Characterization of Spiroplasma Mirum and Its Role in Transmissible

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Spiroplasma Mirum and Its Role in Transmissible Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Characterization of Spiroplasma mirum and its role in transmissible spongiform encephalopathies Hilari Maree French Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Veterinary Pathology and Pathobiology Commons Recommended Citation French, Hilari Maree, "Characterization of Spiroplasma mirum and its role in transmissible spongiform encephalopathies" (2011). LSU Doctoral Dissertations. 3012. https://digitalcommons.lsu.edu/gradschool_dissertations/3012 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. CHARACTERIZATION OF SPIROPLASMA MIRUM AND ITS ROLE IN TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy In The Interdepartmental Program in Veterinary Medical Sciences through the Department of Pathobiological Sciences by Hilari French B.S., Louisiana Tech University, 2006 D.V.M, Louisiana State University, 2009 August 2011 ACKNOWLEDGEMENTS I would first like to thank my major professor and mentor Dr. Philip Elzer. Without his patience, understanding, and friendship, I would not have been successful in completing this degree program. Our “master” and “grasshopper” relationship kept me on course and will continue to guide me in my future endeavors. I will be forever grateful to him and his family for all they have done for me. I would also like to thank the members of the spiroplasma working group that have spent countless hours brainstorming and assisting me with all my experiments. Sue Hagius and Charles Mitch Boudreaux have been instrumental in helping me with laboratory techniques as well as finalizing projects and publications. I have also benefited from the molecular work and advice provided by Christie Landry and Dr. Ron Thune. I am also grateful to Joel Walker and Tony Bridges who assisted me with all of my animal experiments. There are many others that have assisted me through my degree program. Mrs. Cheryl Crowder processed all of my histological sections. Mr. Rob Poston taught me how to work with embryonated eggs. Dr. Sara Lyle conducted pregnancy checks on all my animals so that I could time my experiments appropriately. My committee: Drs Elzer, Thune, Enright, Hawke, and Godke - were all very helpful and always gave me the time I needed for advice and training. I must also thank the LSU School of Veterinary Medicine for my previous veterinary training as well as the Pathobiological Sciences department for my financial support. The LSU AgCenter and Veterinary Science department provided my laboratory space and animal housing. Lastly I would like to thank my family. My mother Nina French has been my rock of support every day since I was born, and I will be forever in debt to her for her selfless love and attention. My father Dennis French has been my role model and the driving force in my life, and I will always strive to follow his example on the path which I have chosen to follow. My best friend and confidant Sarah “Chicken” Drake has kept me grounded and help me see the “big picture” so that I can enjoy life as I progress in my profession. Without all of their combined love and support, I would not be the person I am today nor would I have achieved this latest goal in my career. ii TABLE OF CONTENTS ACKNOWLEDGMENTS………………………………………………………………….. ii LIST OF TABLES………………………………………………………………………….. v LIST OF FIGURES………………………………………………………………………… vii ABSTRACT………………………………………………………………………………... x CHAPTER 1: INTRODUCTION/ REVIEW OF LITERATURE…………………………. 1 Introduction…………………………………………………………... 1 Spiroplasma citri................................................................................... 5 Spiroplasma melliferum………………………………………………. 6 Spiroplasma mirum…………………………………………………... 6 Transmissible Spongiform Encephalopathies………………………... 11 Shortcomings to the Prion Theory……………………………………. 13 Discrepancies Seen in Spiroplasma mirum/TSE Publications……….. 15 CHAPTER 2: A COMPARISON OF CULTURE MEDIA FOR SPIROPLASMA SPP………………….............................................................................................................. 18 Introduction ………………………………………………………….. 18 Materials and Methods ...…………………………………………….. 22 Results ……………………………………………………………….. 26 Discussion ……………………………………………………………. 38 Conclusion……………………………………………………………. 40 CHAPTER 3: EFFECTS OF DISINFECTANTS AND ANTIBIOTICS ON SPIROPLASMA SPP………………………………………………………………………... 41 Introduction ………………………………………………………….. 41 Materials and Methods ...…………………………………………….. 42 Results ……………………………………………………………….. 47 Discussion ……………………………………………………………. 57 Conclusion……………………………………………………………. 62 CHAPTER 4: CLINICAL SIGNS AND PATHOLOGY OF SPIROPLASMA MIRUM SUCKLING MOUSE CATARACT AGENT IN SMALL RUMINANTS………………... 64 Introduction ………………………………………………………….. 64 Materials and Methods ...…………………………………………….. 67 Results ……………………………………………………………….. 71 Discussion ……………………………………………………………. 75 Conclusion……………………………………………………………. 78 iii CONCLUSION……………………………………………………………………………... 79 REFERENCES……………………………………………………………………………... 82 VITA………………………………………………………………………………………... 96 iv LIST OF TABLES 1.1 Spiroplasma media……………………………………………………………………. 4 1.2 Summary of differences seen in separate species of Spiroplasmas…………………... 4 1.3 Summary of Spiroplasma mirum experimentally infected animals…………………... 9 2.1 Spiroplasma media……………………………………………………………………. 19 2.2 ATCC SP4 recipe……………………………………………………………………... 23 2.3 Summary of Spiroplasma growth…………………………………………………….. 28 2.4 Dark field counts for diluted (1x10-2) SMCA and GT48 cultures ……………...…... 30 2.5 Dark field counts for diluted (1x10-3) SMCA and GT48 cultures ……………...…... 30 2.6 Dark field counts for diluted (1x10-4) SMCA and GT48 cultures ……………...…... 30 2.7 Dark field counts for diluted (1x10-5) SMCA and GT48 cultures ……………...…... 30 2.8 Dark field counts for diluted (1x10-6) SMCA and GT48 cultures ……………...…... 32 2.9 Dark field counts for diluted (1x10-7) SMCA and GT48 cultures ……………...…... 32 2.10 Dark field counts for diluted (1x10-8) SMCA and GT48 cultures ……………...…... 32 2.11 Dark field counts for diluted (1x10-9) SMCA and GT48 cultures ……………...…... 32 2.12 Summary of CFUs found 21 days post-inoculation from diluted 1 day old cultures on 37 modified SP4 plates with 1.6% Noble agar…………………………………………… 3.1 Efficacy of decontamination procedures for inactivating prions……………………... 43 3.2 M1D media……………………………………………………………………………. 44 3.3 Summary of disinfectants tested for spiroplasma susceptibility……………………... 45 3.4 Summary of antibiotics used to test spiroplasma susceptibility………………………. 46 3.5 Concentration of ethanol (70-0.02%) that inhibited spiroplasma growth…………... 47 3.6 Concentration of methanol (100-0.02%) that inhibited spiroplasma growth……….. 47 v 3.7 Concentration of methanol (100-0.02%) that inhibited spiroplasma growth……….. 47 3.8 Concentration of formalin (20-0.002%) that inhibited spiroplasma growth………….. 48 3.9 Concentration of gluteraldehyde (100-0.02%) that inhibited spiroplasma growth…. 48 3.10 Concentration of sodium hypochlorite (5.25-0.001%) that inhibited spiroplasma growth…………………………………………………………………………………. 48 3.11 Concentration of povidone-iodine (100-0.02%) that inhibited spiroplasma growth…. 49 3.12 Concentration of hydrogen peroxide (3-0.001%) that inhibited spiroplasma growth… 49 3.13 Concentration of acetone (100-0.02%) that inhibited spiroplasma growth…….…….. 50 3.14 Concentration of chlorhexidine (2-0.001%) that inhibited spiroplasma growth..….…. 50 3.15 Concentration of sodium hydroxide (1 mol) (100-0.02%) that inhibited spiroplasma growth…………………………………………………………………………………. 50 3.16 Concentration of SDS (10-0.002%) that inhibited spiroplasma growth…………..….. 51 3.17 Concentration of Roccal-D Plus (100-0.02%) that inhibited spiroplasma growth…… 51 3.18 Spiroplasma growth in the presence of ultraviolet irradiation at various times………. 51 3.19 Spiroplasma growth following autoclaving (121º, 15psi)…………………………….. 52 3.20 Spiroplasma growth in the presence of heat (45º C) at various times………………… 52 3.21 Spiroplasma growth in the presence of heat (50º C) at various times………………… 52 3.22 Spiroplasma growth in the presence of heat (56º C) at various times………………… 52 3.23 Minimal inhibitory concentration and time required of disinfectants for spiroplasma…... 54 3.24 Minimal inhibitory concentration of disinfectant for spiroplasma after 60 minutes….. 55 3.25 Spiroplasma susceptibility to antibiotics……………………………………………… 56 3.26 Spiroplasma growth in the presence of normal goat complement……………………. 57 3.27 Spiroplasma growth in the presence of hyperimmunized goat complement…………. 57 3.28 Comparison of disinfectant efficacy against Spiroplasma and prions………………... 63 vi 4.1 Summary of Spiroplasma mirum experimentally infected animals…………………... 65 4.2 Summary of experimental animals……………………………………………………. 71 4.3 Summary of ruminant experiments…………………………………………………… 76 vii LIST OF FIGURES 1.1 Spiroplasma-like inclusions……………………………………………………………. 15 2.1 Egg Candling…………………………………………………………………………... 22 2.2 Egg inoculation…………………………………………………………………………
Recommended publications
  • Spiroplasma Arp Sequences: Relationships
    SPIROPLASMA ARP SEQUENCES: RELATIONSHIPS WITH EXTRACHROMOSOMAL ELEMENTS By BHARAT DILIP JOSHI Bachelor of Science University of Pune, India 1995 Master of Science University of Pune, India 1997 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 2006 SPIROPLASMA ARP SEQUENCES: RELATIONSHIPS WITH EXTRACHROMOSOMAL ELEMENTS Dissertation Approved: Dr. Ulrich K. Melcher Dissertation Adviser Dr. Andrew J. Mort Dr. Robert L. Matts Dr. Richard C. Essenberg ________________________________________________ Dr. Jacqueline Fletcher Dr. A. Gordon Emslie Dean of the Graduate College ii TABLE OF CONTENTS Chapter Page I. LITERATURE REVIEW ............................................................................... 1 Background ........................................................................................... 1 Economic Importance............................................................................ 1 Classification ......................................................................................... 2 Transmission in Nature ......................................................................... 3 Molecular Mollicute-host Interactions .................................................. 4 Molecular Spiroplasma-host Interactions ............................................. 4 Mollicute Extrachromosomal DNAs .................................................... 7 Objectives of the Present Study ...........................................................
    [Show full text]
  • Spiroplasma Infection Among Ixodid Ticks Exhibits Species Dependence and Suggests a Vertical Pattern of Transmission
    microorganisms Article Spiroplasma Infection among Ixodid Ticks Exhibits Species Dependence and Suggests a Vertical Pattern of Transmission Shohei Ogata 1, Wessam Mohamed Ahmed Mohamed 1 , Kodai Kusakisako 1,2, May June Thu 1,†, Yongjin Qiu 3 , Mohamed Abdallah Mohamed Moustafa 1,4 , Keita Matsuno 5,6 , Ken Katakura 1, Nariaki Nonaka 1 and Ryo Nakao 1,* 1 Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; [email protected] (S.O.); [email protected] (W.M.A.M.); [email protected] (K.K.); [email protected] (M.J.T.); [email protected] (M.A.M.M.); [email protected] (K.K.); [email protected] (N.N.) 2 Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan 3 Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia; [email protected] 4 Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt 5 Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan; [email protected] 6 International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan Citation: Ogata, S.; Mohamed, * Correspondence: [email protected]; Tel.: +81-11-706-5196 W.M.A.; Kusakisako, K.; Thu, M.J.; † Present address: Food Control Section, Department of Food and Drug Administration, Ministry of Health and Sports, Zabu Thiri, Nay Pyi Taw 15011, Myanmar.
    [Show full text]
  • The Obligate Endobacteria of Arbuscular Mycorrhizal Fungi Are Ancient Heritable Components Related to the Mollicutes
    The ISME Journal (2010) 4, 862–871 & 2010 International Society for Microbial Ecology All rights reserved 1751-7362/10 $32.00 www.nature.com/ismej ORIGINAL ARTICLE The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes Maria Naumann1,2, Arthur Schu¨ ler2 and Paola Bonfante1 1Department of Plant Biology, University of Turin and IPP-CNR, Turin, Italy and 2Department of Biology, Inst. Genetics, University of Munich (LMU), Planegg-Martinsried, Germany Arbuscular mycorrhizal fungi (AMF) have been symbionts of land plants for at least 450 Myr. It is known that some AMF host in their cytoplasm Gram-positive endobacteria called bacterium-like organisms (BLOs), of unknown phylogenetic origin. In this study, an extensive inventory of 28 cultured AMF, from diverse evolutionary lineages and four continents, indicated that most of the AMF species investigated possess BLOs. Analyzing the 16S ribosomal DNA (rDNA) as a phylogenetic marker revealed that BLO sequences from divergent lineages all clustered in a well- supported monophyletic clade. Unexpectedly, the cell-walled BLOs were shown to likely represent a sister clade of the Mycoplasmatales and Entomoplasmatales, within the Mollicutes, whose members are lacking cell walls and show symbiotic or parasitic lifestyles. Perhaps BLOs maintained the Gram-positive trait whereas the sister groups lost it. The intracellular location of BLOs was revealed by fluorescent in situ hybridization (FISH), and confirmed by pyrosequencing. BLO DNA could only be amplified from AMF spores and not from spore washings. As highly divergent BLO sequences were found within individual fungal spores, amplicon libraries derived from Glomus etunicatum isolates from different geographic regions were pyrosequenced; they revealed distinct sequence compositions in different isolates.
    [Show full text]
  • Army Ants Harbor a Host-Specific Clade of Entomoplasmatales Bacteria
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Jan. 2011, p. 346–350 Vol. 77, No. 1 0099-2240/11/$12.00 doi:10.1128/AEM.01896-10 Copyright © 2011, American Society for Microbiology. All Rights Reserved. Army Ants Harbor a Host-Specific Clade of Entomoplasmatales Bacteriaᰔ† Colin F. Funaro,1¶ Daniel J. C. Kronauer,2 Corrie S. Moreau,3 Benjamin Goldman-Huertas,2§ Naomi E. Pierce,2 and Jacob A. Russell1* Department of Biology, Drexel University, Philadelphia, Pennsylvania 191041; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 021382; and Department of Zoology, Field Museum of Natural History, Chicago, Illinois 606053 Received 9 August 2010/Accepted 30 October 2010 In this article, we describe the distributions of Entomoplasmatales bacteria across the ants, identifying a novel lineage of gut bacteria that is unique to the army ants. While our findings indicate that the Entomoplasmatales are not essential for growth or development, molecular analyses suggest that this relationship is host specific and potentially ancient. The documented trends add to a growing body of literature that hints at a diversity of undiscovered associations between ants and bacterial symbionts. The ants are a diverse and abundant group of arthropods bacteria from the order Entomoplasmatales (phylum Teneri- that have evolved symbiotic relationships with a wide diversity cutes; class Mollicutes) (41). Although they can act as plant and of organisms, including bacteria (52, 55). Although bacteria vertebrate pathogens (16, 47), these small-genome and wall- comprise one of the least studied groups of symbiotic partners less bacteria have more typically been found across multiple across these insects, even our limited knowledge suggests that insect groups (6, 18, 20, 31, 33, 49, 51), where their phenotypic they have played integral roles in the success of herbivorous effects range from mutualistic (14, 23) to detrimental (6, 34) or and fungivorous ants (9, 12, 15, 37, 41).
    [Show full text]
  • Metazoan Ribosome Inactivating Protein Encoding Genes Acquired by Horizontal Gene Transfer Received: 30 September 2016 Walter J
    www.nature.com/scientificreports OPEN Metazoan Ribosome Inactivating Protein encoding genes acquired by Horizontal Gene Transfer Received: 30 September 2016 Walter J. Lapadula1, Paula L. Marcet2, María L. Mascotti1, M. Virginia Sanchez-Puerta3 & Accepted: 5 April 2017 Maximiliano Juri Ayub1 Published: xx xx xxxx Ribosome inactivating proteins (RIPs) are RNA N-glycosidases that depurinate a specific adenine residue in the conserved sarcin/ricin loop of 28S rRNA. These enzymes are widely distributed among plants and their presence has also been confirmed in several bacterial species. Recently, we reported for the first timein silico evidence of RIP encoding genes in metazoans, in two closely related species of insects: Aedes aegypti and Culex quinquefasciatus. Here, we have experimentally confirmed the presence of these genes in mosquitoes and attempted to unveil their evolutionary history. A detailed study was conducted, including evaluation of taxonomic distribution, phylogenetic inferences and microsynteny analyses, indicating that mosquito RIP genes derived from a single Horizontal Gene Transfer (HGT) event, probably from a cyanobacterial donor species. Moreover, evolutionary analyses show that, after the HGT event, these genes evolved under purifying selection, strongly suggesting they play functional roles in these organisms. Ribosome inactivating proteins (RIPs, EC 3.2.2.22) irreversibly modify ribosomes through the depurination of an adenine residue in the conserved alpha-sarcin/ricin loop of 28S rRNA1–4. This modification prevents the binding of elongation factor 2 to the ribosome, arresting protein synthesis5, 6. The occurrence of RIP genes has been exper- imentally confirmed in a wide range of plant taxa, as well as in several species of Gram positive and Gram negative bacteria7–9.
    [Show full text]
  • Complete Genomes of Two Dipteran-Associated Spiroplasmas Provided Insights Into the Origin, Dynamics, and Impacts of Viral Invasion in Spiroplasma
    GBE Complete Genomes of Two Dipteran-Associated Spiroplasmas Provided Insights into the Origin, Dynamics, and Impacts of Viral Invasion in Spiroplasma Chuan Ku1,Wen-SuiLo1,2,3, Ling-Ling Chen1, and Chih-Horng Kuo1,2,4,* 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 2Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan 3Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan 4Biotechnology Center, National Chung Hsing University, Taichung, Taiwan *Corresponding author: E-mail: [email protected]. Accepted: May 21, 2013 Data deposition: The genome sequences reported in this study have been deposited at DDBJ/EMBL/GenBank under the accessions CP005077 and CP005078. Abstract Spiroplasma is a genus of wall-less, low-GC, Gram-positive bacteria with helical morphology. As commensals or pathogens of plants, insects, ticks, or crustaceans, they are closely related with mycoplasmas and form a monophyletic group (Spiroplasma– Entomoplasmataceae–Mycoides) with Mycoplasma mycoides and its relatives. In this study, we report the complete genome sequences of Spiroplasma chrysopicola and S. syrphidicola from the Chrysopicola clade. These species form the sister group to the Citri clade, which includes several well-known pathogenic spiroplasmas. Surprisingly, these two newly available genomes from the Chrysopicola clade contain no plectroviral genes, which were found to be highly repetitive in the previously sequenced genomes from the Citri clade. Based on the genome alignment and patterns of GC-skew, these two Chrysopicola genomes appear to be relatively stable, rather than being highly rearranged as those from the Citri clade.
    [Show full text]
  • Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions
    Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions Weijie Huang, Paola Reyes-Caldas, Marina Mann, Shirin Seifbarghi, Alexandra Kahn, Rodrigo P.P. Almeida, Laure Béven, Michelle Heck, Saskia Hogenhout, Gitta Coaker To cite this version: Weijie Huang, Paola Reyes-Caldas, Marina Mann, Shirin Seifbarghi, Alexandra Kahn, et al.. Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions. Molecular Plant, Cell Press/Oxford UP, 2020, 13 (10), pp.1379-1393. 10.1016/j.molp.2020.08.010. hal-03035576 HAL Id: hal-03035576 https://hal.inrae.fr/hal-03035576 Submitted on 2 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Molecular Plant ll Perspective Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions Weijie Huang1,9, Paola Reyes-Caldas2,9, Marina Mann3,9, Shirin Seifbarghi2,9, Alexandra Kahn4,9, Rodrigo P.P. Almeida4, Laure Be´ ven5, Michelle Heck3,6,7, Saskia A. Hogenhout1,8 and Gitta Coaker2,* 1Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK 2Department of Plant Pathology, University of California, Davis, CA, 95616, USA 3Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA 4Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA 5UMR 1332 Biologie du Fruit et Pathologie, Univ.
    [Show full text]
  • Thermal Sensitivity of the Spiroplasma-Drosophila Hydei Protective Symbiosis: the Best of 2 Climes, the Worst of Climes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.30.070938; this version posted May 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thermal sensitivity of the Spiroplasma-Drosophila hydei protective symbiosis: The best of 2 climes, the worst of climes. 3 4 Chris Corbin, Jordan E. Jones, Ewa Chrostek, Andy Fenton & Gregory D. D. Hurst* 5 6 Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown 7 Street, Liverpool L69 7ZB, UK 8 9 * For correspondence: [email protected] 10 11 Short title: Thermal sensitivity of a protective symbiosis 12 13 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.30.070938; this version posted May 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 14 Abstract 15 16 The outcome of natural enemy attack in insects has commonly been found to be influenced 17 by the presence of protective symbionts in the host. The degree to which protection 18 functions in natural populations, however, will depend on the robustness of the phenotype 19 to variation in the abiotic environment. We studied the impact of a key environmental 20 parameter – temperature – on the efficacy of the protective effect of the symbiont 21 Spiroplasma on its host Drosophila hydei, against attack by the parasitoid wasp Leptopilina 22 heterotoma.
    [Show full text]
  • Spiroplasmas Infectious Agents of Plants
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library European Journal of Experimental Biology, 2013, 3(1):583-591 ISSN: 2248 –9215 CODEN (USA): EJEBAU Spiroplasmas infectious agents of plants 1,5 * 1 2,5 3,5 4,5 Rivera A , Cedillo L , Hernández F , Romero O and Hernández MA 1Laboratorio de micoplasmas del Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla 2Centro de Química del Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. 3Centro de Agroecología del Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. 4Departamento de Investigación en Zeolitas del Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla. 5Maestría en Manejo Sostenible de Agroecosistemas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla, México. _____________________________________________________________________________________________ ABSTRACT The aim is to present a review of the main features that point to the spiroplasmas as plant pathogens. Spiroplasmas are most often found in association with plants and insects and plants flowers, and the interactions of spiroplasma/host can be classified as commensal, pathogenic or mutualistic. Some insect-derived spiroplasmas are entomopathogens. S. melliferum and S. apis are honey bee pathogens. They cross the insect-gut barrier and reach the hemolymph, where multiply abundantly and kill the bee. Many insects spiroplasmas are not pathogenic, are often restricted to the gut and may be regarded as mutualists or incidental commensals. Among the many components important for growth of spiroplasmas, lipids are some of the most significant. Like members of the genus Mycoplasma, the spiroplasmas so far examined are incapable of the biosynthesis of cholesterol and long- chain fatty acids.
    [Show full text]
  • First Insight Into Microbiome Profile of Fungivorous Thrips Hoplothrips Carpathicus (Insecta: Thysanoptera) at Different Develop
    www.nature.com/scientificreports OPEN First insight into microbiome profle of fungivorous thrips Hoplothrips carpathicus (Insecta: Thysanoptera) Received: 19 January 2018 Accepted: 12 September 2018 at diferent developmental stages: Published: xx xx xxxx molecular evidence of Wolbachia endosymbiosis Agnieszka Kaczmarczyk 1, Halina Kucharczyk2, Marek Kucharczyk3, Przemysław Kapusta4, Jerzy Sell1 & Sylwia Zielińska5,6 Insects’ exoskeleton, gut, hemocoel, and cells are colonized by various microorganisms that often play important roles in their host life. Moreover, insects are frequently infected by vertically transmitted symbionts that can manipulate their reproduction. The aims of this study were the characterization of bacterial communities of four developmental stages of the fungivorous species Hoplothrips carpathicus (Thysanoptera: Phlaeothripidae), verifcation of the presence of Wolbachia, in silico prediction of metabolic potentials of the microorganisms, and sequencing its mitochondrial COI barcode. Taxonomy- based analysis indicated that the bacterial community of H. carpathicus contained 21 bacterial phyla. The most abundant phyla were Proteobacteria, Actinobacteria, Bacterioidetes and Firmicutes, and the most abundant classes were Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Betaproteobacteria, with diferent proportions in the total share. For pupa and imago (adult) the most abundant genus was Wolbachia, which comprised 69.95% and 56.11% of total bacterial population respectively. Moreover, similarity analysis of bacterial communities showed that changes in microbiome composition are congruent with the successive stages of H. carpathicus development. PICRUSt analysis predicted that each bacterial community should be rich in genes involved in membrane transport, amino acid metabolism, carbohydrate metabolism, replication and repair processes. Insects are by far the most diverse and abundant animal group, in numbers of species globally, in ecological habits, and in biomass1.
    [Show full text]
  • Microbial Communities in Different Tissues of Atta Sexdens Rubropilosa Leaf-Cutting Ants
    Curr Microbiol (2017) 74:1216–1225 DOI 10.1007/s00284-017-1307-x Microbial Communities in Different Tissues of Atta sexdens rubropilosa Leaf-cutting Ants 1 1 2 1 Alexsandro S. Vieira • Manuela O. Ramalho • Cintia Martins • Vanderlei G. Martins • Odair C. Bueno1 Received: 6 February 2017 / Accepted: 11 July 2017 / Published online: 18 July 2017 Ó Springer Science+Business Media, LLC 2017 Abstract Bacterial endosymbionts are common in all were Burkholderiales, Clostridiales, Syntrophobacterales, insects, and symbiosis has played an integral role in ant Lactobacillales, Bacillales, and Actinomycetales (midgut) evolution. Atta sexdens rubropilosa leaf-cutting ants cul- and Entomoplasmatales, unclassified c-proteobacteria, and tivate their symbiotic fungus using fresh leaves. They need Actinomycetales (postpharyngeal glands). The high abun- to defend themselves and their brood against diseases, but dance of Entomoplasmatales in the postpharyngeal glands they also need to defend their obligate fungus gardens, (77%) of the queens was an unprecedented finding. We their primary food source, from infection, parasitism, and discuss the role of microbial communities in different tis- usurpation by competitors. This study aimed to character- sues and castes. Bacteria are likely to play a role in ize the microbial communities in whole workers and dif- nutrition and immune defense as well as helping antimi- ferent tissues of A. sexdens rubropilosa queens using Ion crobial defense in this ant species. Torrent NGS. Our results showed that the microbial com- munity in the midgut differs in abundance and diversity Keywords Attini Á Endosymbiont Á Entomoplasmatales Á from the communities in the postpharyngeal gland of the Next-generation sequencing queen and in whole workers.
    [Show full text]
  • Detection of DNA of 'Candidatus Mycoplasma Haemominutum'
    NOTE Parasitology Detection of DNA of ‘Candidatus Mycoplasma haemominutum’ and Spiroplasma sp. in Unfed Ticks Collected from Vegetation in Japan Shoko TAROURA1), Yojiro SHIMADA2), Yoshimi SAKATA3), Takako MIYAMA1), Hiroko HIRAOKA1), Malaika WATANABE1), Kazuhito ITAMOTO1), Masaru OKUDA1) and Hisashi INOKUMA4)* 1)Faculty of Agriculture, Yamaguchi University, Yamaguchi 753–8515, 2)Nippon Zenyaku Kogyo Co., Ltd, Koriyama, Fukushima 963– 0196, 3)Merial Japan Ltd., Tokyo 100–0014 and 4)Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080–8555, Japan (Received 25 May 2005/Accepted 19 August 2005) ABSTRACT. DNA fragments of ‘Candidatus Mycoplasma haemominutum’, a feline heamobartonella pathogen, were detected from unfed Ixodes ovatus collected from vegetation in Hokkaido, Fukushima and Yamaguchi Prefectures, and unfed Haemaphysalis flava in Yamaguchi Prefecture. This finding suggests that ixodid tick is a possible vector of ‘C. Mycoplasma haemominutum’. Spiroplasma DNA was also detected from unfed I. ovatus in Hokkaido, Fukushima and Yamaguchi Prefectures. The analysis of nucleotides sequence suggested that this Spiroplasma was distinct from registered species. KEY WORDS: ‘Candidatus Mycoplasma haemominutum’, Spiroplasma sp., tick. J. Vet. Med. Sci. 67(12): 1277–1279, 2005 The feline hemoplasmas, Mycoplasma haemofelis and PCR with the primers 28SF and 28SR to detect the 28S ‘Candidatus Mycoplasma haemominutum’, were previ- rRNA gene of ticks as described previously [8]. The first ously ascribed to Haemobartonella felis strains Ohio-Flor- PCR was performed in a 25-µl reaction mixture containing ida and California-Birmingham, respectively [11–13], 5 µl of each DNA template with a primer set consisting of which cause hemolytic anemia, thrombocytopenia, fever universal-fD1 [17] and Hemo-513R (5’ ACG CCC AAT and jaundice [3, 4, 6].
    [Show full text]