Classical Mechanics Examples (Canonical Transformation)

Total Page:16

File Type:pdf, Size:1020Kb

Classical Mechanics Examples (Canonical Transformation) Classical Mechanics Examples (Canonical Transformation) Dipan Kumar Ghosh Centre for Excellence in Basic Sciences Kalina, Mumbai 400098 November 10, 2016 1 Introduction In classical mechanics, there is no unique prescription for one to choose the generalized coordinates for a problem. As long as the coordinates and the corresponding momenta span the entire phase space, it becomes an acceptable set. However, it turns out in prac- tice that some choices are better than some others as they make a given problem simpler while still preserving the form of Hamilton's equations. Going over from one set of chosen coordinates and momenta to another set which satisfy Hamilton's equations is done by canonical transformation. For instance, if we consider the central force problem in two dimensions and choose Carte- k sian coordinate, the potential is − . However, if we choose (r; θ) coordinates, px2 + y2 k the potential is − and θ is cyclic, which greatly simplifies the problem. The number of r cyclic coordinates in a problem may depend on the choice of generalized coordinates. A cyclic coordinate results in a constant of motion which is its conjugate momentum. The example above where we replace one set of coordinates by another set is known as point transformation. In the Hamiltonian formalism, the coordinates and momenta are given equal status and the dynamics occurs in what we know as the phase space. In dealing with phase space dynamics, we need point transformations in the phase space where the new coordinates (Qi) and the new momenta (Pi) are functions of old coordinates (pi) and old momenta (pi): Qi = Qi(fqjg; fpjg; t) Pi = Pi(fqjg; fpjg; t) 1 c D. K. Ghosh, IIT Bombay 2 Such transformations are called contact transformations. However, in Hamiltonian mechanics, only those transformations are of interest for which the quantities Qi and Pi are canonically conjugate pairs. This means that there exists some Hamiltonian K(Q; P; t) with respect to which P and Q satisfy Hamilton's equations: @K _ Qi = @Pi @K _ Pi = − @Qi Note that Q and P are not specific to a particular mechanical system but are common to all systems having the same degree of freedom. We may, for instance, obtain P and Q for a plane harmonic oscillator and use the same set to solve Kepler's problem. Such transformations, which preserve the form of Hamilton's equations, are known as canon- ical transformation. Though the terms contact transformation is used synonymously with the term canonical transformation, not all contact transformations are canonical, as the following example shows. Let us consider a free particle system with the Hamiltonian p2 H = . Since q is cyclic, the conjugate momentum p is a constant of motion,p _ = 0, 2m p and we haveq _ = . Consider now, a contact transformation m P = pt; Q = qt (1) Does a Hamiltonian K(P; Q) exist for which P and Q satisfy the Hamilton's equations: @K P_ = − @Q @K Q_ = @P @P_ @Q_ Existence of such a Hamiltonian would imply = − as each of the expressions @P @Q @2K @P_ @Q_ 1 equals − . However, Since = = , this condition is not satisfied and the @P @Q @P @Q t modified Hamiltonian K does not exist. Thus the contact transformations (1) are non- canonical, they do not preserve the volume of the phase space. It may be noted that this does not imply that one cannot find an equation of motion using these variables. Indeed, since p is constant, dP=dt = p = P=t, which gives P = kt, where k is a constant. Likewise, we have, d Q dq p P t k = = = = dt t dt m m m c D. K. Ghosh, IIT Bombay 3 k so that Q = t2 + C, where C is a constant. m To illustrate a canonical transformation, consider the free particle Hamiltonian again for whichp _ = 0 andq _ = p=m, as before. Consider a linear transformation of (p; q) to a new set (P; Q), which is given by P = αp + βq Q = γp + δq (2) α β If the matrix of transformation is non-singular, i.e. if ∆ = 6= 0, then the above γ δ transformation is invertible and we have 1 p = (δP − βQ) ∆ 1 q = (−γP + αQ) (3) ∆ It can be checked that p β P_ = αp_ + βq_ = βq_ = β = (δP − βQ) m m∆ p δ Q_ = γp_ + δq_ = δq_ = δ = (δP − βQ) (4) m m∆ Is there a Hamiltonian K for which P and Q are canonical? It is seen that @P_ βδ = @P m∆ @Q_ βδ = − @Q m∆ @K so that K exists. To determine K note that P_ = − which gives @Q Z βδ β2 Q2 K = − P_ dQ = − PQ + + f(P ) m∆ m∆ 2 @K and Q_ = gives @P Z βδ δ2 P 2 K = − QdP_ = − PQ + + f(Q) m∆ m∆ 2 These two expressions give 1 K = (δP − βQ)2 2m∆ Except for the factor ∆, this is just the old Hamiltonian written in terms of the new vari- ables. For ∆ = 1, the two Hamiltonians are identical and the transformation corresponds c D. K. Ghosh, IIT Bombay 4 to a point transformation of Lagrangian mechanics. Consider a second example where, once again we take the free particle Hamiltonian of the previous example. Consider a transformation P = p cos q; Q = p sin q (5) The transformation is invertible and it is easily seen that p Q p = P 2 + Q2; q = tan−1 (6) P Using the same algebra as for the previous example, we get p2 Q p P_ =p _ cos q − qp_ sin q = − sin q = − P 2 + Q2 m m and P p Q_ = P 2 + Q2 m @P_ @Q_ It can be seen that = − , showing that the Hamiltonian exists. It is easy to show @P @Q 1 that the Hamiltonian is given by K = pP 2 + Q2. 3m However, instead of considering the free particle Hamiltonian, consider the Hamilto- nian of a particle in a uniform gravitational field. p2 H = + mgq 2m p In this casep _ = −mg andq _ = . We had seen that the transformation is invertible. In m this case, we get P_ =p _ cos q − qp_ sin q p2 = −mg cos q − sin q m P 1 Q = −mg − pP 2 + Q2 m pP 2 + Q2 and Q_ =p _ sin q +qp _ cos q Q p2 = −mg + cos q pP 2 + Q2 m Q 1 p = −mg − P P 2 + Q2 pP 2 + Q2 m c D. K. Ghosh, IIT Bombay 5 @P_ @Q_ One can check 6= − , so that the transformation is not canonical with respect to @P @Q the given Hamiltonian. This shows that (5) is not a valid canonical transformation. This is because, in order that a transformation may be canonical, it must satisfy Hamilton's equation for all systems having the same number of degrees of freedom. 2 Canonical Transformation & Generating Function We start with an observation that Hamilton's equations of motion can be derived from the Hamilton's principle by writing action written in the form S = R Ldt = R (pq_ − H)dt and optimizing the action. In deriving the Euler Lagrange equation, we had optimized action subject to the condition that δq(ti) = δq(tf ) = 0, i.e. there is no variation at the end points. We have Z tf δS = δ (piq_i − H)dt = 0 t0 with implied summation on repeated index and we have denoted the initial time as t0 so as not to confuse with the index i. The variation in the action is then given by Z tf @H @H δS = q_iδpi + piδq_i − δqi − δpi dt t0 @qi @pi Z tf @H d @H = q_i − δpi δpi + (piδqi) − p_iδqi − δqi dt t0 @pi dt @qi Z tf @H @H tf = q_i − δpi δpi − p_i + dt + [piδqi]t0 t0 @pi @qi We have seen earlier that setting δS = 0 for all variations of qi gave us Euler Lagrange equation and we expect that setting δS = 0 for all variations of qi and pi will lead to Hamilton's equations. However, there is a subtle difference between the two cases. In the Lagrangian formulation qi andq _i were not independent variables and hence we only needed variation with respect to qi. In the Hamiltonian formalism, however, we need to vary both qi and pi. THe last term of the above equation vanishes if δqi(t0) = δqi(tf ) = 0 and it does not requires the corresponding relation for vanishing of the momentum coordinates. Thus, we have an additional degree of freedom and we could define the action as Z dF (q; p) S = (p q_ − H + )dt i i dt so that for all variations of pi and qi, the Hamilton;'s equations would be valid. The variational principle requires the function pq_ − H to satisfy the Euler Lagrange equations. Thus we have d @ @ (pq_ − H) − (pq_ − H) = 0 dt @q_ @q d @ @ (pq_ − H) − (pq_ − H) = 0 dt @p_ @p c D. K. Ghosh, IIT Bombay 6 d @H @H Since H = H(p; q), we get from above, p + = 0, i.e.p _ = − and likewise, since dt @q @q @H @H pq_ − H no dependence onp _, −q_ + = 0, i.e.,q _ = . The variational porinciple @p @p satisfied by the old pair of variables (q; p) is Z δS = δ (pq_ − H)dt = 0 with no variation at the end points. With respect to the new variables, one then must have Z δS0 = δ (P Q_ − H)dt = 0 These two forms of S and S0 are completely equivalent if the two integrands differ either by a scale factor or by total time differential of a function F , i.e.
Recommended publications
  • 1 the Basic Set-Up 2 Poisson Brackets
    MATHEMATICS 7302 (Analytical Dynamics) YEAR 2016–2017, TERM 2 HANDOUT #12: THE HAMILTONIAN APPROACH TO MECHANICS These notes are intended to be read as a supplement to the handout from Gregory, Classical Mechanics, Chapter 14. 1 The basic set-up I assume that you have already studied Gregory, Sections 14.1–14.4. The following is intended only as a succinct summary. We are considering a system whose equations of motion are written in Hamiltonian form. This means that: 1. The phase space of the system is parametrized by canonical coordinates q =(q1,...,qn) and p =(p1,...,pn). 2. We are given a Hamiltonian function H(q, p, t). 3. The dynamics of the system is given by Hamilton’s equations of motion ∂H q˙i = (1a) ∂pi ∂H p˙i = − (1b) ∂qi for i =1,...,n. In these notes we will consider some deeper aspects of Hamiltonian dynamics. 2 Poisson brackets Let us start by considering an arbitrary function f(q, p, t). Then its time evolution is given by n df ∂f ∂f ∂f = q˙ + p˙ + (2a) dt ∂q i ∂p i ∂t i=1 i i X n ∂f ∂H ∂f ∂H ∂f = − + (2b) ∂q ∂p ∂p ∂q ∂t i=1 i i i i X 1 where the first equality used the definition of total time derivative together with the chain rule, and the second equality used Hamilton’s equations of motion. The formula (2b) suggests that we make a more general definition. Let f(q, p, t) and g(q, p, t) be any two functions; we then define their Poisson bracket {f,g} to be n def ∂f ∂g ∂f ∂g {f,g} = − .
    [Show full text]
  • Time-Dependent Hamiltonian Mechanics on a Locally Conformal
    Time-dependent Hamiltonian mechanics on a locally conformal symplectic manifold Orlando Ragnisco†, Cristina Sardón∗, Marcin Zając∗∗ Department of Mathematics and Physics†, Universita degli studi Roma Tre, Largo S. Leonardo Murialdo, 1, 00146 , Rome, Italy. ragnisco@fis.uniroma3.it Department of Applied Mathematics∗, Universidad Polit´ecnica de Madrid. C/ Jos´eGuti´errez Abascal, 2, 28006, Madrid. Spain. [email protected] Department of Mathematical Methods in Physics∗∗, Faculty of Physics. University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland. [email protected] Abstract In this paper we aim at presenting a concise but also comprehensive study of time-dependent (t- dependent) Hamiltonian dynamics on a locally conformal symplectic (lcs) manifold. We present a generalized geometric theory of canonical transformations and formulate a time-dependent geometric Hamilton-Jacobi theory on lcs manifolds. In contrast to previous papers concerning locally conformal symplectic manifolds, here the introduction of the time dependency brings out interesting geometric properties, as it is the introduction of contact geometry in locally symplectic patches. To conclude, we show examples of the applications of our formalism, in particular, we present systems of differential equations with time-dependent parameters, which admit different physical interpretations as we shall point out. arXiv:2104.02636v1 [math-ph] 6 Apr 2021 Contents 1 Introduction 2 2 Fundamentals on time-dependent Hamiltonian systems 5 2.1 Time-dependentsystems. ....... 5 2.2 Canonicaltransformations . ......... 6 2.3 Generating functions of canonical transformations . ................ 8 1 3 Geometry of locally conformal symplectic manifolds 8 3.1 Basics on locally conformal symplectic manifolds . ............... 8 3.2 Locally conformal symplectic structures on cotangent bundles............
    [Show full text]
  • Canonical Transformations (Lecture 4)
    Canonical transformations (Lecture 4) January 26, 2016 61/441 Lecture outline We will introduce and discuss canonical transformations that conserve the Hamiltonian structure of equations of motion. Poisson brackets are used to verify that a given transformation is canonical. A practical way to devise canonical transformation is based on usage of generation functions. The motivation behind this study is to understand the freedom which we have in the choice of various sets of coordinates and momenta. Later we will use this freedom to select a convenient set of coordinates for description of partilcle's motion in an accelerator. 62/441 Introduction Within the Lagrangian approach we can choose the generalized coordinates as we please. We can start with a set of coordinates qi and then introduce generalized momenta pi according to Eqs. @L(qk ; q_k ; t) pi = ; i = 1;:::; n ; @q_i and form the Hamiltonian ! H = pi q_i - L(qk ; q_k ; t) : i X Or, we can chose another set of generalized coordinates Qi = Qi (qk ; t), express the Lagrangian as a function of Qi , and obtain a different set of momenta Pi and a different Hamiltonian 0 H (Qi ; Pi ; t). This type of transformation is called a point transformation. The two representations are physically equivalent and they describe the same dynamics of our physical system. 63/441 Introduction A more general approach to the problem of using various variables in Hamiltonian formulation of equations of motion is the following. Let us assume that we have canonical variables qi , pi and the corresponding Hamiltonian H(qi ; pi ; t) and then make a transformation to new variables Qi = Qi (qk ; pk ; t) ; Pi = Pi (qk ; pk ; t) : i = 1 ::: n: (4.1) 0 Can we find a new Hamiltonian H (Qi ; Pi ; t) such that the system motion in new variables satisfies Hamiltonian equations with H 0? What are requirements on the transformation (4.1) for such a Hamiltonian to exist? These questions lead us to canonical transformations.
    [Show full text]
  • PHYS 705: Classical Mechanics Canonical Transformation 2
    1 PHYS 705: Classical Mechanics Canonical Transformation 2 Canonical Variables and Hamiltonian Formalism As we have seen, in the Hamiltonian Formulation of Mechanics, qj, p j are independent variables in phase space on equal footing The Hamilton’s Equation for q j , p j are “symmetric” (symplectic, later) H H qj and p j pj q j This elegant formal structure of mechanics affords us the freedom in selecting other appropriate canonical variables as our phase space “coordinates” and “momenta” - As long as the new variables formally satisfy this abstract structure (the form of the Hamilton’s Equations. 3 Canonical Transformation Recall (from hw) that the Euler-Lagrange Equation is invariant for a point transformation: Qj Qqt j ( ,) L d L i.e., if we have, 0, qj dt q j L d L then, 0, Qj dt Q j Now, the idea is to find a generalized (canonical) transformation in phase space (not config. space) such that the Hamilton’s Equations are invariant ! Qj Qqpt j (, ,) (In general, we look for transformations which Pj Pqpt j (, ,) are invertible.) 4 Invariance of EL equation for Point Transformation First look at the situation in config. space first: dL L Given: 0, and a point transformation: Q Qqt( ,) j j dt q j q j dL L 0 Need to show: dt Q j Q j L Lqi L q i Formally, calculate: (chain rule) Qji qQ ij i qQ ij L L q L q i i Q j i qiQ j i q i Q j From the inverse point transformation equation q i qQt i ( ,) , we have, qi q q q q 0 and i i qi Q i Q i k j Q j Qj k Qk t 5 Invariance of EL equation
    [Show full text]
  • Classical Mechanics
    Classical Mechanics Joseph Conlon April 9, 2014 Abstract These are the current notes for the S7 Classical Mechanics course as of 9th April 2014. They contain the complete text and diagrams of the notes. There will be no more substantive revisions of these notes until Hilary 2014-15 (small typographical revisions may occur inbetween). Contents 1 Course Summary 3 2 Calculus of Variations 5 3 Lagrangian Mechanics 10 3.1 Lagrange's Equations . 10 3.2 Rotating Frames . 16 3.3 Normal Modes . 22 3.4 Particle in an Electromagnetic Field . 25 3.5 Rigid Bodies . 27 3.6 Noether's Theorem . 30 4 Hamiltonian Mechanics 33 4.1 Hamilton's Equations . 33 4.2 Hamilton's Equations from the Action Principle . 35 4.3 Poisson Brackets . 36 4.4 Liouville's Theorem . 39 4.5 Canonical Transformations . 42 5 Advanced Topics 50 5.1 The Hamilton-Jacobi Equation . 50 5.2 The Path Integral Formulation of Quantum Mechanics . 55 5.3 Integrable systems and Action/Angle Variables . 60 2 Chapter 1 Course Summary This course is the S7 Classical Mechanics short option (for physicists) and also the B7 Classical Mechanics option for those doing Physics and Philosophy. It consists of 16 lectures in total, and aims to cover advanced classical me- chanics, and in particular the theoretical aspects of Lagrangian and Hamiltonian mechanics. Approximately, the first 12 lectures cover material that is examinable for both courses, whereas the last four lectures (approximately) cove material that is examinable only for B7. General Comments Why be interested in classical mechanics and why be interested in this course? Classical mechanics has a beautiful theoretical structure which is obscured simply by a presentation of Newton's laws along the lines of F = ma.
    [Show full text]
  • PHY411 Lecture Notes Part 2
    PHY411 Lecture notes Part 2 Alice Quillen October 2, 2018 Contents 1 Canonical Transformations 2 1.1 Poisson Brackets . 2 1.2 Canonical transformations . 3 1.3 Canonical Transformations are Symplectic . 5 1.4 Generating Functions for Canonical Transformations . 6 1.4.1 Example canonical transformation - action angle coordinates for the harmonic oscillator . 7 2 Some Geometry 9 2.1 The Tangent Bundle . 9 2.1.1 Differential forms and Wedge product . 9 2.2 The Symplectic form . 12 2.3 Generating Functions Geometrically . 13 2.4 Vectors generate Flows and trajectories . 15 2.5 The Hamiltonian flow and the symplectic two-form . 15 2.6 Extended Phase space . 16 2.7 Hamiltonian flows preserve the symplectic two-form . 17 2.8 The symplectic two-form and the Poisson bracket . 19 2.8.1 On connection to the Lagrangian . 21 2.8.2 Discretized Systems and Symplectic integrators . 21 2.8.3 Surfaces of section . 21 2.9 The Hamiltonian following a canonical transformation . 22 2.10 The Lie derivative . 23 3 Examples of Canonical transformations 25 3.1 Orbits in the plane of a galaxy or around a massive body . 25 3.2 Epicyclic motion . 27 3.3 The Jacobi integral . 31 3.4 The Shearing Sheet . 32 1 4 Symmetries and Conserved Quantities 37 4.1 Functions that commute with the Hamiltonian . 37 4.2 Noether's theorem . 38 4.3 Integrability . 39 1 Canonical Transformations It is straightforward to transfer coordinate systems using the Lagrangian formulation as minimization of the action can be done in any coordinate system.
    [Show full text]
  • Infinitesimal Canonical Transformations. Symmetries And
    Infinitesimal Canonical Transformations. Symmetries and Conservation Laws. Physics 6010, Fall 2010 Infinitesimal Canonical Transformations. Symmetries and Conservation Laws. Relevant Sections in Text: x8.2, 8.3, 9.1, 9.2, 9.5 Infinitesimal Canonical Transformations With the notion of canonical transformations in hand, we are almost ready to explore the true power of the Hamiltonian formalism. One final ingredient needs to be developed: continuous canonical transformations and their infinitesimal form. Consider a family of canonical transformations that depend continuously upon a pa- rameter λ such that for some value of that parameter the transformation is the identity. We write i i q (λ) = q (q; p; λ); pi(λ) = pi(q; p; λ): Let us adjust our parameter such that λ = 0 is the identity: i i q (q; p; 0) = q ; pi(q; p; 0) = pi: As examples, think about the point transformations corresponding to rotations about an axis, or translations along a direction (exercise). Let us consider the transformations of the variables arising when the parameter is nearly zero. We have, with λ << 1, i i i q (λ) ≈ q + λδq ; pi(λ) ≈ pi + λδpi; where we have denoted the first-order changes in the canonical variables by i i @q (q; p; λ) @pi(q; p; λ) δq = ; δpi = : @λ λ=0 @λ λ=0 We call δq and δp the infinitesimal change in q and p induced by the infinitesimal canonical transformation. For example, let q be the position of a particle in one dimension. Consider a transla- tional point canonical transformation (exercise): q(λ) = q + λ, p(λ) = p: Here we have the rather trivial infinitesimal transformations: δq = 1; δp = 0: 1 Infinitesimal Canonical Transformations.
    [Show full text]
  • Reduced Phase Space Optics for General Relativity: Symplectic Ray Bundle Transfer 2
    Reduced phase space optics for general relativity: Symplectic ray bundle transfer Nezihe Uzun Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic Univ Lyon, Ens de Lyon, Univ Lyon1, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F69007, Lyon, France 10 June 2019 Abstract. In the paraxial regime of Newtonian optics, propagation of an ensemble of rays is represented by a symplectic ABCD transfer matrix defined on a reduced phase space. Here, we present its analogue for general relativity. Starting from simultaneously applied null geodesic actions for two curves, we obtain a geodesic deviation action up to quadratic order. We achieve this by following a preexisting method constructed via Synge’s world function. We find the corresponding Hamiltonian function and the reduced phase space coordinates that are composed of the components of the Jacobi fields projected on an observational screen. Our thin ray bundle transfer matrix is then obtained through the matrix representation of the Lie operator associated with this quadratic Hamiltonian. Moreover, Etherington’s distance reciprocity between any two points is shown to be equivalent to the symplecticity conditions of our ray bundle transfer matrix. We further interpret the bundle propagation as a free canonical transformation with a generating function that is equal to the geodesic deviation action. We present it in the form of matrix inner products. A phase space distribution function and the associated Liouville equation is also provided. Finally, we briefly sketch the potential applications of our construction. Those include reduced phase space and null bundle averaging; factorization of light arXiv:1811.10917v2 [gr-qc] 26 Jan 2020 propagation in any spacetime uniquely into its thin lens, pure magnifier and fractional Fourier transformer components; wavization of the ray bundle; reduced polarization optics and autonomization of the bundle propagation on the phase space to find its invariants and obtain the stability analysis.
    [Show full text]
  • Applications of Canonical Transformations in Hamiltonian Mechanics
    Applications of Canonical Transformations in Hamiltonian Mechanics Brian Tu Jan. 14, 2014 Contents 1 Introduction 2 2 Preliminaries 2 3 Poisson Bracket 3 3.1 Characterization of Canonical Transforms . 3 3.2 Application to Integrals of Motion . 5 4 Infinitesimal Canonical Transformations 5 5 Generating Functions 6 1 1 Introduction Canonical transformations were introduced in the theory of Hamiltonians as a class of transformations that preserve the form of the Hamiltonian equations. We explore these transformations in greater detail, looking at topics such as its invariants, generating such transformations, and time evolution of a Hamiltonian system as a canonical transforma- tion. We consider only time-independent Hamiltonians. 2 Preliminaries We begin with a few definitions for review. Definition 2.1. Recall that the Hamiltonian H is a function of 2n coordinates q = (q1; q2; : : : ; qn) and p = (p1; p2; : : : ; pn) that satisfies the 2n relations @H p_i = − @qi @H q_i = ; @pi where 1 ≤ i ≤ n, known as Hamilton's equations. Definition 2.2. A transformation of coordinates is canonical if it preserves the form of Hamiltonians equations [3, p. 14]. Formally, let x = (q1; : : : ; qn; p1; : : : ; pn). Let 0 1 J = −1 0 be a 2n × 2n block matrix, e.g., 0 is an n × n 0 matrix, 1 is In, and -1 is −In. Hamilton's equations then can be written as x_ = JrH; Let y : xi 7! yi(x) be a transformation of coordinates. We have 2n 2n X @yi X @yi @H y_ = x_ = J ; i @x j @x @x j=1 j j=1 j j and hence, y_ = (J JJ T )rH; where (J)ij = @yi=@xj is the Jacobian of y.
    [Show full text]
  • Contact Hamiltonian Mechanics
    Contact Hamiltonian Mechanics Alessandro Bravettia, Hans Cruzb, Diego Tapiasc aInstituto de Investigaciones en Matem´aticas Aplicadas y en Sistemas, Universidad Nacional Aut´onoma de M´exico, A. P. 70543, M´exico, DF 04510, M´exico. bInstituto de Ciencias Nucleares, Universidad Nacional Aut´onoma de M´exico, A. P. 70543, M´exico, DF 04510, M´exico. cFacultad de Ciencias, Universidad Nacional Aut´onoma de M´exico, A.P. 70543, M´exico, DF 04510, Mexico. Abstract In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case. Keywords: Hamiltonian mechanics, Dissipative systems, Contact geometry arXiv:1604.08266v2 [math-ph] 15 Nov 2016 Email addresses: [email protected] (Alessandro Bravetti), [email protected] (Hans Cruz), [email protected] (Diego Tapias) Contents 1 Introduction 2 2 Symplectic mechanics of non-dissipative systems 5 2.1 Time-independent Hamiltonian mechanics . 5 2.2 Canonical transformations and Liouville’s theorem . 6 2.3 Time-dependent Hamiltonian systems . 7 2.4 Hamilton-Jacobi formulation . 10 3 Contact mechanics of dissipative systems 11 3.1 Time-independent contact Hamiltonian mechanics . 11 3.2 Time evolution of the contact Hamiltonian and mechanical energy ............................... 15 3.3 Contact transformations and Liouville’s theorem . 17 3.4 Time-dependent contact Hamiltonian systems . 20 3.5 Hamilton-Jacobi formulation .
    [Show full text]
  • Tutorial Problems
    Analytical Mechanics HT-18 Tutorial 1 Problem 1. The Hamiltonian of a relativistic particle of mass m has the form p H = m2 c4 + p 2c 2 ; where p is the 3-dimensional momentum and c is the speed of light. Find a Lagrangian corresponding to this Hamiltonian. Problem 2. A dynamical systems with the following Lagrangians 52 1 2 (a) L = q_1 + q_2 + q_1q_2 cos(q1 − q2) + 3 cos q1 + cos q2; 2 2 1 h 2 2 2 i (b) L = (_q1 − q_2) + aq_1 t − a cos q2: 2 Find a Hamiltonian corresponding to the above Lagrangians. Problem 3. Find a Lagrangian corresponding to the following Hamiltonian H = p1p2 + q1q2: Problem 4. The Hamiltonian for a system with one degree of freedom is given by p 2 ab kq2 H = − bqpe−αt + q2 e −αt �α + be−αt + ; 2a 2 2 where a; b; α and k are constants. (a) Find a Lagrangian corresponding to this Hamiltonian. (b) Find an equivalent Lagrangian that does not depend explicitly on time. (c) Find the Hamiltonian corresponding to the second Lagrangian. What is the relation between this and the original Hamiltonian? Problem 5. Find the Hamiltonian corresponding to a Lagrangian of the form 1 L (q; q_ ; t) = L (q; t) + q_ Ta + q_ TT q_ ; 0 2 0 1 0 1 q1 a1 B . CB . C where q = @ . A ; a = @ . A and T is a symmetric n × n matrix. qn an Analytical Mechanics HT-18 Tutorial 2 Problem 1. Find a Lagrangian corresponding to the following Hamiltonian �2 2 H = q1p2 − q2p1 + a p1 + p2 : Problem 2.
    [Show full text]
  • Canonical Transformations in Quantum Mechanics
    McGill 92-29 hep-th/9205080 Canonical Transformations in Quantum Mechanics Arlen Anderson∗ Department of Physics McGill University Ernest Rutherford Building Montr´eal PQ Canada H3A 2T8 May 20, 1992 Abstract Three elementary canonical transformations are shown both to have quantum implementations as finite transformations and to generate, classically and infinites- imally, the full canonical algebra. A general canonical transformation can, in prin- ciple, be realized quantum mechanically as a product of these transformations. It is found that the intertwining of two super-Hamiltonians is equivalent to there being a canonical transformation between them. A consequence is that the procedure for solving a differential equation can be viewed as a sequence of elementary canonical transformations trivializing the super-Hamiltonian associated to the equation. It is arXiv:hep-th/9205080v2 25 May 1992 proposed that the quantum integrability of a system is equivalent to the existence of such a sequence. PACS: 03.65.Ca, 03.65.Ge ∗[email protected] 1 Canonical transformations are a powerful tool of classical mechanics whose strength has not been fully realized in quantum mechanics. Despite work by Dirac[1] and others[2, 3, 4, 5], there is a persistent distrust of the utility of canonical transformations in quan- tum mechanics. The general feeling lies between believing they can’t be used in quantum mechanics and thinking that at best they are of only limited interest. The truth, how- ever, is that effectively all exactly solvable problems in quantum mechanics are, or can be, solved by canonical transformations. Each of the familiar tools for integrating a dif- ferential equation—change of variables, extracting a factor from the dependent variable, Fourier transform, etc.—has a realization as a canonical transformation.
    [Show full text]