Gastropoden Aus Paläozoischen Geschieben Des Kies-Sand-Rückens in Der Laerheide (Landkreis Osnabrück)

Total Page:16

File Type:pdf, Size:1020Kb

Gastropoden Aus Paläozoischen Geschieben Des Kies-Sand-Rückens in Der Laerheide (Landkreis Osnabrück) Osnabrücker Naturwissenschaftliche Mitteilungen Band 28, S. 7–25, 2002 Gastropoden aus paläozoischen Geschieben des Kies-Sand-Rückens in der Laerheide (Landkreis Osnabrück) Michael R. W. Amler, Doris Heidelberger & Heinrich Schöning Kurzfassung: Aus altpaläozoischen karbonatischen Gesteinen, die als nordische Geschiebe in den Kame-Ablagerungen der Laerheide am Nordrand der Westfälischen Bucht vorkommen, werden ordovizische und silurische Gastropoden beschrieben. Altpaläozoische Gastropoden sind zwar aus verschiedenen südskandinavischen Kalkstein-Geschieben seit langem bekannt, jedoch sind Bestimmungen und Eingruppierungen innerhalb der modernen Gastropoden-Systematik bis- lang noch nicht erfolgt, so dass auf diesem Gebiet noch erheblicher Nachholbedarf besteht, wozu hiermit ein erster Beitrag geleistet wird. Abstract: Glacial erratic boulders from kame sediments of the Laerheide in the northern part of the „Westfälische Bucht“ south of Osnabrück have yielded Ordovician and Silurian gastropods. Although early Palaeozoic gastropods are fairly well known from glacial erratics they lack adequate descriptions and classification within the modern systematic framework which is presented here. Key words: Gastropoda, glacial erratic boulders, Ordovician, Silurian, Laerheide, Westfälische Bucht Autoren: Prof. Dr. Michael R.W. Amler, Institut für Geologie und Paläontologie, Philipps-Universität Marburg, Hans-Meerwein Strasse, D-35032 Marburg, Deutschland; e-mail: [email protected] Dr. Doris Heidelberger, Kapellenstrasse 8–10, D-61440 Oberursel, Deutschland; e-mail: [email protected] Heinrich Schöning, Badeweg 3, D-34613 Schwalmstadt-Trutzhain, Deutschland 1 Einleitung menten (Sande, Kiese, Geschiebeblöcke), die sowohl in petrographischer Hinsicht als Der Kies-Sand-Rücken in der Laerheide, be- auch bezüglich ihres Alters und ihrer Her- nannt nach Bad Laer, südlich von Osnabrück kunft ein breites Spektrum aufweisen. Auf am Teutoburger Wald, TK 3814 Bad Iburg Grund der quartärgeologischen Gesamtsi- und TK 3914 Versmold, erstreckt sich als tuation und der sedimentologischen Befun- rund 2,5 km langer und 0,6 km breiter, NW- de lässt sich der Hügelzug, der von Haack & SE streichender Hügelzug am Nordrand der Görz (1930: 46) als Kieshügel ohne geneti- Westfälischen Bucht zwischen Bad Laer und sche Interpretation erwähnt wurde, als Ka- Glandorf. Mit etwa 90 m ü. NN überragt er in me-Bildung deuten (Keller 1951; Schöning der „Laerhöhe“ die Umgebung um 15-20 m. 1991, 2000; Staude 1992: 45). Durch lang- Der heute in weiten Bereichen abgetragene jährige Geländearbeit und Profilaufnahmen Rücken besteht aus fluvioglazialen Sedi- sind nicht nur Details zum Internaufbau und 7 Michael R. W. Amler, Doris Heidelberger & Heinrich Schöning Osnabrücker Naturwiss. Mitt. 28 2002 zu den Lagerungsverhältnissen bekannt ge- sucht werden. Zandstra (1993) stellte bei Ge- worden, sondern es konnte auch die Genese schiebezählungen eine starke Dominanz des Kame-Rückens in Grundzügen rekon- südschwedischer Leitgeschiebe magmati- struiert werden (Keller 1951; Schöning 1980, scher und metamorpher Gesteine fest. 1991). Gleichzeitig wurde im Verlauf der letz- Schöning (1977, 2000) konnte bei seinen Ge- ten 30 Jahre eine umfangreiche Geschiebe- schiebe-Aufsammlungen magmatische und sammlung zusammengetragen (Schöning metamorphe Gesteine aus dem gesamten 1977, 2000). baltoskandischen Raum, vom Oslo-Gebiet Der Kies-Sand-Rücken in der Laerheide bis Süd-Finnland, nachweisen. Ebenfalls aus stammt aus dem Drenthe-Stadium der Saa- dem schwedischen Raum, aber auch aus le-zeitlichen Inlandvereisung. Generell wird dem Bereich der heutigen Ostsee, dürften angenommen, dass die Westfälische Bucht die paläozoischen Sedimentärgeschiebe zunächst aus nordwestlicher Richtung vom stammen, die stratigraphisch von unterkam- Emsland-Gletscher erreicht wurde (Liedtke brischen Skolithos-Sandsteinen bis zu ober- 1981; Skupin et al. 1993). Durch Zuwachs silurischen Kalksteinen reichen, begleitet der Gletschermassen wurde in einer Folge- von kretazischen Geschieben aus dem Ost- phase während des Drenthe-Stadiums die see-Raum und Nah-Geschieben aus dem anfängliche Barriere des Teutoburger Waldes Osnabrücker Bergland, vorwiegend dem vom Osnabrücker Gletscher überfahren, so Teutoburger Wald. dass im Nordteil der Westfälischen Bucht die älteren glazialen Sedimente überprägt wur- den (Staude 1992). Weitere Oszillationen der 2 Gastropoden aus nordischen Gletschermassen überformten die entstan- Geschieben der Laerheide dene Glazialmorphologie und ihre Ablage- rungen, wobei schließlich während des letz- Gastropoden sind in nordischen Geschieben ten Rückzugsstadiums des Osnabrücker keine Seltenheit, da auch die ordovizischen Gletschers tiefe Erosionsformen gebildet und silurischen Schelf-Karbonatgesteine wurden. Es handelt sich dabei vorwiegend Mittel- und Süd-Schwedens entsprechend um Sedimentationswannen und Schmelz- ihrer Fazies mehr oder weniger häufig Gas- wasserrinnen auf bzw. zwischen den Toteis- tropoden enthalten. Allerdings finden sie in körpern, die während der Abschmelzphase den gängigen Zusammenstellungen von Ge- mit Kame-Sedimenten und Nachschüttsan- schiebefossilien (Hucke 1967; Neben & den gefüllt wurden. Der Kies-Sand-Rücken Krueger 1971, 1973; Lienau 1990; Rudolph in der Laerheide, der nach dem Abtauen – 1997) nur eine vergleichsweise geringe Be- trotz der nachfolgenden Einebnung während achtung, obgleich sie bereits seit dem Be- der eisfreien Spätphase des Drenthe-Stadi- ginn der Geschiebe-Paläontologie registriert ums und der Eem-Warmzeit – als glazigene wurden (Krause 1877; Martin 1878; Roemer Vollform erhalten blieb, ist als Großkame an- 1885 u.a.). Auf der Basis der umfangreichen zusprechen, der in sich mehrere ursprüngli- Monographien zur Fauna in den Herkunfts- che Sedimentationswannen mit Kames- gebieten stellte Patrunky Geschiebe-Gas- Struktur vereinigt (Keller 1951). tropoden nach stratigraphischen Gesichts- Die Geschiebeführung dieses Kame-Rü- punkten (Patrunky 1925) sowie in einem ckens konnte auf Grund einer großen Materi- Bestimmungsschlüssel (Patrunky 1928) zu- alfülle in den letzten Jahren detailliert unter- sammen. 8 Gastropoden aus paläozoischen Geschieben Die beschriebenen Gastropoden stam- mischen Einheiten erfolgt deshalb unter Vor- men aus lithologisch-mikrofaziell unter- behalt. Die Diagnosen orientieren sich weit- schiedlichen Karbonatgesteinen von Süd- gehend an den Beschreibungen der Typus- Schweden, u.a. aus dem Macrouruskalk, aus arten in Knight (1941). grauem und rotem Orthocerenkalk sowie si- Aufbewahrung des Materials: Die hier be- lurischen Kalksteinen. schriebenen Gastropoden werden in der Für die Bearbeitung der Geschiebe-Gas- Sammlung H. Schöning (SgS), Schwalm- tropoden der Laerheide wurden sowohl stadt-Trutzhain, aufbewahrt. die grundlegenden Arbeiten über altpaläo- zoische Faunen von Baltica und Laurentia von Hisinger (1839), Eichwald (1859, 1860), 3 Systematik Lindström (1884, 1885, 1888a, b), Ulrich & Scofield (1897), Koken (1897), Koken & 3.1 ?Unterklasse Amphigastropoda Perner (1925), als auch die Revisionen und Simroth, 1906 Zusammenstellungen ordovizisch-siluri- Überfamilie Bellerophontoidea M’Coy, scher Gastropoden durch Yochelson (1963), 1851 Peel (1975, 1977, 1978, 1979), Peel & Wäng- Familie Sinuitidae Dall in Zittel-Eastman, berg-Eriksson (1979), Ebbestad (1999a, b) 1913 und Ebbestad & Yochelson (2000) verwen- Unterfamilie Sinuitinae Dall in Zittel-East- det. Zusätzliche Informationen lieferten Ar- man, 1913 beiten über mittel-ordovizische Gastropo- den von Ost-Kanada (Wilson 1951), Kalifor- Gattung Sinuites Koken, 1896 nien (Rohr 1980) und Alaska (Rohr 1988). Diagnose: Seit den letzten umfassenderen systema- Gehäuse involut, kugelig, ein Nabel fehlt; tischen Zusammenstellungen von Gastropo- Mundöffnung an den Seiten nur wenig ver- den (Wenz 1938-1960; Knight et al. 1960), breitert; mit medianem, breitem labralen Si- die vorwiegend auf traditionellen Klassifikati- nus, sonst ohne Sinus oder Schlitzband; Or- onsmethoden basierten, haben Systematik namentierung mit feinen Anwachslinien. und Taxonomie von Schnecken große Verän- derungen erfahren. Die moderne Systematik Sinuites (Sinuites) sp. aff. Sinuites der fossilen Gastropoden zieht neben den (Sinuites) vetustus Koken, 1897 sichtbaren Gehäusemerkmalen, wie bei- Taf. 1, Abb. 1-4 spielsweise der Gestaltung der Mundöff- * 1897 Sinuites vetustus Koken, S. 119. nung (siehe Systematik von Knight et al. 1925 Sinuites vetustus Koken. – Koken & 1960), auch verstärkt die Ausbildung der frü- Perner, S. 39, Taf. 18, Fig. 1, 2. hen Embryonalwindungen sowie die Scha- lenfeinstruktur heran (siehe z. B. Bandel Beschreibung: 1997), wobei deren Bedeutung für die Syste- Das fast globuläre Gehäuse (Höhe 20 mm, matik schon von Koken (1889) erkannt wur- Breite 15 mm), das stets höher als breit ist, de. Diese Gesichtspunkte sind allerdings auf weist keinen Nabel auf. Das Gewinde ist die zumeist in Steinkern-Erhaltung überlie- hoch gewölbt und leicht spitz zulaufend. Die ferten Gastropoden der ordovizischen und Windungsflanken sind steil und leicht konvex silurischen Geschiebe nur bedingt anwend- abgerundet. Zur Mundöffnung hin sind die bar, und die Zuordnung zu höheren taxono- Laterallippen etwas ausgeweitet. Median er- 9 Michael R. W. Amler, Doris Heidelberger & Heinrich Schöning Osnabrücker Naturwiss. Mitt. 28 2002 Tafel 1: (Bildlegende siehe folgende Seite) 10 Gastropoden aus paläozoischen Geschieben Bildlegende zu nebenstehender Tafel 1 naueren Angaben möglich. Die Merkmale Die hier abgebildeten
Recommended publications
  • The Middle Ordovician of the Oslo Region, Norway
    NORSK GEOLOGISK TIDSSKRIFT 43 THE MIDDLE ORDOVICIAN OF THE OSLO REGION, NORWAY 15. Monoplacophora and Gastropoda By ELLIS L. Y OCHELSON (Present address: U.S. Geological Survey, Washington 25, D.C., U.S.A.) With 8 plates. Abst rac t. The Middle Ordovician gastropods described by Koken in 1889, 1897 and 1925 are redescribed and reillustrated. Approximately six hundred fifty specimens, including the types, are available from units 4a and 4b. Most specimens are not specifically identifiable; within same superfamilies, many specimens are generically indeterminate. Because well preserved specimens are rare, an apen nomenclature has been employed for most new taxa. The fauna of 4b is slightly more diversified than that of 4a, but both faunas are limited to few species. The preponderant number of specimens come from limestone masses within dark shale. This is considered to be an allocthonous occurrence. Few specimens come from shallow water deposits peripheral to and overlying the dark shales. The faunas of these two facies is different, but the second is so poorly known that no dose comparisons can be made. Several of the forms in the shallow water assemblage are known from single specimens. Less than a dozen specimens of monoplacophorans are known. Pollicina conoidea is transferred to Hypseloconus ?. Palaeoscurria ( ?) norvegica is trans­ ferred to Archinacella. One new species, Archinacella stoermeri, is described. Lepetopsis inopinata may be an inarticulate brachiopod. The gastropod fauna is composed almost entirely of Archaeogastropoda with Bellerophontacea and Pleurotomariacea constituting the majority of the taxa. Three specimens of Archaeogastropoda? representing three genera are known. Only one caenogastropod is known.
    [Show full text]
  • Guide to Fossil C911ecting
    Educational Series - 1 ISSN 0544-3083 Guide to Fossil C911ecting ~~1. I ~l in/~~;/~_ Minnesota Minnesota Geological Survey Guide To FossIl Collecting In Minnesota R. K. Hogberg, R. E. Sloan and Sarah Tufford First edition 1965: revised edition 1967: reprinted 1979: reprinted 1985 ISSN 0544-3083 Geologic Time Chart_Minnesota Time Era Period Events in Minnesota Characteristic Life Quaternary 20 ENO· .ofMommals ZOIC 40 Tertiary No record in Minnesota ~ 60 M Sea enters Minnesota from E Cretaceous 100 S West. Deposition of sediments. 0 Z A~ of R.ptil.s 0 Jurassic I No record in Minnesota C Triassic k 200 Permian Ag.of Pennsylvanian No record in Minnesota Amphibians ..~ Mississippian ~ ~ ~ P Sea enters Minnesota from 300 Devonian "-() South. Deposition of sediments. .. A .~ L ~ . Silurian No record in Minnesota Ag. of Corals E 0 • of Straight 400 Ordovician Seas cover Minnesota at intervals. Z c_~ 0 I C Cambrian Deposition of sediments. A~ of Trilobit.s ~ Lava flows and deposition of sediments. PRECAMBRIAN Deposition of iron-rich sediments. First r.cord oIl,f. 4 \12 billion years lang Formation of mountains and igneous intrusions. Guide To FOSJt'l Colletting In Minnesota FoSSILS tell us what life was like on earth in ancient geologic time. A fossil clam, for example, lived on a sea bottom much as its modern relatives do. By finding many fossil clams, we can deter­ mine the extent of a prehistoric sea. Fossils also indicate the climates of the geologic past. Fossils show us that life on earth has not always been the same. In fact primitive algae and bacteria have given rise to reptile s, mammals, and finally to man.
    [Show full text]
  • CINCINNATIAN GASTROPOD PRIMER by Ron Fine HOW DO SCIENTISTS CLASSIFY GASTROPODS?
    CINCINNATIAN GASTROPOD PRIMER By Ron Fine HOW DO SCIENTISTS CLASSIFY GASTROPODS? KINGDOM: Animalia (Animals) Mammals Birds Fish Amphibians Molluscs Insects PHYLUM: Mollusca (Molluscs) Cephalopods Gastropods Bivalves Monoplacophorans Scaphopods Aplacophorans Polyplacophorans CLASS: Gastropoda (Gastropods or Snails) Gastropods 2 HOW MANY KINDS OF GASTROPODS ARE THERE? There are 611 Families of gastropods, but 202 are now extinct Whelk Slug Limpet Land Snail Conch Periwinkle Cowrie Sea Butterfly Nudibranch Oyster Borer 3 THERE ARE 60,000 TO 80,000 SPECIES! IN ENDLESS SHAPES AND PATTERNS! 4 HABITAT-WHERE DO GASTROPODS LIVE? Gardens Deserts Ocean Depths Mountains Ditches Rivers Lakes Estuaries Mud Flats Tropical Rain Forests Rocky Intertidal Woodlands Subtidal Zones Hydrothermal Vents Sub-Arctic/Antarctic Zones 5 HABITAT-WHAT WAS IT LIKE IN THE ORDOVICIAN? Gastropods in the Ordovician of Cincinnati lived in a tropical ocean, much like the Caribbean of today 6 DIET-WHAT DO GASTROPODS EAT? Herbivores Detritus Parasites Plant Eaters Mud Eaters Living on other animals Scavengers Ciliary Carnivores Eat dead animals Filter feeding in the water Meat Eaters 7 ANATOMY-HOW DO YOU IDENTIFY A GASTROPOD? Gastropod is Greek, from “gaster” meaning ‘stomach’ and “poda” meaning ‘foot’ They are characterized by a head with antennae, a large foot, coiled shell, a radula and operculum Torsion: all of a gastropod’s anatomy is twisted, not just the shell They are the largest group of molluscs, only insects are more diverse Most are hermaphrodites 8 GASTROPOD ANATOMY-FOOT Gastropods have a large “foot”, used for locomotion. Undulating bands of muscles propel the gastropod forward, even on vertical surfaces. SLIME! Gastropods excrete slime to help their foot glide over almost any surface.
    [Show full text]
  • Bedrock Geology of Franklin Grove Quadrangle
    STATEMAP Franklin Grove-BG Bedrock Geology of Franklin Grove Quadrangle Lee County, Illinois Franck Delpomdor and Joseph Devera 2020 615 East Peabody Drive Champaign, Illinois 61820-6918 (217) 244-2414 http://www.isgs.illinois.edu © 2020 University of Illinois Board of Trustees. All rights reserved. For permission information, contact the Illinois State Geological Survey. Introduction Previous work The first geological features of Lee County were illustrated Geographic location and geomorphological framework very generally on early statewide geologic maps at scale The Franklin Grove 7.5-minute Quadrangle is located in 1/500,000 (Worthen 1875; Weller 1906). Stratigraphy and north-central Illinois in the north-central part of Lee County, structural geology investigations in the Franklin Grove area Illinois, about 32 miles southwest of Rockford (Winnebago include those by Cady (1920), Leighton (1922), Templeton County), 45 miles east of Illinois-Iowa border, 50 miles and Saxby (1947), Templeton and Willman (1952, 1963), south of the Illinois-Wisconsin border, and 90 miles west Kolata and Buschbach (1976), Willman and Kolata (1978), of Chicago (Cook and DuPage Counties). Map coverage and Kolata et al. (1978). In addition, a map showing the bed- extends to the east from the Dixon East Quadrangle and rock geology of Lee County, including the Franklin Grove south of the Daysville Quadrangle. The quadrangle cov- Quadrangle, was published by McGarry (1999). Geologic ers approximately a 55 square mile area that is bounded by features were generalized in the Geologic Map of Illinois 41°45’00” and 41°52’30” North latitude and 89°15’00” and at scale 1/500,000 (Kolata 2005).
    [Show full text]
  • The Middle Ordovician Section in East Central Missouri
    Scholars' Mine Masters Theses Student Theses and Dissertations 1922 The Middle Ordovician section in east central Missouri Morris James Ingerson Josiah Bridge Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Geology Commons Department: Recommended Citation Ingerson, Morris James and Bridge, Josiah, "The Middle Ordovician section in east central Missouri" (1922). Masters Theses. 7088. https://scholarsmine.mst.edu/masters_theses/7088 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. TRE ]HDDLE ORDOVICIAN SECTION IK EAST CEH'l'RAL MISSOURI BY Josiah Bridge , M. s. Assistant Professor of Geology and M. J. Ingerson Graduate Assistant in Geology A T HE S I S submitted to the Faculty of the SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI in partial fulfil~ent of the work required for the Degree of M&Bter or Science :M . J. Ingerson Rolla., Mo . 1 9 2 2 Approved by c. i . Clj-CJ-i/u:__ -----------------~ ------------ Profess~r of Geology LIST OF ILLUSTRATIONS Page Section of the Joachim at Pacific, Mo. in pocket Section of Joachim at Tavern Rock, Mo. in pocket Ledge of Plattin at Joa.chim-Plattin facing page contact near Pacific, Mo. 16 "Chimneys" of Plattin Limestone near facing page Port Royal, Mo. 1'7 Section of the Plattin at Hirnms Station, in pocket Mo.
    [Show full text]
  • Ordovician News
    ORDOVICIAN NEWS SUBCOMMISSION ON ORDOVICIAN STRATIGRAPHY INTERNATIONAL COMMISSION ON STRATIGRAPHY Number 38 (for 2020) Edited by Bertrand Lefebvre INTERNATIONAL UNION OF GEOLOGICAL SCIENCES President: John LUDDEN (United Kingdom) Vice-Presidents: Daekyo CHEONG (Korea) Hassina MOURI (South Africa) Secretary General: Stanley C. FINNEY (USA) Treasurer: Hiroshi KITAZATO (Japan) INTERNATIONAL COMMISSION ON STRATIGRAPHY Chairman: David A.T. HARPER (United Kingdom) Vice-Chairman: Shuzhong SHEN (China) Secretary General: Philip GIBBARD (United Kingdom) SUBCOMMISSION ON ORDOVICIAN STRATIGRAPHY Chairman: Thomas SERVAIS (France) Vice-Chairman: ZHAN Renbin (China) Secretary: Bertrand LEFEBVRE (France) Sachiko AGEMATSU-WATANABE (Japan) Matilde BERESI (Argentina) André DESROCHERS (Canada) Mansoureh GHOBADI POUR (Iran) Daniel GOLDMAN (USA) Lars HOLMER (Sweden) Petr KRAFT (Czech Republic) Patrick I. McLAUGHLIN (USA) Tõnu MEIDLA (Estonia) Leon NORMORE (Australia) Elena RAEVSKAYA (Russia) Alycia STIGALL (USA) Tatiana TOLMACHEVA (Russia) WANG Wenhui (China) Charles WELLMAN (United Kingdom) Seth YOUNG (USA) Yong Yi ZHEN (Australia) Ordovician Subcommission website : http://ordovician.stratigraphy.org CONTENTS Page CHAIRMAN'S MESSAGE 2 SECRETARY’S MESSAGE 5 ANNUAL REPORT OF ORDOVICIAN SUBCOMMISSION FOR 2020 6 ONLINE MEETING OF THE VOTING MEMBERS OF THE SUBCOMMISSION 15 BOOK REVIEW • The Ordovician Period – a new contribution chapter to Geologic Time Scale 2020 (Gradstein et al., eds.: Elsevier, 2020) 17 REPORTS OF RECENT CONFERENCES • IGCP 653 virtual Annual Meeting, Copenhagen, September 2020 19 CONFERENCE ANNOUNCEMENTS • IGCP 668 virtual Annual Meeting, Tsukuba, July 2021 21 • IGCP 653/735 virtual Annual Meeting, Lille, September 2021 24 • International Conference on Palaeobiology, High Resolution Stratigraphy and Fossil Energy, Nanjing, November 2021 26 • IGCP 735 – SOS Regional Meeting, Lille, May–June 2022 30 • 14th International Symposium on the Ordovician System, Estonia, 2023 38 NEW IGCP PROJECT • IGCP 735: Rocks and the Rise of Ordovician Life (Rocks n'ROL).
    [Show full text]
  • Dolomitic Limestone
    GUIDEBOOK TO FIELD TRIPS NEW YORK STATE GEOLOGICAL ASSOCIATION 37th Annual Meeting -i Philip C. Hewitt and Leo M. Hall Editors Contributing Authors Donald W. Fisher* Yngvar W. Isachsen* Philip C. Hewitt Robert G. LaFleur William E. McClennan Harold Nilsson Host UNION COLLEGE Schenectady, N. Y. April 1-May 2, 1965 * Published by permission of the Assistant Commissioner, New York State Museum and Science Service. Preface The area surrounding Schenectady provides a wealth of material for the student of geology. Lying in an area of sedimentary rock containing plentiful fossils, it is also possible to study metamorphic and igneous rock within a very short distance of Schenectady. Structure, stratigraphy, sedimentation, paleontology, in all aspects the region is classic ground in the field of geology. The Adirondacks, Taconics, Helderbergs, and the Mohawk and Hudson Valleys each provide wonderful sites of interest to the student and of great use to the teacher. In planning a series of field trips such as those for this 37th Annual Meeting of the New York State Geological Association, it is difficult to decide just which of these areas to cover. Since the Taconic area has been visited recently by the Association and the Lower Devonian was so well treated at the 36th Annual Meeting at Syracuse, it was decided that totally different trips should be presented. Therefore, the lower Mohawk Valley (a region of prime interest) and the southeastern Adirondacks (a critical area in the early history of eastern North America) were decided upon as being of sufficient distinction to provide a new phase of the geology of this part of New York State.
    [Show full text]
  • From the Upper Ordovician of Norway
    Bucaniidae (Gastropoda) from the Upper Ordovician of Norway JANOV E R. EBBESTAD Ebbestad, J. O. R. Bucaniidae (Gastropoda) fromthe Upper Ordovician of Norway. Norsk Geologisk Tidsskrift, Vol. 79, pp. 241- 258. Oslo 1999. ISSN 0029-196X. Fourteen species of bellerophontoid gastropods of the Family Bucaniidae are described from the Upper Ordovician succession of the Oslo Region, Norway. Bucania sp. is compared with several species of Bucania that stand out morphologically by having a median dorsal carina, moderate to wide umbilici and an ornamentation consisting of crenulated growth lines. Salpingostoma camatum sp. nov. from the Kalvsjøen Formation in Hadeland illustrates the problems of generic delimitation within the Bucaniidae by showing morphological characters similar to both Bucania and Salpingostoma. Megalompha/a crassiuscu/a Koken, 1897 is figured for the first time, but the species may eventually prove to be conspecific with M. contorta (d'Eichwald, 1856). Based on new material, the poorly known species Phragmolites pinguis (Koken in Koken & Pemer, 1925) is transferred to Megalomphala. Norwegian material of Tetranota conspicua (d'Eichwald, 1840) is conspecific with the Estonian form sensu lato, though the original Estonian concept of this conspicuous Baltic species needs to be revised. J. O. R., Ebbestad, Department of Earth Sciences, Historical Geo/ogy and Pa/aeontology, Norbyviigen 22, SE-752 36, Uppsala, Sweden. E-mail: [email protected] Introduction developed for this group (Ulrich Scofield 1897; Wenz & 1938; Knight et al. 1960; Horny 1961; Peel 1991; Though conspicuous elements of the fossil fauna, gastro­ W ahlman 1992). In this paper the scheme developed by pods of the Lower Palaeozoic successions in the Oslo Wahlman (1992) is followed, viewing the Bucaniidae as a Region are only known from a few works (see Yo chelson separate family with two subfarnilies; the Bucaniinae 1963, p.
    [Show full text]
  • Type Fossil Mollusca (Hyolitha, Polyplacophora, Scaphopoda, Monoplacophora, and Gastropoda) in Field Museum
    FIELDIANA Geology Published by Field Museum of Natural History Volumeflf 36 Type Fossil Mollusca (Hyolitha, Polyplacophora, Scaphopoda, monoplacophora, and gastropoda) IN Field Museum Gerald Glen Forney AND Matthew H. Nitecki October 29. 1976 FIELDIANA: GEOLOGY A ContiniuUion of the GEOLOGICAL SERIES of FIELD MUSEUM OF NATURAL HISTORY VOLUME ^S(, FIELD MUSEUM OF NATURAL HISTORY CHICAGO, U.S.A. Type Fossil Mollusca (Hyolitha, Polyplacophora, Scaphopoda, monoplacophora, and gastropoda) IN Field Museum FIELDIANA Geology Published by Field Museum of Natural History \ol\xmei6 j^j Type Fossil Mollusca (Hyolitha, Polyplacophora, Scaphopoda. monoplacophora, and gastropoda) IN Field Museum Gerald Glenn Forney Chicago Natural History Museum Fellow, Department of the Geophysical Sciences University of Chicago AND Matthew H. Nitecki Curator, Fossil Invertebrates Field Museum of Natural History October 29. 1976 Publication 1239 "Although there is a fundamental difference between paleozoology and the names of fossils, this difference is not always clear." Yochelson and Saunders, 1967, p. 3. Library of Congress Catalog Card No. : 76-23000 PRINTED IN THE UNITED STATES OF AMERICA TABLE OF CONTENTS PAGE Introduction 1 Type Hyolitha 6 Type Polyplacophora 10 Type Scaphopoda II Type Monoplacophoi^ 13 Type Gastropoda 16 Stratigraphic table 223 References 227 111 INTRODUCTION Living molluscs are commonly divided into three major classes (Gas- tropoda, Cephalopoda, and Bivalvia), and four minor classes (Mono- placophora, Polyplacophora, Scaphopoda, and Aplacophora). Although many extinct classes of molluscs have been proposed, the generally accepted ones are Hyolitha (Marek, 1963), Mattheva (Yochclson, 1966), Stenothecoida (Yochelson, 1969), and Rostroconchia (Pojeta et al., 1972). This catalogue lists the type and referred specimens of fossils repre- senting five of these 1 1 molluscan classes.
    [Show full text]
  • Short Notes on Alaska Geology 2003
    PROFESSIONAL REPORT 120 SHORT NOTES ON ALASKA GEOLOGY 2003 State of Alaska Department of Natural Resources DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Rodney A. Combellick Acting Director 2003 SHORT NOTES ON ALASKA GEOLOGY 2003 Edited by Karen H. Clautice and Paula K. Davis Division of Geological & Geophysical Surveys Professional Report 120 Recent research on Alaska geology Fairbanks, Alaska 2003 Front cover photo: Badlands topography in poorly consolidated sandstone of the Eocene Sagavanirktok Formation at Franklin Bluffs on Alaska’s North Slope south of Prudhoe Bay. (Photo by Gil Mull) i FOREWORD In keeping with the tradition of previous issues of Short Notes on Alaska Geology, this issue offers articles on a range of geologic topics in Alaska as diverse as the authors who prepared them. By my brief read, the articles cover the fields of geochemistry, geochronology, mineralogy, petrology, petrography, structural geology, stratigraphy, sedimentology, and paleontology. The authors represent the Alaska Division of Geological & Geophysical Surveys (DGGS), University of Alaska Fairbanks, U.S. Geological Survey, and numerous other universities and private companies in the U.S., Canada, Ireland, and even Czech Republic. We greatly appreciate their efforts in this significant contribution toward STATE OF ALASKA advancing the knowledge of Alaska’s geology. Frank H. Murkowski, Governor DEPARTMENT OF NATURAL RESOURCES Assembling and publishing a high-quality collection of peer- Tom Irwin, Commissioner reviewed articles such as this require significant dedication of time and effort over a period of at least a year and a half. For this issue DIVISION OF GEOLOGICAL & of Short Notes, Karen Clautice served as technical editor and Paula GEOPHYSICAL SURVEYS Davis as publications specialist, in addition to their regular work Rodney A.
    [Show full text]
  • Ordovician Tergomya and Gastropoda (Mollusca) of the Anti-Atlas(Morocco)
    Acta Musei Nationalis Pragae, Series B, Natural History, 53 (3-4): 37-78 issued December 1997 Sbomfk Narodnlho muzea , Serie B, Pffrodnf vedy, 53 (3-4): 37-78 ORDOVICIAN TERGOMYA AND GASTROPODA (MOLLUSCA) OF THE ANTI-ATLAS(MOROCCO) RADVAN J. HORNY Department of Palaeonto logy, National Museum, 115 79 Praha 1, Czech Republic Horny, R. 1. (1997): Ordovician Tergomya and Gastropoda of the Anti-Atlas (Morocco). - Acta Mus. Nat. Pragae, Ser. B, Hist. Nat., 53 (3-4): 37-78. Praha. ISSN 0036-5343 A bstract. A large collection of the Ordovician Tergomya and Gastropoda, discovered and gathered by Jacques Destombes during his research of the Anti-Atlas (Morocco) , is described. Of 23 identified species, characteri­ sing the cold Mediterranean Palaeoprov ince, 10 are common to Bohemia (the Barrandian Area), four to France (the Montagne Noire), and 10 are endemic to Morocco. Ascertained genera of Tergomya include Sinuitopsis, Cyrtodiscus, Quasisinuites, Carcassonnella, Tachillanella, and Thoralispira; ascertained genera of Gastropoda include Sinuites, Selesinuites, Tritonophon, Bucanopsina, Tropidodiscus, Lesueurilla, Ptychonema, Clathrospira, Lophospira, Nonorios , Holopea?, and Loxonema? New subfamily and taxa of Tergomya named herein are Carcassonnellinae subfam. n., Baltiscanella gen. n., Tachillanella tafilaltensis gen. et sp. n.; new taxa of Gastropoda are Sinuites destombesi sp. n., Atlantophon maider gen. et sp. n., Ptychonema marocanum sp. n., Clathrospira amouguerana sp. n., and Lophospira'l debganensis sp. n. Important results concern morphology (muscle attachment areas in Sinuitopsis, Selesinuites, and Sinuites; secondary shell deposits in Sinuites destom­ besi; presence of a sinus on the keel in Lesueurilla prima), taxonomy, functional morphology, palaeoecology, mode of life, shell repair, and palaeobiogeography.
    [Show full text]
  • Richmond Group of the Cincinnati Province
    ST ATE OF OHIO George V. Voinovich, Governor DEPARTMENT OF NATURAL RESOURCES Donald C. Anderson, Director DIVISION OF GEOLOGICAL SURVEY Thomas M. Berg, Chief Open-File Report 95-1 The Richmond Gi,oup of the Cincillnati Province An unpublished manuscript B-, Dr. William Hen'ry Shideler 0 Edited by Joe H. Marak Department of Geology, Miami University Oxford, Ohio 45056 ST A TE OF OHIO George V. Voinovich, Governor DEPARTMENT OF NATURAL RESOURCES . Donald C. Anderson, Director DIVISION OF GEOLOGICAL SURVEY Thomas M. Berg, Chief Open-File Report 95-1 The Richmond Group of the Cincinriati Province An unpublished manuscript By Dr. William Henry Shideler Edited by Joe H. Marak Department of Geology, Miami University Oxford, Ohio 45056 DISCLAIMER The information contained in this manuscript has not been reviewed for accuracy and conformity with present Ohio Division of Geological Survey standards for open-file materials . The Ohio Division of Geological Survey does not guarantee this document to be free from errors or inaccuracies and disclaims any responsibility or liability for interpretations or decisions based thereon. About the man and his manuscript. The man. William Henry Shideler was born in 1886 to parents resid­ ing in West Middletown, But­ ler County, Ohio. He at­ tended Middletown High School, then completed his baccalaureate at Miami University in 1907, and earned a doctorate at Cornell University in 1910. Heim­ mediately joined Miami University where he taught entomology and related natural science courses. Shideler founded th~ Department of Geology_ at Miami University in 1920 and retired 3 7 years later . During his tenure, he published some 25 short papers, abstracts, and maps.
    [Show full text]