Spaced Repetition Can Improve Long-Term Memory Retention

Total Page:16

File Type:pdf, Size:1020Kb

Spaced Repetition Can Improve Long-Term Memory Retention Use It or Lose It: How Spaced Repetition Can Improve Long-Term Memory Retention "Spaced repetition is a technique for efficient memorization which uses repeated review of content following a schedule, determined by a spaced repetition algorithm to improve long-term retention."1 01 02 The Forgetting Curve Combatting The In the 19th Century, Hermann Ebbinghaus 2 discovered the exponential rate of memory loss Forgetting Curve over time. He proposed that after an individual initially learns information, most of it will be lost in the first couple of days.2 Make Information Relevant As you begin to study, create custom-made learning resources as they have more impact. Improve Clarity Try representing information visually in a diagram or create a video describing the topic you're learning. Reinforce Regularly Source: "The Effect of Flipped Learning on Academic Performance as an Innovative Method for Overcoming Ebbinghaus; Forgetting Curve", 2018, Creative Hands-on Activity Every time you train your brain to recall, the rate of decline reduces, so stage frequent interventions to solidify the information. 03 Reinforce Your Information Regularly With 04 Breakdown of Spaced SPACED REPETITION Repetition Algorithm : Create approximate time intervals based on when your test date is. These intervals should include how many repetitions, whether it be one, two, or three, of your work you want to complete. 05 Have the gaps between your repetitions increase in relation to how far away the test is. Spaced Repetition's Affect On The Forgetting Curve: Ensure the days in-between study sessions increase because the greater the drop in retrieval strength, the greater the increase in learning when the memory is accessed again.3 Practice the space repetition system with software that supports this type of learning Consider using apps like Anki, OttoLearn, or SmartCards+ that use spaced repetition algorithms. Source: "Study Smarter, Not Harder", 2007, Paul K 06 AppsApps that that support support Spaced spaced Repetition: repetition: Quizlet ANKI Recall Memrise OttoLearn SmartCards+ Sources: 1. "Enhanced Human Learning via Spaced Repetition Optimization", 2019, PNAS 2. "What Is The Forgetting Curve (And How Do You Combat It?)", 2018, Harry Cloke 3. "How to Remember More of What You Learn with Spaced Repetition", 2020, Thomas Frank Compiled by Bethany Owoeye for SNMA Academic Affairs.
Recommended publications
  • A Queueing-Theoretic Foundation for Optimal Spaced Repetition
    A Queueing-Theoretic Foundation for Optimal Spaced Repetition Siddharth Reddy [email protected] Department of Computer Science, Cornell University, Ithaca, NY 14850 Igor Labutov [email protected] Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14850 Siddhartha Banerjee [email protected] School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14850 Thorsten Joachims [email protected] Department of Computer Science, Cornell University, Ithaca, NY 14850 1. Extended Abstract way back to 1885 and the pioneering work of Ebbinghaus (Ebbinghaus, 1913), identify two critical variables that de- In the study of human learning, there is broad evidence that termine the probability of recalling an item: reinforcement, our ability to retain a piece of information improves with i.e., repeated exposure to the item, and delay, i.e., time repeated exposure, and that it decays with delay since the since the item was last reviewed. Accordingly, scientists last exposure. This plays a crucial role in the design of ed- have long been proponents of the spacing effect for learn- ucational software, leading to a trade-off between teaching ing: the phenomenon in which periodic, spaced review of new material and reviewing what has already been taught. content improves long-term retention. A common way to balance this trade-off is spaced repe- tition, which uses periodic review of content to improve A significant development in recent years has been a grow- long-term retention. Though spaced repetition is widely ing body of work that attempts to ‘engineer’ the process used in practice, e.g., in electronic flashcard software, there of human learning, creating tools that enhance the learning is little formal understanding of the design of these sys- process by building on the scientific understanding of hu- tems.
    [Show full text]
  • Benefits of Immediate Repetition Versus Long Study Presentation On
    Neuropsychology In the public domain 2010, Vol. 24, No. 4, 457–464 DOI: 10.1037/a0018625 Benefits of Immediate Repetition Versus Long Study Presentation on Memory in Amnesia Mieke Verfaellie and Karen F. LaRocque Suparna Rajaram Memory Disorders Research Center, VA Boston Healthcare Stony Brook University System, and Boston University School of Medicine Objective: This study aimed to resolve discrepant findings in the literature regarding the effects of massed repetition and a single long study presentation on memory in amnesia. Method: Experiment 1 assessed recognition memory in 9 amnesic patients and 18 controls following presentation of a study list that contained items shown for a single short study presentation, a single long study presentation, and three massed repetitions. In Experiment 2, the same encoding conditions were presented in a blocked rather than intermixed format to all participants from Experiment 1. Results: In Experiment 1, control participants showed benefits associated with both types of extended exposure, and massed repetition was more beneficial than long study presentation, F(2, 34) ϭ 14.03, p Ͻ .001, partial ␩2 ϭ .45. In contrast, amnesic participants failed to show benefits of either type of extended exposure, F Ͻ 1. In Experiment 2, both groups benefited from repetition, but did so in different ways, F(2, 50) ϭ 4.80, p ϭ .012, partial ␩2 ϭ .16. Amnesic patients showed significant and equivalent benefit associated with both types of extended exposure, F(2, 16) ϭ 5.58, p ϭ .015, partial ␩2 ϭ .41, but control participants again benefited more from massed repetition than from long study presentation, F(2, 34) ϭ 23.74, p Ͻ .001, partial ␩2 ϭ .58.
    [Show full text]
  • An Evidence-Based Guide for Medical Students: How to Optimize the Use of Expanded-Retrieval Platforms
    Open Access Review Article DOI: 10.7759/cureus.10372 An Evidence-Based Guide for Medical Students: How to Optimize the Use of Expanded-Retrieval Platforms Cyrus A. Pumilia 1 , Spencer Lessans 1 , David Harris 2 1. Medicine, University of Central Florida College of Medicine, Orlando, USA 2. Medical Education, University of Central Florida College of Medicine, Orlando, USA Corresponding author: Spencer Lessans, [email protected] Abstract Recommendations have been made for improving medical education based on the available evidence regarding learning. Traditional learning methods in medical education (e.g. reading from textbooks) do not ensure long-term retention. However, expanded-retrieval studying methods have been shown to improve studying efficiency. Using evidence-based practices to optimize an expanded-retrieval platform has the potential to greatly benefit knowledge acquisition and retention for medical students. This literature review was conducted to identify the best practices of expanded-retrieval platforms. Themes within learning that promote knowledge gain and retention include presentation of related categorical information, schema formation, dual-coding, concrete examples, elaboration, changes in text appearance, and interleaving. Presentation of related categorical material together may mitigate retrieval- induced forgetting (RIF). Spaced retrieval helps to reinforce schema formation by solidifying the framework the individual students form when learning the material. Dual-coding improves learning by creating more neural pathways. Multiple concrete examples can be compared by students to see their respective differences, highlighting the true underlying principle. Variation in text appearance is most useful during the initial, short-term inter-study intervals. Interleaving is a theme where different topics are combined in the same study session and is unpopular with students but shown to be successful.
    [Show full text]
  • Applying Cognitive Psychology to Education: Complexities and Prospectsଝ
    Journal of Applied Research in Memory and Cognition 1 (2012) 263–265 Contents lists available at SciVerse ScienceDirect Journal of Applied Research in Memory and Cognition journal homepage: www.elsevier.com/locate/jarmac Reply Applying cognitive psychology to education: Complexities and prospectsଝ Henry L. Roediger III ∗, Mary A. Pyc Washington University in St. Louis, United States article info Article history: Received 31 October 2012 Accepted 31 October 2012 Keywords: Research Education Techniques to improve education We appreciate the thoughtful responses to our target article student a computer and hope for the best, in the great American from the respondents. We even agree with (almost) all their points. tradition of throwing money at a problem even if it is unlikely to Who could disagree with the argument that “more research in have an effect. classrooms is needed” or that “we need to teach for transfer (if we Somehow we do not see the current situation as quite so grim. can figure out how)”? Here we provide a few reflections aroused After all, Hermann Ebbinghaus discovered the spacing effect in by the comments. 1885 (Ebbinghaus, 1885/1913), and it has been documented in Mayer (2012) reminds us of the long history of psychologists hundreds of studies since then in all manner of species, paradigms, being interested in applying their knowledge to education. Of and, in humans, with children, college students and older adults. course, when William James wrote his book on Talks for Teachers in Further, the effect occurs with many sorts of materials, including 1891, there was not much of an empirical research base on which educationally relevant ones.
    [Show full text]
  • One School's Successful Efforts to Raise Its Bar Passage Rates in an Era of Decline
    Florida International University College of Law eCollections Faculty Publications Faculty Scholarship 2019 Using Science to Build Better Learners: One School's Successful Efforts to Raise Its Bar Passage Rates in an Era of Decline Louis N. Schulze Jr. Florida International University College of Law, [email protected] Follow this and additional works at: https://ecollections.law.fiu.edu/faculty_publications Part of the Legal Education Commons Recommended Citation Louis N. Schulze, Jr., Using Science to Build Better Learners: One School's Successful Efforts to Raise Its Bar Passage Rates in an Era of Decline, 68 J. Legal Educ. 230 (2019). This Article is brought to you for free and open access by the Faculty Scholarship at eCollections. It has been accepted for inclusion in Faculty Publications by an authorized administrator of eCollections. For more information, please contact [email protected]. 230 Using Science to Build Better Learners: One School’s Successful Efforts to Raise its Bar Passage Rates in an Era of Decline Louis N. Schulze, Jr. I. Introduction “The wise know their weakness too well to assume infallibility; and he who knows most, knows best how little he knows.” Thomas Jefferson.1 Bar examination pass rates are plummeting. Many laws schools are searching urgently for some way to stem the tide of decline. Silver bullet cure- alls are attractive, all too often adopted, and almost never fruitful. So what should schools do? Should a school teach to the test? Induce less proficient students into not taking the bar exam?2 Reteach doctrine in a bar prep course? Begin bar prep in 1L year? Spoon-feed black-letter law? Require faculty to use only multiple- choice questions in exams? Only essay questions? The answer to all these questions is “no,” but the questions themselves miss the point—like asking a mergers and acquisitions lawyer whether her achievements resulted from taking more depos.
    [Show full text]
  • References Acknowledgements
    Cover Page The handle https://hdl.handle.net/1887/3134566 holds various files of this Leiden University dissertation. Author: Versteeg, M. Title: At the heart of learning: navigating towards educational neuroscience in health professions education Issue Date: 2021-01-21 Supplementary 201019_Proefschrift_naproefdruk.indd 194 23-10-2020 07:41:52 SUPPLEMENTARY Supplementary A | The used literature search term combinations. Spaced [ti] Learning [ti] Spaced learning [tw] Health professions education [tw] Spaced AND Learning OR Spaced training AND Education, Professional [Mesh] Spacing Memory Spacing training Medical educat* Retriev* Training Spaced learning Professional educat* Repetition* Educat* Spacing learning Teach* Recall Spaced interval Medical student* training Mental Spaced interval Biomedical recall learning student* [Mesh] Memory training Pharmacy student* Spaced retrieval Biology student* Spaced retrieving Dental student* Retrieval practic* Nursing student* Mass learning Undergraduate* Massed learning Graduat* Spacing effect Intern* Distributed practic* University Spacing efficacy Universities Spacing practice Resident* sessions Spacing of learning Health professional* Spacing repetition Spacing and repetition Spaced educat* Spaced test* Test-enhaned learning Testing effect* Within each column all terms are searched with the Boolean operator “OR”. 195 201019_Proefschrift_naproefdruk.indd 195 23-10-2020 07:41:52 SUPPLEMENTARY Supplementary B | Frequency distribution of research articles on spaced learning included in this scoping
    [Show full text]
  • Chapter 6 Objectives Memory
    Chapter 6 Objectives Memory After studying this chapter, students should be able to: Introduction: What Is Memory? 1. Define memory, and explain the processes of encoding, storage, and retrieval. 2. Describe the stage model of memory, and describe how each of the three stages functions. 3. Discuss the function, duration, capacity, and types of sensory memory, and explain how George Sperling’s experiment advanced the understanding of sensory memory. 4. Describe the function, duration, and capacity of short-term memory, and explain the usefulness of chunking. 5. Explain the functions of the different components in Baddeley’s model of working memory. 6. Give examples of maintenance rehearsal and elaborative rehearsal, and explain why one of these is more effective in encoding long-term memories. 7. Describe the types of information in long-term memory, and explain the differences between implicit memory and explicit memory. 8. Culture and Human Behavior: Discuss the findings of research that investigated the earliest memories in European American college students compared to Chinese and Taiwanese college students. 9. Discuss the organization of information in long-term memory. Retrieval: Getting Information from Long-Term Memory 10. Define retrieval, noting how retrieval cues work, and describe what happens when retrieval fails, as in a tip-of-the-tongue (TOT) experience. 11. Compare and contrast recognition and recall in terms of retrieval. Compare free recall with cued recall. How do these factors influence the serial position effect? 12. Discuss the context effect and mood congruence as different forms of the encoding specificity principle, and evaluate the accuracy of flashbulb memories.
    [Show full text]
  • Serial Position Effects and Forgetting Curves: Implications in Word
    Studies in English Language Teaching ISSN 2372-9740 (Print) ISSN 2329-311X (Online) Vol. 2, No. 3, 2014 www.scholink.org/ojs/index.php/selt Original Paper Serial Position Effects and Forgetting Curves: Implications in Word Memorization Guijun Zhang1* 1 Department of Foreign Languages, China Pharmaceutical University, Nanjing, China * Guijun Zhang, E-mail:[email protected] Abstract Word memorization is important in English learning and teaching. The theory and implications of serial position effects and forgetting curves are discussed in this paper. It is held that they help students understand the psychological mechanisms underlying word memorization. The serial position effects make them to consider the application the chunking theory in word memorization; the forgetting curve reminds them to repeat the words in long-term memory in proper time. Meanwhile the spacing effect and elaborative rehearsal effect are also discussed as they are related to the forgetting curve. Keywords serial position effects, forgetting curves, word memorization 1. Introduction English words are extraordinarily significant for English foreign language (EFL) learners because they are the essential basis of all language skills. As Wilkins said, “...while without grammar very little can be conveyed, without vocabulary nothing can be conveyed” (Wilkins, 1972). Effective word memorization plays a significant role in the process of vocabulary learning. Researchers have and are still pursuing and summarizing the effective memory methods. Schmitt, for example, classified vocabulary memory strategies into more than twenty kinds (Schmitt, 1997, p. 34). However, it is hard to improve the efficiency of the vocabulary memory in that different students remember the huge amount of words with some certain method or methods that may not suit them.
    [Show full text]
  • Osmosis Study Guide
    How to Study in Medical School How to Study in Medical School Written by: Rishi Desai, MD, MPH • Brooke Miller, PhD • Shiv Gaglani, MBA • Ryan Haynes, PhD Edited by: Andrea Day, MA • Fergus Baird, MA • Diana Stanley, MBA • Tanner Marshall, MS Special Thanks to: Henry L. Roediger III, PhD • Robert A. Bjork, PhD • Matthew Lineberry, PhD About Osmosis Created by medical students at Johns Hopkins and the former Khan Academy Medicine team, Os- mosis helps more than 250,000 current and future clinicians better retain and apply knowledge via a web- and mobile platform that takes advantage of cutting-edge cognitive techniques. © Osmosis, 2017 Much of the work you see us do is licensed under a Creative Commons license. We strongly be- lieve educational materials should be made freely available to everyone and be as accessible as possible. We also want to thank the people who support us financially, so we’ve made this exclu- sive book for you as a token of our thanks. This book unlike much of our work, is not under an open license and we reserve all our copyright rights on it. We ask that you not share this book liberally with your friends and colleagues. Any proceeds we generate from this book will be spent on creat- ing more open content for everyone to use. Thank you for your continued support! You can also support us by: • Telling your classmates and friends about us • Donating to us on Patreon (www.patreon.com/osmosis) or YouTube (www.youtube.com/osmosis) • Subscribing to our educational platform (www.osmosis.org) 2 Contents Problem 1: Rapid Forgetting Solution: Spaced Repetition and 1 Interleaved Practice Problem 2: Passive Studying Solution: Testing Effect and 2 "Memory Palace" Problem 3: Past Behaviors Solution: Fogg Behavior Model and 3 Growth Mindset 3 Introduction Students don’t get into medical school by accident.
    [Show full text]
  • Teaching the Science of Learning Yana Weinstein1* , Christopher R
    Weinstein et al. Cognitive Research: Principles and Implications (2018) 3:2 Cognitive Research: Principles DOI 10.1186/s41235-017-0087-y and Implications TUTORIALREVIEW Open Access Teaching the science of learning Yana Weinstein1* , Christopher R. Madan2,3 and Megan A. Sumeracki4 Abstract The science of learning has made a considerable contribution to our understanding of effective teaching and learning strategies. However, few instructors outside of the field are privy to this research. In this tutorial review, we focus on six specific cognitive strategies that have received robust support from decades of research: spaced practice, interleaving, retrieval practice, elaboration, concrete examples, and dual coding. We describe the basic research behind each strategy and relevant applied research, present examples of existing and suggested implementation, and make recommendations for further research that would broaden the reach of these strategies. Keywords: Education, Learning, Memory, Teaching Significance educators who might be interested in integrating the Education does not currently adhere to the medical strategies into their teaching practice, (b) science of learn- model of evidence-based practice (Roediger, 2013). ing researchers who are looking for open questions to help However, over the past few decades, our field has made determine future research priorities, and (c) researchers in significant advances in applying cognitive processes to other subfields who are interested in the ways that princi- education. From this work, specific recommendations ples from cognitive psychology have been applied to can be made for students to maximize their learning effi- education. ciency (Dunlosky, Rawson, Marsh, Nathan, & Willing- While the typical teacher may not be exposed to this ham, 2013; Roediger, Finn, & Weinstein, 2012).
    [Show full text]
  • An Investigation Into the Use of the Smartphone Application 'Memrise'
    An Investigation into The Use of The Smartphone Application 'Memrise' in Supporting English Vocabulary Learning among Undergraduate Students in Saudi Arabia Abdulmajeed Almansour A thesis submitted in partial fulfilment of the requirements of Liverpool John Moores University for the degree of Doctor of Philosophy March 2019 Declaration I hereby certify that this submission is my own work and contains no material which has been accepted for the award of any other degree or diploma of the University or other institute of higher learning. ii Acknowledgments All praises and thanks are due to Allah the most gracious and most merciful, who abundantly offered me health, strength, patience and knowledge to complete this exciting PhD journey. My greatest gratitude and thanks go to my Director of Studies Dr Amanda Mason, who I have been privileged to be supervised by. Many thanks for her patience, constructive comments, guidance and invaluable suggestions throughout all the stages of my PhD journey. I would like also thank my second supervisor, Ms Brigitte Hordern for her invaluable advice and comments. Also, I am honoured and grateful to have Dr James Turner as my third supervisor who helped me a lot with his academic and technological comments. To my loving parents, I would like to thank my late father Abdullah for his support, who died during my PhD journey, too unfortunate he cannot see me graduate (May Allah have mercy on his soul). My sincere gratitude and love to my mother Sarah who have always been there to support and encourage me in my journey in every way possible.
    [Show full text]
  • Probabilistic Models of Student Learning and Forgetting
    Probabilistic Models of Student Learning and Forgetting by Robert Lindsey B.S., Rensselaer Polytechnic Institute, 2008 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Computer Science 2014 This thesis entitled: Probabilistic Models of Student Learning and Forgetting written by Robert Lindsey has been approved for the Department of Computer Science Michael Mozer Aaron Clauset Vanja Dukic Matt Jones Sriram Sankaranarayanan Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. IRB protocol #0110.9, 11-0596, 12-0661 iii Lindsey, Robert (Ph.D., Computer Science) Probabilistic Models of Student Learning and Forgetting Thesis directed by Prof. Michael Mozer This thesis uses statistical machine learning techniques to construct predictive models of human learning and to improve human learning by discovering optimal teaching methodologies. In Chapters 2 and 3, I present and evaluate models for predicting the changing memory strength of material being studied over time. The models combine a psychological theory of memory with Bayesian methods for inferring individual differences. In Chapter 4, I develop methods for delivering efficient, systematic, personalized review using the statistical models. Results are presented from three large semester-long experiments with middle school students which demonstrate how this \big data" approach to education yields substantial gains in the long-term retention of course material. In Chapter 5, I focus on optimizing various aspects of instruction for populations of students.
    [Show full text]