switching, multiple OSes time-share software can typically run multiple OSes concurrently. the same computer cooperatively. A typical implementation For example, with VMWare Workstation, each OS has can reuse an OS’s suspend/resume functionality with little its display shown as a window on the host OS. modification. The OS switching approach promises fast Switching from one running OS to another is almost native execution speed with shorter switching time than traditional multi-boot approach. We describe the design of equivalent to switching between GUI applications. OS switching as well as our implementation with Linux and However, virtualization technology typically suffers WinCE, and evaluate its performance. from degradation in performance [5]. More importantly, it typically requires a considerable amount 1. Introduction of work to providing a virtualizing and monitoring layer, and sometimes to modify the existing OS and its Many people nowadays run multiple OSes on their device driver code. computers. For example, developers may need to test In this paper we promote an alternative approach, their software on different OSes and/or on different called OS switching.
    [Show full text]
  • Mise En Oeuvre De La Virtualisation
    Mise en oeuvre d'un outils de virtualisation Mise en Oeuvre de la Virtualisation Table des matières 1 Virtualisation (informatique) .................................................................. 2 1.1 Notions ................................................................................................ 2 1.2 Intérêts de la virtualisation ........................................................ 2 1.3 Historique .................................................................................................... 3 1.4 Comparaison de différentes techniques de virtualisation . 3 1.4.1 Isolateur ........................................................................... 3 1.4.2 Noyau en espace utilisateur ............................. 4 1.4.3 Machine virtuelle .............................................................................. 4 1.4.4 Para virtualisation ou hyperviseur ....................... 5 1.4.5 Matériel ............................................................................. 6 2 Xen ................................................................................................................ 6 2.1 Présentation .................................................................................... 6 2.2 Architecture de Xen ..................................................... 7 2.3 Acteurs industriels ............................................................ 7 2.4 Comparaison avec d'autres solutions de virtualisation . 7 3 VirtualBox ........................................................................... 8 3.1
    [Show full text]
  • Virtualisation Environnements Informatiques
    Virtualisation Environnements informatiques Marco Guilmette Plan du cours • Introduction • Notions sur la virtualisation • Intérêts • Inconvénients • Différentes techniques Environnements informatiques 420-AV4-SW Introduction • La virtualisation consiste, en informatique, à exécuter sur une machine hôte dans un environnement isolé des systèmes d’exploitation. • On parle alors de virtualisation système pour les machines. • Et de virtualisation applicative pour les applications. • Ces ordinateurs virtuels sont appelés serveur privé virtuel (Virtual Private Server ou VPS) ou encore environnement virtuel (Virtual Environment ou VE). Environnements informatiques 420-AV4-SW Notions de virtualisation • Chaque outil de virtualisation met en œuvre une ou plusieurs de ces notions : 1. couche d’abstraction matérielle et/ou logicielle ; 2. système d'exploitation hôte (installé directement sur le matériel) ; 3. systèmes d'exploitation (ou applications, ou encore ensemble d'applications) « virtualisé(s) » ou « invité(s) » ; 4. partitionnement, isolation et/ou partage des ressources physiques et/ou logicielles ; 5. images manipulables : démarrage, arrêt, gel, clonage, sauvegarde et restauration, sauvegarde de contexte, migration d'une machine physique à une autre ; 6. réseau virtuel : réseau purement logiciel, interne à la machine hôte, entre hôte et/ou invités. Environnements informatiques 420-AV4-SW Intérêts de la virtualisation • utilisation optimale des ressources d'un parc de machines (répartition des machines virtuelles sur les machines physiques
    [Show full text]
  • LINUX Virtualization
    LINUX Virtualization Running other code under LINUX Environment Virtualization • Citrix/MetaFrame – Virtual desktop under Windows NT. aka Windows Remote Desktop Protocol • VNC, Dameware – virtual console. • XWindows – virtual console • Mac OS RDP – same as Windows. • WUBI.EXE Hardware Emulation • IBM – Virtual Machine (VM) OS Also using code: • Processor virtualization • Instruction set virtualization. • Slow. Usually requires OS (re-)installation • Examples: KVM (uses QEMU), Solaris Domains, DOSBox, DOSEmu, WINE Processor Virtualization • “Native” or full virtualization: virtual machine that mediates between the guest operating systems and the native hardware. Certain protected instructions must be trapped and handled within the hypervisor because the underlying hardware isn't owned by an operating system but is instead shared by it through the hypervisor. • This form usually requires specially virtualization CPU processors (Intel, AMD) for performance. The only constraint is that the operating system must support the underlying hardware. Close to hardware-level performance. • The biggest advantage of full virtualization is that a guest OS can run unmodified. OS is usually “ported” to the hypervisor machine. VmWare, Microsoft HyperV. • Examples: VMWare. Processor Virtualization • Paravirtualization: uses a hypervisor for shared access to the underlying hardware but integrates virtualization-aware code into the operating system itself. Obviates the need for any recompilation or trapping because the operating systems themselves cooperate
    [Show full text]
  • Feasibility Study of Building a User-Mode Native Windows NT VMM
    Universitat¨ Karlsruhe (TH) Institut fur¨ Betriebs- und Dialogsysteme Lehrstuhl Systemarchitektur Feasibility Study of Building a User-mode Native Windows NT VMM Bernhard Poss¨ Studienarbeit Verantwortlicher Betreuer: Prof. Dr. Frank Bellosa Betreuende Mitarbeiter: BA of EE Joshua LeVasseur 9. Mai 2005 Hiermit erklare¨ ich, die vorliegende Arbeit selbstandig¨ verfaßt und keine anderen als die angegebe- nen Literaturhilfsmittel verwendet zu haben. I hereby declare that this thesis is a work of my own, and that only cited sources have been used. Karlsruhe, den 9. Mai 2005 Bernhard Poss¨ Abstract The concept of pre-virtualization offers new ways for building a virtual machine mon- itor. It is now possible to implement a virtual machine monitor in user-mode without suffering the hassle of other approaches such as para-virtualization. This work deter- mines the extents to which a native virtual machine monitor may be implemented un- der Windows NT. A design proposal will be devised for an user-mode virtual machine monitor under Windows NT which supports paging, synchronous interrupt delivery and timer virtualization. Finally, the basics of implementing a native Windows NT virtual machine monitor are discussed. Contents 1 Introduction 1 2 Background 3 2.1 Virtual Machines . 3 2.1.1 Hypervisors . 3 2.1.2 Pure-, Para- and Pre-virtualization . 4 2.1.3 Afterburning . 4 2.1.4 IA32 Architecture . 5 2.2 Windows NT . 6 2.2.1 Using Windows NT as a hypervisor . 6 2.2.2 Constraints of the Win32 API . 6 2.2.3 Windows NT Native API . 8 3 Related Work 13 3.1 User-mode Linux .
    [Show full text]
  • Virtualisation – 12-13 Mars 2008
    TutoJRES / Aristote : Virtualisation – 12-13 mars 2008 TourTour d'horizond'horizon desdes techniquestechniques dede virtualisationvirtualisation Préambule : Ce document PDF contient : - une première section destinée à être imprimée (pages 2 à 57) - une deuxième section destinée à être projetée (ne pas imprimer) Le contenu de ces deux sections est identique. Accès au diaporama révision TutoJRES v1.0 © <[email protected]> Techniques de virtualisation - TutoJRES/Aristote - Paris – 12 mars 2008 TutoJRES / Aristote : Virtualisation – 12-13 mars 2008 TourTour d'horizond'horizon desdes TechniquesTechniques dede virtualisationvirtualisation Bernard Perrot – CNRS – UMR6205 <[email protected]> © <[email protected]> Techniques de virtualisation - TutoJRES/Aristote - Paris – 12 mars 2008 ( Section imprimable jusqu'à la page 45 ) Historique ● 1960's : travaux de centre de recherche IBM de Grenoble : – Donnera CP/CMS, puis VM/CMS ● Par la suite, technologies propriétaires pour virtualiser les OS des mainframes (HP, Sun) ● 1990's : émulation sur x86 des premier ordinateurs personnels tels que Atari, Amiga, Amstrad, ... ● Fin 1990's : introduction de VMware par la société du même nom, virtualisation logicielle des architectures x86 pour machines x86, qui va (re)populariser le concept de machine virtuelle ● Suivront (entre autres) dans le monde x86 : QEMU, Bochs, Xen, Linux- VServer (libres), Virtual PC (MS) qui cristalliseront cette popularisation – ... et qui nous amènent ici aujourd'hui ... ! © <[email protected]> Techniques de virtualisation - TutoJRES/Aristote - Paris – 12 mars 2008 Définition (tentative de) : ● La virtualisation est l'ensemble des techniques matérielles et logicielles permettant de fournir un ensemble ou sous-ensemble de ressources informatiques de manière qu'elles puissent être utilisées, avec avantages, de manière indépendante de la plateforme matérielle (configuration, localisation).
    [Show full text]
  • An Architecture Model for a Distributed Virtualization System
    CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization An Architecture Model for a Distributed Virtualization System Pablo Pessolani Fernando G. Tinetti Facultad Regional Santa Fe III-LIDI Facultad de Informática- UNLP Universidad Tecnológica Nacional Comisión de Inv. Científicas, Prov. Bs. As Santa Fe – Argentina La Plata, Argentina e-mail: [email protected] e-mail: [email protected] Toni Cortes Silvio Gonnet Barcelona Supercomputing Center & UPC INGAR - Facultad Regional Santa Fe Barcelona – España CONICET - Universidad Tecnológica Nacional e-mail: [email protected] Santa Fe - Argentina e-mail: [email protected] Abstract — This article presents an architecture model for a management tools, among others, which are attractive to Distributed Virtualization System, which could expand a Cloud service providers. virtual execution environment from a single physical machine Nowadays, there are several virtualization technologies to several nodes of a cluster. With current virtualization used to provide Infrastructure as a Service (IaaS) mounted in technologies, computing power and resource usage of Virtual a cluster of servers linked by high-speed networks. Storage Machines (or Containers) are limited to the physical machine Area Networks (SAN), security appliances (network and where they run. To deliver high levels of performance and application firewall, Intrusion Detection/Prevention Systems, scalability, cloud applications are usually partitioned in several etc.), and a set of management systems complement the Virtual Machines (or Containers) located on different nodes of required provider-class infrastructure. a virtualization cluster. Developers often use that processing Hardware virtualization, paravirtualization, and OS-level model because the same instance of the operating system is not available on each node where their components run.
    [Show full text]