Sumoylated Non-Canonical Polycomb PRC1.6 Complex As a Prerequisite

Total Page:16

File Type:pdf, Size:1020Kb

Sumoylated Non-Canonical Polycomb PRC1.6 Complex As a Prerequisite Sotomska et al. Epigenetics & Chromatin (2021) 14:38 https://doi.org/10.1186/s13072-021-00412-9 Epigenetics & Chromatin RESEARCH Open Access SUMOylated non-canonical polycomb PRC1.6 complex as a prerequisite for recruitment of transcription factor RBPJ Małgorzata Sotomska1, Robert Liefke2,3, Francesca Ferrante1, Heiko Schwederski4, Franz Oswald4 and Tilman Borggrefe1* Abstract Background: Notch signaling controls cell fate decisions in many contexts during development and adult stem cell homeostasis and, when dysregulated, leads to carcinogenesis. The central transcription factor RBPJ assembles the Notch coactivator complex in the presence of Notch signaling, and represses Notch target gene expression in its absence. Results: We identifed L3MBTL2 and additional members of the non-canonical polycomb repressive PRC1.6 complex in DNA-bound RBPJ associated complexes and demonstrate that L3MBTL2 directly interacts with RBPJ. Depletion of RBPJ does not afect occupancy of PRC1.6 components at Notch target genes. Conversely, absence of L3MBTL2 reduces RBPJ occupancy at enhancers of Notch target genes. Since L3MBTL2 and additional members of the PRC1.6 are known to be SUMOylated, we investigated whether RBPJ uses SUMO-moieties as contact points. Indeed, we found that RBPJ binds to SUMO2/3 and that this interaction depends on a defned SUMO-interaction motif. Furthermore, we show that pharmacological inhibition of SUMOylation reduces RBPJ occupancy at Notch target genes. Conclusions: We propose that the PRC1.6 complex and its conjugated SUMO-modifcations provide a favorable environment for binding of RBPJ to Notch target genes. Keywords: Notch signaling, Polycomb repressive complex, RBPJ, Sumoylation, Epigenetics Background absence of a Notch signal, RBPJ assembles an HDAC- Notch signal transduction is an evolutionary conserved containing corepressor complex and represses tran- pathway that regulates stem cell maintenance and difer- scription. Te Notch transcriptional signature is quite entiation decisions throughout development. Dysregula- diverse in diferent tissues and cell types, even in related tion of either NOTCH receptors or their modifers are cell types, such as B- and T-cells. Transcription factor in linked to carcinogenesis [1–3]. At the molecular level, concert with chromatin modifers establish a chromatin ligand binding leads to the proteolytic processing of the environment that predetermines specifcity of the Notch Notch receptor. Its intracellular domain migrates then target gene expression [3–5]. In regard to posttransla- into the nucleus, associates with the transcription factor tional modifcations (PTMs), not only histone tails, but RBPJ and activates transcription of target genes. In the also the Notch coactivator complex are known to be phosphorylated, methylated, acetylated, SUMOylated *Correspondence: [email protected] and ubiquitinylated [6–8]. Tese modifcations control 1 Institute of Biochemistry, Justus-Liebig University of Giessen, not only the stability of Notch, but also determine ampli- Friedrichstrasse 24, 35392 Giessen, Germany tude and duration of the Notch response [9] and can be Full list of author information is available at the end of the article incorporated upon cellular stress signals [10]. © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Sotomska et al. Epigenetics & Chromatin (2021) 14:38 Page 2 of 15 Te central player controlling the expression of Here, we show that components of the PRC1.6 com- Notch target genes is the transcription factor RBPJ, plex together with multiple SUMO-modifcations physi- also known as CBF1 (C promoter binding factor) or cally interact with the transcription factor RBPJ, thereby CSL (Homo sapiens CBF1, Drosophila melanogaster supporting its binding to enhancers of Notch target Suppressor of Hairless, and Caenorhabditis elegans genes. Specifcally, we found that L3MBTL2 and E2F6 Lag-1). RBPJ binds to the sequence 5′-CGT GGG AA-3′ are required for efcient RBPJ binding. Furthermore, we [11] and its genome-wide distribution has been studied reveal that RBPJ utilizes its SUMO interaction motif as in several tissues [12]. In the absence of a Notch sig- additional docking site and provide evidence that high nal, RBPJ assembles a corepressor complex containing local SUMO levels and occupancy of the PRC1.6 complex NCoR/HDACs [13] and histone demethylases, such as are favorable for RBPJ binding. KDM1A/LSD1 [14]. Polycomb group proteins assemble in two major repres- Results sive multi-subunit complexes known as PRC1 (Polycomb DNA‑bound RBPJ is associated with several PRC1.6 repressive complex 1) and PRC2. PRC1 and PRC2 difer components in their enzymatic activities and function. PRC1 con- To biochemically isolate RBPJ-containing complexes, tains the E3 ligase RING1/2 and PRC2 the repressing we took advantage of a DNA double-stranded oligonu- histone methyltransferase EZH2. Te PRC1-components cleotide containing two RBPJ binding sites 5′-GTG GGA relevant for this study (L3MBTL2, MGA and E2F6) are A-3’ (Fig. 1a), which allows the formation of DNA-bound subunits of the PRC1.6 complex described by Trojer [15]. dimeric RBPJ complexes [27]. We speculated that DNA- PRC1.6 belongs to the group of non-canonical PRC1, binding of RBPJ may stabilize the complex and in addi- which are known to be recruited also in an H3K27me3- tion prevent unspecifc binding of proteins to the charged independent manner [16, 17]. Te genome-wide distri- DNA-binding region of RBPJ, similar to the previously bution of PRC1.6 has been studied using CRISPR-Cas9 described trapping method [28]. depletion of the individual components L3MBTL2, E2F6, Nuclear extracts from HeLa cells expressing FLAG- MGA and PCGF6 combined with ChIP-Seq analyses of HA-tagged RBPJ (Fig. 1b) were generated by salt extrac- the same proteins, revealing that binding of PRC1.6 com- tion. Subsequently, we added the double-stranded ponents overlap genome-wide and that L3MBTL2 and oligonucleotide prior to dialysis. To prevent binding of E2F6 contribute to chromatin binding of the PRC1.6 unspecifc DNA binding proteins to the RBPJ-bound complex [18]. In addition, SUMOylation of L3MBTL2 DNA, we additionally added a mutated oligonucleotide is required for transcriptional repression of endogenous (Fig. 1a) in excess. In a control experiment, we did not target genes [19]. add any DNA to the samples. After the dialysis step, we SUMO (small ubiquitin-like modifer) is a 11 kDa pro- isolated the complexes using Flag-beads (Fig. 1c). When tein that modifes its target proteins through covalent analysing the bound proteins by silver staining, we found binding to lysine residues [20]. Te family of SUMO that adding the oligonucleotide (wild type and mutated proteins consists of three evolutionary conserved, func- for the RBPJ binding motif) strongly reduced the level of tional isoforms (SUMO1, SUMO2 and SUMO3) of which unspecifc proteins (Fig. 1d). In particular, the amount the last two are 97% identical and are, therefore, often of histone proteins was strongly reduced in the DNA- referred to as SUMO2/3 [21]. SUMO is attached to pro- treated sample as compared with the untreated sample teins using E1 (Aos1/Uba2), E2 (Ubc9), and several E3 (Fig. 1d). Subsequently, the obtained protein samples ligase enzymes. Tere are also proteins that bind SUMO were subjected to mass-spectrometric analysis. Te MS non-covalently by specifc SUMO interacting motifs data confrmed the strong reduction of histone proteins (SIMs), implicating that SUMO and SIM-containing and chromatin-associated proteins in the DNA-bound proteins can form multiprotein networks [22]. In conse- RBPJ sample (Fig. 1e, Additional fle 1: Table S1). Of note, quence, SUMO modifcations are not only regulating the RBPJ itself, and known RBPJ interactors either were not functions of individual proteins, but also regulate protein afected by adding the DNA or we obtained even higher complex assembly and recruitment [23–25]. Importantly, peptide numbers (Fig. 1f). Tus, by adding the RBPJ- Cossec and colleagues revealed that chromatin-bound binding oligonucleotide during the RBPJ complex puri- SUMO and the PRC1.6 complex, in particular L3MBTL2, fcation procedure, we substantially improved the signal are found at the overlapping genomic sites. It is reported to noise ratio. Closer inspection of the data showed that that multiple SUMO-moieties act as a “glue” for both we could identify many known RBPJ corepressor and transcription factors and chromatin
Recommended publications
  • Loss of Mafb and Maf Distorts Myeloid Cell Ratios and Disrupts Fetal Mouse Testis Vascularization and Organogenesisǂ
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441488; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Loss of Mafb and Maf distorts myeloid cell ratios and disrupts fetal mouse testis vascularization and organogenesisǂ 5 Shu-Yun Li1,5, Xiaowei Gu1,5, Anna Heinrich1, Emily G. Hurley1,2,3, Blanche Capel4, and Tony DeFalco1,2* 1Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, 10 OH 45229, USA 2Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA 3Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA 15 4Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA 5These authors contributed equally to this work. ǂThis work was supported by the National Institutes of Health (R37HD039963 to BC, R35GM119458 to TD, R01HD094698 to TD, F32HD058433 to TD); March of Dimes (1-FY10- 355 to BC, Basil O’Connor Starter Scholar Award 5-FY14-32 to TD); Lalor Foundation 20 (postdoctoral fellowship to SL); and Cincinnati Children’s Hospital Medical Center (Research Innovation and Pilot funding, Trustee Award, and developmental funds to TD). *Corresponding Author: Tony DeFalco E-mail: [email protected] 25 Address: Division of Reproductive Sciences Cincinnati Children’s Hospital Medical Center 3333 Burnet Avenue, MLC 7045 Cincinnati, OH 45229 USA Phone: +1-513-803-3988 30 Fax: +1-513-803-1160 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441488; this version posted April 26, 2021.
    [Show full text]
  • RBP-J Signaling − Cells Through Notch Novel IRF8-Controlled
    Sca-1+Lin−CD117− Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch −RBP-J Signaling This information is current as of September 25, 2021. Xingxia Liu, Shaoda Ren, Chaozhuo Ge, Kai Cheng, Martin Zenke, Armand Keating and Robert C. H. Zhao J Immunol 2015; 194:4298-4308; Prepublished online 30 March 2015; doi: 10.4049/jimmunol.1402641 Downloaded from http://www.jimmunol.org/content/194/9/4298 Supplementary http://www.jimmunol.org/content/suppl/2015/03/28/jimmunol.140264 http://www.jimmunol.org/ Material 1.DCSupplemental References This article cites 59 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/194/9/4298.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Sca-1+Lin2CD1172 Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch–RBP-J Signaling Xingxia Liu,*,1 Shaoda Ren,*,1 Chaozhuo Ge,* Kai Cheng,* Martin Zenke,† Armand Keating,‡,x and Robert C.
    [Show full text]
  • Mutations and Altered Expression of SERPINF1 in Patients with Familial Otosclerosis Joanna L
    Human Molecular Genetics, 2016, Vol. 25, No. 12 2393–2403 doi: 10.1093/hmg/ddw106 Advance Access Publication Date: 7 April 2016 Original Article ORIGINAL ARTICLE Mutations and altered expression of SERPINF1 in patients with familial otosclerosis Joanna L. Ziff1, Michael Crompton1, Harry R.F. Powell2, Jeremy A. Lavy2, Christopher P. Aldren3, Karen P. Steel4,†, Shakeel R. Saeed1,2 and Sally J. Dawson1,* 1UCL Ear Institute, University College London, London WC1X 8EE, UK, 2Royal National Throat Nose and Ear Hospital, London WC1X 8EE, UK, 3Department of ENT Surgery, The Princess Margaret Hospital, Windsor SL4 3SJ, UK and 4Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK *To whom correspondence should be addressed. Tel: þ44 2076798935; Email: [email protected] Abstract Otosclerosis is a relatively common heterogenous condition, characterized by abnormal bone remodelling in the otic capsule leading to fixation of the stapedial footplate and an associated conductive hearing loss. Although familial linkage and candidate gene association studies have been performed in recent years, little progress has been made in identifying disease- causing genes. Here, we used whole-exome sequencing in four families exhibiting dominantly inherited otosclerosis to identify 23 candidate variants (reduced to 9 after segregation analysis) for further investigation in a secondary cohort of 84 familial cases. Multiple mutations were found in the SERPINF1 (Serpin Peptidase Inhibitor, Clade F) gene which encodes PEDF (pigment epithelium-derived factor), a potent inhibitor of angiogenesis and known regulator of bone density. Six rare heterozygous SERPINF1 variants were found in seven patients in our familial otosclerosis cohort; three are missense mutations predicted to be deleterious to protein function.
    [Show full text]
  • Prox1regulates the Subtype-Specific Development of Caudal Ganglionic
    The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP).
    [Show full text]
  • Clinical Utility of Recently Identified Diagnostic, Prognostic, And
    Modern Pathology (2017) 30, 1338–1366 1338 © 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms Arantza Onaindia1, L Jeffrey Medeiros2 and Keyur P Patel2 1Instituto de Investigacion Marques de Valdecilla (IDIVAL)/Hospital Universitario Marques de Valdecilla, Santander, Spain and 2Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA Genomic profiling studies have provided new insights into the pathogenesis of mature B-cell neoplasms and have identified markers with prognostic impact. Recurrent mutations in tumor-suppressor genes (TP53, BIRC3, ATM), and common signaling pathways, such as the B-cell receptor (CD79A, CD79B, CARD11, TCF3, ID3), Toll- like receptor (MYD88), NOTCH (NOTCH1/2), nuclear factor-κB, and mitogen activated kinase signaling, have been identified in B-cell neoplasms. Chronic lymphocytic leukemia/small lymphocytic lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, Waldenström macroglobulinemia, hairy cell leukemia, and marginal zone lymphomas of splenic, nodal, and extranodal types represent examples of B-cell neoplasms in which novel molecular biomarkers have been discovered in recent years. In addition, ongoing retrospective correlative and prospective outcome studies have resulted in an enhanced understanding of the clinical utility of novel biomarkers. This progress is reflected in the 2016 update of the World Health Organization classification of lymphoid neoplasms, which lists as many as 41 mature B-cell neoplasms (including provisional categories). Consequently, molecular genetic studies are increasingly being applied for the clinical workup of many of these neoplasms. In this review, we focus on the diagnostic, prognostic, and/or therapeutic utility of molecular biomarkers in mature B-cell neoplasms.
    [Show full text]
  • Targeting Iron Homeostasis Induces Cellular Differentiation and Synergizes with Differentiating Agents in Acute Myeloid Leukemia
    Article Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia Celine Callens,1,2 Séverine Coulon,1,2 Jerome Naudin,1,2,3,4 Isabelle Radford-Weiss,2,5 Nicolas Boissel,4,9 Emmanuel Raffoux,4,9 Pamella Huey Mei Wang,3,4 Saurabh Agarwal,3,4 Houda Tamouza,3,4 Etienne Paubelle,1,2 Vahid Asnafi,1,2,6 Jean-Antoine Ribeil,1,2 Philippe Dessen,10 Danielle Canioni,2,7 Olivia Chandesris,2,8 Marie Therese Rubio,2,8 Carole Beaumont,4,11 Marc Benhamou,3,4 Hervé Dombret,4,9 Elizabeth Macintyre,1,2,6 Renato C. Monteiro,3,4 Ivan C. Moura,3,4 and Olivier Hermine1,2,8 1Centre National de la Recherche Scientifique UMR 8147, Paris 75015, France 2Faculté de Médecine, Université René Descartes Paris V, Institut Fédératif Necker, Paris 75015, France 3Institut National de la Santé et de la Recherche Médicale (INSERM), U699, Paris 75018, France 4Faculté de Médecine, Université Denis Diderot Paris VII, Paris 75018, France 5Laboratoire de cytogénétique, 6Laboratoire d’Hématologie, 7Service d’Anatomo-Pathologie, and 8Service d’Hématologie, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris 75015, France 9Service d’Hématologie, Hôpital Saint-Louis, AP-HP, Paris 75010, France 10Unité de Génomique Fonctionnelle, Institut Gustave Roussy, Villejuif 94800, France 11INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Paris 75018, France Differentiating agents have been proposed to overcome the impaired cellular differentia- tion in acute myeloid leukemia (AML). However, only the combinations of all-trans retinoic acid or arsenic trioxide with chemotherapy have been successful, and only in treating acute promyelocytic leukemia (also called AML3).
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • Vitamin D Regulates Myeloid Cells Via the Mertk Pathway
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.06.937482; this version posted February 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Vitamin D regulates MerTK-dependent phagocytosis in human myeloid cells Running Title: Vitamin D regulates myeloid cells via the MerTK pathway Jelani Clarke1, Moein Yaqubi1, Naomi C. Futhey1, Sara Sedaghat1, Caroline Baufeld3, Manon Blain1, Sergio Baranzini2, Oleg Butovsky3, John H. White4, 5, Jack Antel1, Luke M. Healy1 1Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada 2Department of Neurology, Weill Institute for Neurosciences, University of California-San Francisco, San Francisco, California, USA 3Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women′s Hospital, Harvard Medical School, Boston, MA, USA 4Departments of Physiology and Medicine, McGill University, Montreal, Quebec, Canada 5Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Email address: [email protected] Phone number: (+1) 514-815-1916 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.06.937482; this version posted February 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract 1 Vitamin D deficiency is a major environmental risk factor for the development of multiple 2 sclerosis (MS).
    [Show full text]
  • Targets TFIID and TFIIA to Prevent Activated Transcription
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press The mammalian transcriptional repressor RBP (CBF1) targets TFIID and TFIIA to prevent activated transcription Ivan Olave, Danny Reinberg,1 and Lynne D. Vales2 Department of Biochemistry and 1Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 USA RBP is a cellular protein that functions as a transcriptional repressor in mammalian cells. RBP has elicited great interest lately because of its established roles in regulating gene expression, in Drosophila and mouse development, and as a component of the Notch signal transduction pathway. This report focuses on the mechanism by which RBP represses transcription and thereby regulates expression of a relatively simple, but natural, promoter. The results show that, irrespective of the close proximity between RBP and other transcription factors bound to the promoter, RBP does not occlude binding by these other transcription factors. Instead, RBP interacts with two transcriptional coactivators: dTAFII110, a subunit of TFIID, and TFIIA to repress transcription. The domain of dTAFII110 targeted by RBP is the same domain that interacts with TFIIA, but is disparate from the domain that interacts with Sp1. Repression can be thwarted when stable transcription preinitiation complexes are formed before RBP addition, suggesting that RBP interaction with TFIIA and TFIID perturbs optimal interactions between these coactivators. Consistent with this, interaction between RBP and TFIIA precludes interaction with dTAFII110. This is the first report of a repressor specifically targeting these two coactivators to subvert activated transcription. [Key Words: RBP; transcriptional repression; TFIIA/TFIID targeting] Received November 17, 1997; revised version accepted April 1, 1998.
    [Show full text]
  • An RBPJ-Drosophila Model Reveals Dependence of RBPJ Protein Stability on the Formation of Transcription–Regulator Complexes
    cells Article An RBPJ-Drosophila Model Reveals Dependence of RBPJ Protein Stability on the Formation of Transcription–Regulator Complexes Bernd M. Gahr 1,2, Franziska Brändle 1, Mirjam Zimmermann 1 and Anja C. Nagel 1,* 1 Institute of Genetics (240), University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany; [email protected] (B.M.G.); [email protected] (F.B.); [email protected] (M.Z.) 2 Present address: Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany * Correspondence: [email protected]; Tel.: +49-711-45922210 Received: 23 August 2019; Accepted: 10 October 2019; Published: 14 October 2019 Abstract: Notch signaling activity governs widespread cellular differentiation in higher animals, including humans, and is involved in several congenital diseases and different forms of cancer. Notch signals are mediated by the transcriptional regulator RBPJ in a complex with activated Notch (NICD). Analysis of Notch pathway regulation in humans is hampered by a partial redundancy of the four Notch receptor copies, yet RBPJ is solitary, allowing its study in model systems. In Drosophila melanogaster, the RBPJ orthologue is encoded by Suppressor of Hairless [Su(H)]. Using genome engineering, we replaced Su(H) by murine RBPJ in order to study its function in the fly. In fact, RBPJ largely substitutes for Su(H)’s function, yet subtle phenotypes reflect increased Notch signaling activity. Accordingly, the binding of RBPJ to Hairless (H) protein, the general Notch antagonist in Drosophila, was considerably reduced compared to that of Su(H). An H-binding defective RBPJLLL mutant matched the respective Su(H)LLL allele: homozygotes were lethal due to extensive Notch hyperactivity.
    [Show full text]
  • Temporal Mapping of CEBPA and CEBPB Binding
    Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Temporal mapping of CEBPA and CEBPB binding during liver regeneration reveals dynamic occupancy and specific regulatory codes for homeostatic and cell cycle gene batteries Janus Schou Jakobsen1,2,3,*, Johannes Waage1,2,3,4, Nicolas Rapin1,2,3,4, Hanne Cathrine Bisgaard5, Fin Stolze Larsen6, Bo Torben Porse1,2,3,* 1 The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark; 2 Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen, Denmark; 3 The Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, DK2200 Copenhagen Denmark; 4 The Bioinformatics Centre, University of Copenhagen, DK2200, Copenhagen, Denmark; 5 Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK- 2100 Copenhagen, Denmark; 6 Department of Hepatology, Rigshospitalet, DK2200 Copenhagen, Denmark. JW: [email protected]; NR: [email protected]; HCB: [email protected]; FSL: [email protected] * Corresponding authors: BTP: [email protected]; JSJ: [email protected], The Finsen Laboratory, Ole Maaløesvej 5, Copenhagen Biocenter, University of Copenhagen, DK2200 Copenhagen, Denmark. Telephone: +45 3545 6023 Running title: Regulation of liver regeneration Keywords: Temporal ChIP-seq, dynamic binding, liver regeneration, C/EBPalpha, C/EBPbeta, transcriptional networks 1 Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Dynamic shifts in transcription factor binding are central to the regulation of biological processes by allowing rapid changes in gene transcription.
    [Show full text]
  • Rbpj-Dependent and -Independent Notch2 Signaling Regulates
    RBPJ-DEPENDENT AND -INDEPENDENT NOTCH2 SIGNALING REGULATES CILIARY BODY DEVELOPMENT IN THE MOUSE EYE By Yi Zhou B.S., Tsinghua University, 2010 Submitted to the graduate degree program in Anatomy and Cell Biology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ________________________________ Ting Xie, Ph.D., Co-Chair ________________________________ William Kinsey, Ph.D., Co-Chair ________________________________ Dale Abrahamson, Ph.D. ________________________________ Peter Smith, Ph.D. ________________________________ Jerry Workman, Ph.D. Date Defended: Jan 6th, 2016 The Dissertation Committee for Yi Zhou certifies that this is the approved version of the following dissertation: RBPJ-DEPENDENT AND -INDEPENDENT NOTCH2 SIGNALING REGULATES CILIARY BODY DEVELOPMENT IN THE MOUSE EYE ________________________________ Ting Xie, Ph.D., Co-Chair ________________________________ William Kinsey, Ph.D., Co-Chair Date Approved: Jan 15th, 2016 ii ABSTRACT The ciliary body (CB) is a two-layered structure in the anterior eye, which is composed of the pigmented outer ciliary epithelium (OCE) and the non-pigmented inner ciliary epithelium (ICE). It is responsible for aqueous humor secretion and lens accommodation. Despite the important roles in maintaining normal eye functions, its development still remains poorly understood. The Notch signaling pathway is an evolutionarily conserved pathway that has diverse functions during tissue development and homeostasis. Canonical Notch signaling is mediated through the recombination signal binding protein for immunoglobulin kappa J region (RBPJ)-dependent transcription activation and repression. In this study, I have demonstrated that Notch2 and RBPJ are important regulators of CB development by conditionally deleting them in the developing CB.
    [Show full text]