Late Jurassic North American Brachiosaurids. G. Olshevsky

Total Page:16

File Type:pdf, Size:1020Kb

Late Jurassic North American Brachiosaurids. G. Olshevsky Volume 1 Number 2 Single-copy price: $2.50 August 1988 Late Jurassic North American • > Brachiosaurids AUROPODS were the grand- pod skeleton and thus the likeliest the Uncompahgre Upwarp in wes- Sest animals ever to walk the to be discovered still joined togeth- tern Colorado, and it remained un- earth. Adult specimens of the gi- er - are very thin-walled for their described until last year, in a bra- ant Apatosaurus, Diplodocus, Baro- size, with large internal cavities chiosaur paper by James A. Jen- saurus, and Mamenchisaurus ho- called pleurocoels. This makes sen. In more than two decades of chuanensis were as much as 25 them prone to crushing and there- field work, Jensen could find only meters (over 80 feet) long. A sau- by hampers proper measurement scattered additional bones of Bra- ropod skeleton discovered in and identification. This problem chiosaurus and related sauropods, China in 1987 by the Canada- particularly plagues the brachiosau- but because brachiosaur material China Dinosaur Project has a re- rids, among which are the most of any kind is so scarce, his discov- ported length of about 27 meters massive sauropods known. eries are nevertheless extremely (90 feet). Thus a sauropod 15 me- significant. ters long would be considered ra- Brachiosaurus Our knowledge of Brachiosau- ther small, even though a non-sau- The first Brachiosaurus a/tithor- rus would be terribly incomplete ropod dinosaur this size would be ax specimen was collected in 1900 were it not for the discovery of a giant in its class. from the Late Jurassic Morrison considerable material - including Because they were so big, sauro- Formation (about 140-160 million skulls - in Tendaguru, Tanzania pods make spectacular museum years old) of Grand Junction, Col- by German paleontological expedi- displays that attract crowds of cus- orado by Elmer S. Riggs. It was a tions a few years before World tomers. It is thus quite frustrating quite incomplete skeleton, com- War I. This was described in a se- that sauropod specimens are usual- prising several vertebrae, parts of ries of papers by Werner Jan- ly fragmentary skeletons or isolat- the shoulder and pelvis, an upper ed bones. There is a good anatomi- arm and upper leg, and four ribs, cal reason for this. A close look at that is now stored at the Field Mu- a sauropod skeleton shows that seum in Chicago. Riggs was struck the bones, particularly those in the by the length of the upper arm legs, do not "fit together" very bone and realized that in life the well; there is a lot of space be- animal's chest was as high off the tween them. In the live dinosaur, ground as the hips, and its back this space was taken up by carti- sloped down to the tail. This is lage and ligaments - connective why he named it the "high-chested tissue - that held the skeleton to- arm-lizard." gether. After death, however, the It wasn't until 1943 that another dinosaur's connective tissue would Brachiosaurus skeleton was found decay and the skeleton would fall in North America, by uranium apart; many bones would wash prospectors Vivian and Daniel away before burial. "Eddie" Jones, who donated their As if this weren't bad enough, find to the Smithsonian Institution. sauropod vertebrae - the most This badly eroded specimen was tightly articulated bones in a sauro- from the Potter Creek Quarry on August 1988 9 ensch, starting III 1914, and it individual, and all the brachiosaur second brachiosaurid genus to be proved possible to construct a material from Tendaguru is now described from North America. complete skeleton from the re- considered to belong to just the The story of Ultrasaurus has re- mains of several individuals. This species B. brancai. cently taken a couple of unexpect- skeleton, rescued from destruction In a recent paper, Gregory S. ed twists. In the early 1980s - be- during the air raids of World War Paul of Baltimore, Maryland, sum- fore Jensen formally published II, now stands, nearly 12 meters marized what is known of both the Ultrasaurus macintoshi - a Kore- (40 feet) tall and 23 meters (75 North American and African spe- an paleontologist named Haang feet) long, in the Humboldt Muse- cies of Brachiosaurus, corrected a Mook Kim published a series of um fur Naturkunde in East Berlin. few errors that seemingly crept in- short papers describing dinosaurs Representing an animal with an es- to Janensch's descriptions, and from South Korea, including ma- timated body weight of almost 50 produced a new reconstruction of terial that he also called "Ultrasau- tons, it is still the largest mounted B. brancai, the side view of which rus," thinking that it came from a dinosaur skeleton in the world. is reproduced here as Figure 6. dinosaur larger than "Supers au- Janensch discerned the similari- Paul considered B. brancai differ- rus." In 1983, he formally named ty of the Tendaguru brachiosaurs ent enough from B. altithorax that his dinosaur Ultrasaurus tabriensis. to Riggs's specimen and named he placed it into its own subgenus, Unfortunately, the remains of Ul- them Brachiosaurus brancai and Giraffatitan ("big giraffe"). The trasaurus tabriensis seem to have Brachiosaurus fraasi - two new full name of the American species been misidentified, and the dino- species of the same genus as thus became Brachiosaurus (Bra- saur is considerably smaller than Riggs's dinosaur - after the Ger- chiosaurus) altithorax, and of the Kim believed. But even more un- man paleontologists Wilhelm Bran- African species Brachiosaurus (Gi- fortunately, the name Ultrasaurus ca and Eberhard Fraas. It soon be- raffatitan) brancai. B. (B.) altithor- was preempted for the Korean di- came apparent that B. fraasi actu- ax has longer dorsal vertebrae and nosaur, and Jensen's giant dino- ally represents a smaller B. brancai relatively longer ribs than B. (G.) saur had to be rechristened. brancai, so it had a longer, deeper, Then, in the Brachiosaurus and presumably heavier body. study noted above, Paul examined Jensen's figures of Ultrasaurus and Ultrasaurus concluded that Ultrasaurus macin- In 1972 at the Dry Mesa Quar- toshi is simply a large Brachiosau- ry in Colorado, Jensen discovered lUS altithorax. If this is indeed true, two shoulder blades (scapulacora- then it is not necessary to rename coids) and a few other fossilized Jensen's dinosaur; it can simply be bones of a very large dinosaur that called Brachiosaurus. But Jensen, he nicknamed "Supersaurus." In who has collected material of both 1979, also at Dry Mesa, a third Brachiosaurus and Ultrasaurus, dis- scapulacoracoid was found during agrees with Paul's interpretation, filming for a Japanese television and the question of what Ultrasau- show. Since it was a bit larger than lUS really is remains open. the "Supersaurus" shoulder blades Paul's paper also discussed skel- and evidently belonged to a differ- etal material from other gigantic ent kind of dinosaur, Jensen nick- sauropods, to see how it compared named that dinosaur "Ultrasau- with what is known of Brachiosau- rus." Both names remained infor- lUS. It is too bad that practically all mal until Jensen published the di- of it is so scrappy - a femur here, nosaurs' descriptions, in 1985, un- a vertebra there - so that much der the names Supersaurus vivian- guesswork was involved in Paul's ae (named after Vivian Jones) and estimates. Paul concluded that Jen- Ultrasaurus macintoshi (after John sen's Ultrasaurus specimens repre- S. McIntosh, a noted student of sent an animal not too much larg- the sauropods). According to Jen- er than the largest known Brachio- sen, Supersaurus is probably a di- saurus individual, weighing about plodocid sauropod, similar to but 55 tons. Supersaurus, on the other larger than Apatosaurus, Diplodo- hand, could well have been 42 cus; and Barosaurus, while Ultra- meters (140 feet) long, if it had a saurus is a brachiosaurid - the whiplash taillike that of its smaller 10 Archosaurian Articulations relative Diplodocus. But because about as large as the biggest Bra- Sauropod Dinosaurs from the diplodocids had smaller and slen- chiosaurus and probably also Upper Jurassic of Colorado," derer bodies than brachiosaurids, weighed about 50 tons. None of Great Basin Naturalist 45(4): at 50 tons Supersaurus would not the sauropods listed in Paul's pa- 697-709. have outweighed Ultrasaurus. per was conclusively shown to be Jensen, J. A., 1985b. "Uncompah- heavier than Jensen's giant. Of the giant sauropods report- gre Dinosaur Fauna: A Prelimi- ed from South America, Paul be- The last word in giant dinosaurs nary Report," ibid.: 710-720. lieved Antarctosaurus giganteus, may reside in an enormous brachi- known from a thigh bone 2.31 me- osaurid femur from the Recapture Jensen, J. A., 1987. "New Brachio- ters (nearly 7.7 feet) long, was Member of the Morrison Forma- saur Material from the Late Ju- tion, only a third of which was pre- rassic of Utah and Colorado," served. Illustrated in Jensen's 1987 ibid. 47(4): 592-608. paper, this fragment is over a me- Kim, H. M., 1983. "Cretaceous Di- ter long and is 1:67 meters around, nosaurs from Korea," Journal of and the bone itself may have been the Geological Society of Korea nearly 3 meters (10 feet) long in 19(3): 115--126. [Two versions life - representing an animal with of this paper exist, one, appar- a possible body weight of as much ently an offprint, that does not as 70 tons. contain the specific name Ultra- saurus tabriensis, and another, Recent References apparently the published ver- Anonymous, 1988. "In Search of sion, that does. In Chinese.] Ancient Dragons," Alberta Re- Paul, G. S., 1988. "The Brachio- pori, January 4, 1988 issue, pp.
Recommended publications
  • CPY Document
    v^ Official Journal of the Biology Unit of the American Topical Association 10 Vol. 40(4) DINOSAURS ON STAMPS by Michael K. Brett-Surman Ph.D. Dinosaurs are the most popular animals of all time, and the most misunderstood. Dinosaurs did not fly in the air and did not live in the oceans, nor on lake bottoms. Not all large "prehistoric monsters" are dinosaurs. The most famous NON-dinosaurs are plesiosaurs, moso- saurs, pelycosaurs, pterodactyls and ichthyosaurs. Any name ending in 'saurus' is not automatically a dinosaur, for' example, Mastodonto- saurus is neither a mastodon nor a dinosaur - it is an amphibian! Dinosaurs are defined by a combination of skeletal features that cannot readily be seen when the animal is fully restored in a flesh reconstruction. Because of the confusion, this compilation is offered as a checklist for the collector. This topical list compiles all the dinosaurs on stamps where the actual bones are pictured or whole restorations are used. It excludes footprints (as used in the Lesotho stamps), cartoons (as in the 1984 issue from Gambia), silhouettes (Ascension Island # 305) and unoffi- cial issues such as the famous Sinclair Dinosaur stamps. The name "Brontosaurus", which appears on many stamps, is used with quotation marks to denote it as a popular name in contrast to its correct scientific name, Apatosaurus. For those interested in a detailed encyclopedic work about all fossils on stamps, the reader is referred to the forthcoming book, 'Paleontology - a Guide to the Postal Materials Depicting Prehistoric Lifeforms' by Fran Adams et. al. The best book currently in print is a book titled 'Dinosaur Stamps of the World' by Baldwin & Halstead.
    [Show full text]
  • Baltimorean Debunks Dinosaur Finds :Specialist B Comparison of Bones Shows 'New' Species Long Known
    1I1(1St) THE WASIfINGTON POST WEDNESDAY, MAY ll, 1988 A3 I ,I .Baltimorean Debunks Dinosaur Finds :Specialist B Comparison of Bones Shows 'New' Species Long Known several partial skeletons of different By Boyce Rensberger seum collections. He has also dis- Washington Po.'1l Stolff Writer covered several errors in previous sizes. reconstructions of the Brachiosau- Paul found that, while the Ultra- It is time to rewrite the record rus skeleton and corrected them in saurus bone is bigger than the com- book for dinosaurs, according to a his illustrations to reveal the ani- parable bone displayed in East Ber- leading expert on the extinct giants. mals as having a shorter trunk and lin, it is about the same size as a ' Contrary to a series of allegedly taller forelimbs, which give it a Brachiosaurus shoulder bone not on record-breaking discoveries' that more giraffe-like image than pre- display. began in 1972, the largest known vious experts have suggested. In fact, Paul concluded, the bones dinosaur really is a species known Brachiosaurus "is the only Quad- are so similar that Supersaurus and since the early 1900s, the familiar rupedal dinosaur which one would Ultrasaurus are "almost certainly" Brachiosaurus. have to reach up to slap the belly as not separate species but simply ad- The newest finding by Gregory one walked under it," Paul said. ditional examples of Brachiosaurus. S. Paul, a self-taught dinosaur spe- "Most unusual for a tetrapod [four- Paul's reconstruction of the skel- cialist from Baltimore, debunks legged animal]. much less a dino- eton also scales back estimates of "discovery" of Supersaurus in 1972, saur, it is an exceptionally elegant the beasts' weight.
    [Show full text]
  • Valérie Martin, Varavudh Suteethorn & Eric Buffetaut, Description of the Type and Referred Material of Phuwiangosaurus
    ORYCTOS, V ol . 2 : 39 - 91, Décembre 1999 DESCRIPTION OF THE TYPE AND REFERRED MATERIAL OF PHUWIANGOSAURUS SIRINDHORNAE MARTIN, BUFFETAUT AND SUTEETHORN, 1994, A SAUROPOD FROM THE LOWER CRETACEOUS OF THAILAND Valérie MARTIN 1, Varavudh SUTEETHORN 2 and Eric BUFFETAUT 3 1 Musée des Dinosaures, 11260 Espéraza, France 2 Geological Survey Division, Department of Mineral Resources, Rama VI Road, 10400 Bangkok, Thailand 3 CNRS (UMR 5561), 16 cour du Liégat, 75013 Paris, France Abstract : The type specimen of P. sirindhornae Martin, Buffetaut and Suteethorn, 1994 is an incomplete, partly articulated, skeleton discovered in the Phu Wiang area of northeastern Thailand). Most of the abundant sauropod material from the Sao Khua Formation (Early Cretaceous), collected on the Khorat Plateau, in northeastern Thailand, is referable to this species. Phuwiangosaurus is a middle-sized sauropod, which is clearly different from the Jurassic Chinese sauropods (Euhelopodidae). On the basis of a few jaw elements and teeth, P. sirindhornae may be considered as an early representative of the family Nemegtosauridae. Key words : Sauropoda, Osteology, Early Cretaceous, Thailand Description du type et du matériel rapporté de Phuwiangosaurus sirindhornae Martin, Buffetaut et Suteethorn, 1994, un sauropode du Crétacé inférieur de Thaïlande Résumé : Le spécimen type de Phuwiangosaurus sirindhornae est un squelette incomplet, partiellement articulé, découvert dans la région de Phu Wiang (Nord-Est de la Thaïlande). Phuwiangosaurus est un sauropode de taille moyenne (15 à 20 m de longueur) très différent des sauropodes du Jurassique chinois. La majeure partie de l’abondant matériel de sauropodes, récolté sur le Plateau de Khorat (Formation Sao Khua, Crétacé inférieur), est rap - portée à cette espèce.
    [Show full text]
  • At Carowinds
    at Carowinds EDUCATOR’S GUIDE CLASSROOM LESSON PLANS & FIELD TRIP ACTIVITIES Table of Contents at Carowinds Introduction The Field Trip ................................... 2 The Educator’s Guide ....................... 3 Field Trip Activity .................................. 4 Lesson Plans Lesson 1: Form and Function ........... 6 Lesson 2: Dinosaur Detectives ....... 10 Lesson 3: Mesozoic Math .............. 14 Lesson 4: Fossil Stories.................. 22 Games & Puzzles Crossword Puzzles ......................... 29 Logic Puzzles ................................. 32 Word Searches ............................... 37 Answer Keys ...................................... 39 Additional Resources © 2012 Dinosaurs Unearthed Recommended Reading ................. 44 All rights reserved. Except for educational fair use, no portion of this guide may be reproduced, stored in a retrieval system, or transmitted in any form or by any Dinosaur Data ................................ 45 means—electronic, mechanical, photocopy, recording, or any other without Discovering Dinosaurs .................... 52 explicit prior permission from Dinosaurs Unearthed. Multiple copies may only be made by or for the teacher for class use. Glossary .............................................. 54 Content co-created by TurnKey Education, Inc. and Dinosaurs Unearthed, 2012 Standards www.turnkeyeducation.net www.dinosaursunearthed.com Curriculum Standards .................... 59 Introduction The Field Trip From the time of the first exhibition unveiled in 1854 at the Crystal
    [Show full text]
  • Re-Description of the Sauropod Dinosaur Amanzia (“Ornithopsis
    Schwarz et al. Swiss J Geosci (2020) 113:2 https://doi.org/10.1186/s00015-020-00355-5 Swiss Journal of Geosciences ORIGINAL PAPER Open Access Re-description of the sauropod dinosaur Amanzia (“Ornithopsis/Cetiosauriscus”) greppini n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland Daniela Schwarz1* , Philip D. Mannion2 , Oliver Wings3 and Christian A. Meyer4 Abstract Dinosaur remains were discovered in the 1860’s in the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, northwestern Switzerland. In the 1920’s, these were identifed as a new species of sauropod, Ornithopsis greppini, before being reclassifed as a species of Cetiosauriscus (C. greppini), otherwise known from the type species (C. stewarti) from the late Middle Jurassic (Callovian) of the UK. The syntype of “C. greppini” consists of skeletal elements from all body regions, and at least four individuals of diferent sizes can be distinguished. Here we fully re-describe this material, and re-evaluate its taxonomy and systematic placement. The Moutier locality also yielded a theropod tooth, and fragmen- tary cranial and vertebral remains of a crocodylomorph, also re-described here. “C.” greppini is a small-sized (not more than 10 m long) non-neosauropod eusauropod. Cetiosauriscus stewarti and “C.” greppini difer from each other in: (1) size; (2) the neural spine morphology and diapophyseal laminae of the anterior caudal vertebrae; (3) the length-to-height proportion in the middle caudal vertebrae; (4) the presence or absence of ridges and crests on the middle caudal cen- tra; and (5) the shape and proportions of the coracoid, humerus, and femur.
    [Show full text]
  • Mi Querido Brontosaurus.Indd
    A pesar de haberse extinguido hace 65 millones de años, los dinosaurios ocupan un lugar primordial en el imaginario po- pular. Su portentosa presencia llena mu- seos de historia natural y protagoniza pe- lículas, y sin embargo es poco lo que aún sabemos sobre ellos. Con un entusiasmo contagioso, Brian Switeck nos acerca a la vida de estas criaturas y nos descubre al- gunos de sus fascinantes secretos. «Una delicia. Es el libro defi nitivo sobre dinosaurios.» Th e New York Times BRIAN SWITEK es periodista científi co, y actualmente trabaja como reportero para National Geographic. PVP 20,90 € 10038994 www.ariel.es ,!7II4D4-ebhcdg! 25 mm Brian Switek Mi querido Brontosaurus Una expedición científi ca al encuentro de nuestros dinosaurios favoritos Traducción de Joandomènec Ros, catedrático de Ecología de la Universidad de Barcelona Título original: My Beloved Brontosaurus Publicado originalmente por Scientifi c American en colaboración con Farrar Straus & Giroux 1.ª edición: marzo de 2014 © 2013, Brian Switeck © 2014, de la traducción Joandomènec Ros Derechos exclusivos de edición en español reservados para todo el mundo y propiedad de la traducción: © 2014: Editorial Planeta, S. A. Avda. Diagonal, 662-664 - 08034 Barcelona Editorial Ariel es un sello editorial de Planeta, S. A. www.ariel.es www.espacioculturalyacademico.com ISBN: 978-84-344-1723-6 Depósito legal: B. 2.190 - 2014 Impreso en España Por Huertas Industrias Gráfi cas El papel utilizado para la impresión de este libro es cien por cien libre de cloro y está califi cado como papel ecológico. No se permite la reproducción total o parcial de este libro, ni su incorporación a un sistema informático, ni su transmisión en cualquier forma o por cualquier medio, sea éste electrónico, mecánico, por fotocopia, por grabación u otros métodos, sin el permiso previo y por escrito del editor.
    [Show full text]
  • Dinosaur Species List E to M
    Dinosaur Species List E to M E F G • Echinodon becklesii • Fabrosaurus australis • Gallimimus bullatus • Edmarka rex • Frenguellisaurus • Garudimimus brevipes • Edmontonia longiceps ischigualastensis • Gasosaurus constructus • Edmontonia rugosidens • Fulengia youngi • Gasparinisaura • Edmontosaurus annectens • Fulgurotherium australe cincosaltensis • Edmontosaurus regalis • Genusaurus sisteronis • Edmontosaurus • Genyodectes serus saskatchewanensis • Geranosaurus atavus • Einiosaurus procurvicornis • Gigantosaurus africanus • Elaphrosaurus bambergi • Giganotosaurus carolinii • Elaphrosaurus gautieri • Gigantosaurus dixeyi • Elaphrosaurus iguidiensis • Gigantosaurus megalonyx • Elmisaurus elegans • Gigantosaurus robustus • Elmisaurus rarus • Gigantoscelus • Elopteryx nopcsai molengraaffi • Elosaurus parvus • Gilmoreosaurus • Emausaurus ernsti mongoliensis • Embasaurus minax • Giraffotitan altithorax • Enigmosaurus • Gongbusaurus shiyii mongoliensis • Gongbusaurus • Eoceratops canadensis wucaiwanensis • Eoraptor lunensis • Gorgosaurus lancensis • Epachthosaurus sciuttoi • Gorgosaurus lancinator • Epanterias amplexus • Gorgosaurus libratus • Erectopus sauvagei • "Gorgosaurus" novojilovi • Erectopus superbus • Gorgosaurus sternbergi • Erlikosaurus andrewsi • Goyocephale lattimorei • Eucamerotus foxi • Gravitholus albertae • Eucercosaurus • Gresslyosaurus ingens tanyspondylus • Gresslyosaurus robustus • Eucnemesaurus fortis • Gresslyosaurus torgeri • Euhelopus zdanskyi • Gryponyx africanus • Euoplocephalus tutus • Gryponyx taylori • Euronychodon
    [Show full text]
  • Redalyc.Angolatitan Adamastor, a New Sauropod Dinosaur and the First Record from Angola
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil MATEUS, OCTÁVIO; JACOBS, LOUIS L.; SCHULP, ANNE S.; POLCYN, MICHAEL J.; TAVARES, TATIANA S.; BUTA NETO, ANDRÉ; MORAIS, MARIA LUÍSA; ANTUNES, MIGUEL T. Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola Anais da Academia Brasileira de Ciências, vol. 83, núm. 1, marzo, 2011, pp. 221-233 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32717681011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative “main” — 2011/2/10 — 15:47 — page 221 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 221-233 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola , OCTÁVIO MATEUS1 2, LOUIS L. JACOBS3, ANNE S. SCHULP4, MICHAEL J. POLCYN3, TATIANA S. TAVARES5, ANDRÉ BUTA NETO5, MARIA LUÍSA MORAIS5 and MIGUEL T. ANTUNES6 1CICEGe, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal 2Museu da Lourinhã, Rua João Luis de Moura, 2530-157 Lourinhã, Portugal 3Huffington Department of Earth Sciences, Southern Methodist University, Dallas, TX, 75275, USA 4Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL6211 KJ Maastricht, The Netherlands 5Geology Department, Universidade Agostinho Neto, Av.
    [Show full text]
  • Dinosaur Hall
    Dinosaur Hall 101 Dinosaur Hall Exhibit Overarching Stories In the exhibit, Dinosaurs: Explore Their Mysteries… • Experience the ways our scientists have assembled answers to many fascinating questions about their lives and their worlds. • By piecing together clues in the fossil record, we discover more about the fascinating world of dinosaurs. • How do Museum paleontologists know what they know …and what they don’t! 2 The Dinosaur Hall exhibit is broken up into sections with overarching questions. Dinosaur Hall Floor Layout, Level 1 Entrance/exit What F happened to dinosaurs? First Floor E What were What is a What was their dinosaurs dinosaur? world like? D like? Entrance/exit C A B Expeditions 3 Dinosaur Hall Floor Layout, Level 2 Mezzanine Level Work in the field I H Work in the lab Pterosaurs; Dinosaurs in California G 4 What is a dinosaur? 5 What are dinosaurs? • Origins from the Greek words deinos: “fearfully-great or terrible” and sauros lizard; name given by famous paleontologist Richard Owen in 1842 6 Characteristics of a Dinosaur Classifying Dinosaurs: Cladogram 8 When dinosaurs ruled on land*… Dinosaurs lived during the Mesozoic Era, a.k.a. ‘Age of Dinosaurs,’ which is divided into three periods *Not only did dinosaurs live on land, there is evidence of dinosaurs thriving in bodies of water… A commonly asked question: “Are those real fossils?” • Most skeletons on display have a mix of real fossils and casts, or reproductions. Most often the reproductions are based off a real fossil. • Labels will help you determine! Look for the specimen name, if there’s (cast) next to the name, it’s a reproduction or replica.
    [Show full text]
  • Back Matter (PDF)
    Index Note: Page numbers in italic denote figures. Page numbers in bold denote tables. Abel, Othenio (1875–1946) Ashmolean Museum, Oxford, Robert Plot 7 arboreal theory 244 Astrodon 363, 365 Geschichte und Methode der Rekonstruktion... Atlantosaurus 365, 366 (1925) 328–329, 330 Augusta, Josef (1903–1968) 222–223, 331 Action comic 343 Aulocetus sammarinensis 80 Actualism, work of Capellini 82, 87 Azara, Don Felix de (1746–1821) 34, 40–41 Aepisaurus 363 Azhdarchidae 318, 319 Agassiz, Louis (1807–1873) 80, 81 Azhdarcho 319 Agustinia 380 Alexander, Annie Montague (1867–1950) 142–143, 143, Bakker, Robert. T. 145, 146 ‘dinosaur renaissance’ 375–376, 377 Alf, Karen (1954–2000), illustrator 139–140 Dinosaurian monophyly 93, 246 Algoasaurus 365 influence on graphic art 335, 343, 350 Allosaurus, digits 267, 271, 273 Bara Simla, dinosaur discoveries 164, 166–169 Allosaurus fragilis 85 Baryonyx walkeri Altispinax, pneumaticity 230–231 relation to Spinosaurus 175, 177–178, 178, 181, 183 Alum Shale Member, Parapsicephalus purdoni 195 work of Charig 94, 95, 102, 103 Amargasaurus 380 Beasley, Henry Charles (1836–1919) Amphicoelias 365, 366, 368, 370 Chirotherium 214–215, 219 amphisbaenians, work of Charig 95 environment 219–220 anatomy, comparative 23 Beaux, E. Cecilia (1855–1942), illustrator 138, 139, 146 Andrews, Roy Chapman (1884–1960) 69, 122 Becklespinax altispinax, pneumaticity 230–231, Andrews, Yvette 122 232, 363 Anning, Joseph (1796–1849) 14 belemnites, Oxford Clay Formation, Peterborough Anning, Mary (1799–1847) 24, 25, 113–116, 114, brick pits 53 145, 146, 147, 288 Benett, Etheldred (1776–1845) 117, 146 Dimorphodon macronyx 14, 115, 294 Bhattacharji, Durgansankar 166 Hawker’s ‘Crocodile’ 14 Birch, Lt.
    [Show full text]
  • A New Middle Jurassic Diplodocoid Suggests an Earlier Dispersal and Diversification of Sauropod Dinosaurs
    ARTICLE DOI: 10.1038/s41467-018-05128-1 OPEN A new Middle Jurassic diplodocoid suggests an earlier dispersal and diversification of sauropod dinosaurs Xing Xu1, Paul Upchurch2, Philip D. Mannion 3, Paul M. Barrett 4, Omar R. Regalado-Fernandez 2, Jinyou Mo5, Jinfu Ma6 & Hongan Liu7 1234567890():,; The fragmentation of the supercontinent Pangaea has been suggested to have had a profound impact on Mesozoic terrestrial vertebrate distributions. One current paradigm is that geo- graphic isolation produced an endemic biota in East Asia during the Jurassic, while simul- taneously preventing diplodocoid sauropod dinosaurs and several other tetrapod groups from reaching this region. Here we report the discovery of the earliest diplodocoid, and the first from East Asia, to our knowledge, based on fossil material comprising multiple individuals and most parts of the skeleton of an early Middle Jurassic dicraeosaurid. The new discovery challenges conventional biogeographical ideas, and suggests that dispersal into East Asia occurred much earlier than expected. Moreover, the age of this new taxon indicates that many advanced sauropod lineages originated at least 15 million years earlier than previously realised, achieving a global distribution while Pangaea was still a coherent landmass. 1 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China. 2 Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK. 3 Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. 4 Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. 5 Natural History Museum of Guangxi, 530012 Nanning, Guangxi, China.
    [Show full text]
  • Osteology of the Dorsal Vertebrae of the Giant Titanosaurian Sauropod Dinosaur Dreadnoughtus Schrani from the Late Cretaceous of Argentina
    Rowan University Rowan Digital Works School of Earth & Environment Faculty Scholarship School of Earth & Environment 1-1-2017 Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina Kristyn Voegele Rowan University Matt Lamanna Kenneth Lacovara Rowan University Follow this and additional works at: https://rdw.rowan.edu/see_facpub Part of the Anatomy Commons, Geology Commons, and the Paleontology Commons Recommended Citation Voegele, K.K., Lamanna, M.C., and Lacovara K.J. (2017). Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina. Acta Palaeontologica Polonica 62 (4): 667–681. This Article is brought to you for free and open access by the School of Earth & Environment at Rowan Digital Works. It has been accepted for inclusion in School of Earth & Environment Faculty Scholarship by an authorized administrator of Rowan Digital Works. Editors' choice Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina KRISTYN K. VOEGELE, MATTHEW C. LAMANNA, and KENNETH J. LACOVARA Voegele, K.K., Lamanna, M.C., and Lacovara K.J. 2017. Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina. Acta Palaeontologica Polonica 62 (4): 667–681. Many titanosaurian dinosaurs are known only from fragmentary remains, making comparisons between taxa difficult because they often lack overlapping skeletal elements. This problem is particularly pronounced for the exceptionally large-bodied members of this sauropod clade. Dreadnoughtus schrani is a well-preserved giant titanosaurian from the Upper Cretaceous (Campanian–Maastrichtian) Cerro Fortaleza Formation of southern Patagonia, Argentina.
    [Show full text]