Exposing Hidden Exploitable Behaviors in Programming Languages Using Differential Fuzzing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Defeating Memory Corruption Attacks Via Pointer Taintedness Detection
Defeating Memory Corruption Attacks via Pointer Taintedness Detection Shuo Chen †, Jun Xu ‡, Nithin Nakka †, Zbigniew Kalbarczyk †, Ravishankar K. Iyer † † Center for Reliable and High-Performance Computing, ‡ Department of Computer Science University of Illinois at Urbana-Champaign, North Carolina State University 1308 W. Main Street, Urbana, IL 61801 Raleigh, NC 27695 {shuochen, nakka, kalbar, iyer}@crhc.uiuc.edu [email protected] Abstract formal methods have been adopted to prevent Most malicious attacks compromise system security programmers from writing insecure software. But despite through memory corruption exploits. Recently proposed substantial research and investment, the state of the art is techniques attempt to defeat these attacks by protecting far from perfect, and as a result, security vulnerabilities are program control data. We have constructed a new class of constantly being discovered in the field. The most direct attacks that can compromise network applications without counter-measure against vulnerabilities in the field is tampering with any control data. These non-control data security patching. Patching, however, is reactive in nature attacks represent a new challenge to system security. In and can only be applied to known vulnerabilities. The long this paper, we propose an architectural technique to latency between bug discovery and patching allows defeat both control data and non-control data attacks attackers to compromise many unpatched systems. An based on the notion of pointer taintedness . A pointer is alternative to patching is runtime vulnerability masking said to be tainted if user input can be used as the pointer that can stop ongoing attacks. Compiler and library value. A security attack is detected whenever a tainted interception techniques have been proposed to mask value is dereferenced during program execution. -
Representing and Reasoning About Dynamic Code
Representing and reasoning about dynamic code Item Type Proceedings Authors Bartels, Jesse; Stephens, Jon; Debray, Saumya Citation Bartels, J., Stephens, J., & Debray, S. (2020, September). Representing and Reasoning about Dynamic Code. In 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE) (pp. 312-323). IEEE. DOI 10.1145/3324884.3416542 Publisher ACM Journal Proceedings - 2020 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020 Rights © 2020 Association for Computing Machinery. Download date 23/09/2021 23:26:56 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final accepted manuscript Link to Item http://hdl.handle.net/10150/652285 Representing and Reasoning about Dynamic Code Jesse Bartels Jon Stephens Saumya Debray Department of Computer Science Department of Computer Science Department of Computer Science The University Of Arizona University Of Texas The University Of Arizona Tucson, AZ 85721, USA Austin, TX 78712, USA Tucson, AZ 85721, USA [email protected] [email protected] [email protected] ABSTRACT and trace dependencies back, into and through the JIT compiler’s Dynamic code, i.e., code that is created or modified at runtime, is code, to understand the data and control flows that influenced the ubiquitous in today’s world. The behavior of dynamic code can JIT compiler’s actions and caused the generation of the problem- depend on the logic of the dynamic code generator in subtle and non- atic code. E.g., for the CVE-2017-5121 bug mentioned above, we obvious ways, e.g., JIT compiler bugs can lead to exploitable vul- might want to perform automated analyses to identify which anal- nerabilities in the resulting JIT-compiled code. -
Epydoc: API Documentation Extraction in Python
Epydoc: API Documentation Extraction in Python Edward Loper Department of Computer and Information Science University of Pennsylvania, Philadelphia, PA 19104-6389, USA Abstract • All API documentation must be written (and read) in plaintext. Epydoc is a tool for generating API documentation for Python modules, based on their docstrings. It • There is no easy way to navigate through the supports several output formats (including HTML API documentation. and PDF), and understands four different markup • The API documentation is not searchable. languages (Epytext, Javadoc, reStructuredText, and plaintext). A wide variety of fields can be used to • A library's API documentation cannot be viewed supply specific information about individual objects, until that library is installed. such as descriptions of function parameters, type sig- natures, and groupings of related objects. • There is no mechanism for documenting vari- ables. 1 Introduction • There is no mechanism for \inheriting" docu- mentation (e.g. in a method that overrides its Documentation is a critical contributor to a library's base class method). This can lead to dupli- usability. Thorough documentation shows new users cation of documentation, which can often get how to use a library; and details the library's specific out-of-sync. behavior for advanced users. Most libraries can ben- efit from three different types of documentation: tu- Epydoc is a tool that automatically extracts a li- torial documentation, which introduces new users to brary's docstrings, and uses them to create API doc- the library by showing them how to perform typical umentation for the library in a variety of formats. tasks; reference documentation, which explains the li- Epydoc addresses all of these limitations: brary's overall design, and describes how the different • pieces of the library fit together; and API documenta- Docstrings can be written in a variety of markup tion, which describes the individual objects (classes, languages, including reStructuredText and Javadoc. -
Sok: Make JIT-Spray Great Again
SoK: Make JIT-Spray Great Again Robert Gawlik and Thorsten Holz Ruhr-Universitat¨ Bochum Abstract Attacks against client-side programs such as browsers were at first tackled with a non-executable stack to pre- Since the end of the 20th century, it has become clear that vent execution of data on the stack and also with a non- web browsers will play a crucial role in accessing Internet executable heap to stop heap sprays of data being later resources such as the World Wide Web. They evolved executed as code. This defense became widely known into complex software suites that are able to process a as W ⊕ X (Writable xor eXecutable) or Data Execution multitude of data formats. Just-In-Time (JIT) compilation Prevention (DEP) to make any data region non-executable was incorporated to speed up the execution of script code, in 2003 [45, 54]. To counter DEP, attackers started to per- but is also used besides web browsers for performance form code reuse such as Return-Oriented Programming reasons. Attackers happily welcomed JIT in their own (ROP) and many variants [10, 11, 32, 68]. In general, if an way, and until today, JIT compilers are an important target adversary knows the location of static code in the address of various attacks. This includes for example JIT-Spray, space of the vulnerable target, she can prepare a fake stack JIT-based code-reuse attacks and JIT-specific flaws to cir- with addresses of these gadgets. As soon as control of cumvent mitigation techniques in order to simplify the the instruction pointer is gained, these gadgets execute exploitation of memory-corruption vulnerabilities. -
Rockjit: Securing Just-In-Time Compilation Using Modular Control-Flow Integrity
RockJIT: Securing Just-In-Time Compilation Using Modular Control-Flow Integrity Ben Niu Gang Tan Lehigh University Lehigh University 19 Memorial Dr West 19 Memorial Dr West Bethlehem, PA, 18015 Bethlehem, PA, 18015 [email protected] [email protected] ABSTRACT For performance, modern managed language implementations Managed languages such as JavaScript are popular. For perfor- adopt Just-In-Time (JIT) compilation. Instead of performing pure mance, modern implementations of managed languages adopt Just- interpretation, a JIT compiler dynamically compiles programs into In-Time (JIT) compilation. The danger to a JIT compiler is that an native code and performs optimization on the fly based on informa- attacker can often control the input program and use it to trigger a tion collected through runtime profiling. JIT compilation in man- vulnerability in the JIT compiler to launch code injection or JIT aged languages is the key to high performance, which is often the spraying attacks. In this paper, we propose a general approach only metric when comparing JIT engines, as seen in the case of called RockJIT to securing JIT compilers through Control-Flow JavaScript. Hereafter, we use the term JITted code for native code Integrity (CFI). RockJIT builds a fine-grained control-flow graph that is dynamically generated by a JIT compiler, and code heap for from the source code of the JIT compiler and dynamically up- memory pages that hold JITted code. dates the control-flow policy when new code is generated on the fly. In terms of security, JIT brings its own set of challenges. First, a Through evaluation on Google’s V8 JavaScript engine, we demon- JIT compiler is large and usually written in C/C++, which lacks strate that RockJIT can enforce strong security on a JIT compiler, memory safety. -
Rust: Systems Programmers Can Have Nice Things
Rust: Systems Programmers Can Have Nice Things Arun Thomas [email protected] @arunthomas EuroBSDCon 2019 On Systems Programming [A] systems programmer has seen the terrors of the world and understood the intrinsic horror of existence -James Mickens, The Night Watch 2 What Makes Systems Software Hard? • Stakes are High: Systems software is critical to enforcing security and safety • Kernels, hypervisors, firmware, bootloaders, embedded software, language runtimes, browsers, … • Usually written in C or C++ for performance • BUT C and C++ are not memory-safe • Memory corruption vulnerabilities abound (and are exploited) • See recent Microsoft study (next slide) 3 Memory Unsafety is a Problem https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/ Microsoft found ~70% of CVEs in their products each year continue to be memory safety issues (Matt Miller, MSRC @ Blue Hat IL 2019) 4 Microsoft and Rust 5 Intel and Rust 6 Talk Overview “Systems Programmers Can Have Nice Things” -Robert O’Callahan Random Thoughts On Rust • Why Rust? • Rust for Systems Software • Getting Started with Rust on BSD 7 Why ust? 8 I like C. 9 But it turns out programming languages have evolved in the last 50 years. 10 Rust is a safe, fast, productive systems programming language. 11 Mozilla and Rust • Rust was originally created by Mozilla Research • Initial use case: Servo browser engine • Mozilla began shipping Rust components in Firefox 48 in 2016 • Oxidation is Mozilla’s term for “Rusting out” components • Rust code has improved Firefox’s -
Memory Corruption Vulnerabilities, Part II Gang Tan Penn State University Spring 2019
Memory Corruption Vulnerabilities, Part II Gang Tan Penn State University Spring 2019 CMPSC 447, Software Security Integer Overflow Vulnerabilities * slides adapted from those by Seacord 3 Integer Overflows An integer overflow occurs when an integer is increased beyond its maximum value or decreased beyond its minimum value Standard integer types (signed) signed char, short int, int, long int, long long int Signed overflow vs unsigned overflow An unsigned overflow occurs when the underlying representation can no longer represent an integer value. A signed overflow occurs when a value is carried over to the sign bit 4 Overflow Examples unsigned int ui; signed int si; ui = UINT_MAX; // 4,294,967,295; ui++; ui = 0 printf(“ui = %u\n", ui); si = INT_MAX; // 2,147,483,647 si++; si = -2,147,483,648 printf(“si = %d\n", si); 5 Overflow Examples, cont’d ui = 0; ui‐‐; ui = 4,294,967,295 printf(“ui = %u\n", ui); si = INT_MIN; // ‐2,147,483,648; si‐‐; si = 2,147,483,647 printf(“si = %d\n", si); 6 Integer Overflow Example int main(int argc, char *const *argv) { unsigned short int total; total = strlen(argv[1]) + strlen(argv[2]) + 1; char *buff = (char *) malloc(total); strcpy(buff, argv[1]); strcat(buff, argv[2]); } What if the total variable is overflowed because of the addition operation? 7 Vulnerability: JPEG Example Based on a real‐world vulnerability in the handling of the comment field in JPEG files void getComment(unsigned int len, char *src) { unsigned int size; size is interpreted as a large size = len ‐ 2; positive value of 0xffffffff -