Electrostatics

Total Page:16

File Type:pdf, Size:1020Kb

Electrostatics Electrostatics Wei E.I. Sha (沙威) College of Information Science & Electronic Engineering Zhejiang University, Hangzhou 310027, P. R. China Email: [email protected] Website: http://www.isee.zju.edu.cn/weisha Course Overview 1. Charge and Electrostatic Field 2. Electric Displacement and Polarization Density 3. Potential and Gauss Law 4. Poisson’s Equation 5. Debye (Screening) Length 6. Electrostatic Energy and Capacitance 7. Boundary Conditions Slide 2/17 Wei SHA 1. Charge and Electrostatic Field (1) Two point charges repel each other with a force (experimental results) = QQ12 FaR 4πε r2 ε permittivity Electric field E force on a unit charge Qq = ==F Q FaR EaR 4πε r2 qr4πε 2 Slide 3/17 Ref: Xie, Section 2.1 & 2.2 Wei SHA 1. Charge and Electrostatic Field (2) r observation point ′ ri positon of Qi (source point) ′ A unit normal vector i rr− a = i pointed from source point to R − ′ ||rri observation point N 1 Q i Er()= i a 1()ρ r′ πε 2 R Er()= a dv ' 4 i=1|-rr′ | πε 2 R i 4 v' rr- ′ 1()ρ r′ ρ →−δ ′ = ()rr-'′ dv iiQ ()rri πε 3 4 v' rr- ′ charge density for point charge Slide 4/17 Wei SHA 1. Charge and Electrostatic Field (3) (a) Line Charges dl Line charge P density, ρ (C/m) L dS (b) Surface Charges Surface charge 2 density, ρS (C/m ) (c) Vo lu me Ch arg es Vo lu me ch arg e dv 3 density, ρV (C/m ) Slide 5/17 Wei SHA 1. Charge and Electrostatic Field (4) What are the charges in optoelectronic devices? Electrons, Holes, Excitons (bound e-h pair), Positive and Negative Ions …. Interplay of charges is essential to optoelectronics. Slide 6/17 Wei SHA 2. Electric Displacement and Polarization Density In a dielectric material, the presence of an electrostatic field E causes the bound charges in the material (atomic nuclei and their electrons) to slightly separate, inducing a local electric dipole moment. In a linear, homogeneous, isotropic dielectric ==εε +=+ ε εχ DE000 EPE E ε 0 vacuum permittivity (permittivity of free space) the density of the permanent and induced P electric dipole moments in the material, called the polarization density χ susceptibility ε =+χ r 1 relative permittivity (dielectric constant) Slide 7/17 Ref: Xie, Section 2.4 Wei SHA 3. Potential and Gauss Law (1) The work done to move a point charge from one point to another is independent of the path taken! Wdqd=⋅=⋅=Fl El0 ΓΓ Electrostatic field is conservative. Is there other field is conservative? El⋅=∇×⋅=−∇×∇Φ⋅=dd ES()0 d S Γ SS E =−∇Φ Φ is a scalar quantity called electrostatic potential ρ ′ ρ ′′ = 1()r 1()r dv Er() aRdv ' Φ=()r πε 2 πε ′ 4 v' rr- ′ 4-v′ rr Slide 8/17 Ref: Xie, Section 3.1 Wei SHA 3. Potential and Gauss Law (2) Gauss Law DS⋅=dQ ∇⋅D = ρ S : area element normal to an arbitrary surface : a unit normal vector to the spherical surface ⋅=QQaSR⋅d =αθθ = Q2 ϕ ESddSrddπε (cos ) ( sin ) 42rr44πε 2 πε r 2 cosα dS is an elemental area on a spherical surface of radius r Slide 9/17 Wei SHA 4. Poisson’s Equation (1) DrE= ε () E =−∇Φ ∇⋅D = ρ free charge Poisson equation: governing equation for electrostatic problem ∇⋅(()ε r ∇Φ ) =−ρ Could we put permittivity out of divergence operator? Optoelectronic device is inhomogeneous! ETL: electron transport layer HTL: hole transport layer BHJ: bulk heterojunction Red line: boundary conditions imposed Slide 10/17 Wei SHA 4. Poisson’s Equation (2) input input output output solution of Poisson’s equation in free space 1 Φ=()rrρ (′′ ) dv πε − ′ v′ 4|0 rr | Slide 11/17 Ref: Chew, Section 3.3.2 and 3.3.3 Wei SHA 4. Poisson’s Equation (3) —— Green’s function (Optional) 1 ∇⋅εδ ∇()′′ =− − ()0 g rr,() r r , = 4| − | rr≠ ′ rr= ′ singular problem ∇⋅εδ ∇1 ′′′ =− − 0 dv()rr dv 4|πε rr− ′ | c vv′′0 ∇⋅ ∇ =0 ||rr− ′ 11 ∇⋅dS′ =−1 π S′ 4 R 1 −a R ⋅=−dS′ 1 π 2 S′ 4 R −1 aS⋅=−d ′ 1 π 2 R 4 R S′ Slide 12/17 Wei SHA 5. Electrostatic Energy and Capacitance (1) The work done is equal to the change in electrostatic energy (move a positive charge from one point to the other) WQ=⋅=−∇Φ⋅=Φ−ΦEl d Q d l Q() A B ΓΓ 1. The electrostatic energy of a positive charge Q at position r in the presence of a potential Φ =Φ UQE ()r 2. The electrostatic energy stored in a system of three and N point charges ≠ 1 QQ QQ QQ 11N Nji()Q =++12 13 23 = j U E UQEi 4πε RRR πε 012132324ij==110 Rij Slide 13/17 Wei SHA 5. Electrostatic Energy and Capacitance (2) The total electrostatic energy stored in a capacitor is 11 UQVCV==2 E 22 Capacitance Energy density (energy per unit volume) of the electrostatic field 11 1 Udvdvdv=Φ=∇⋅Φ=⋅−∇Φρ DD() E vv22 v 2 11 =⋅=⋅DEdvε EE dv vv22 Slide 14/17 Wei SHA 6. Debye (Screening) Length Debye length (Thomas–Fermi screening length) is a measure of a charge carrier’s net electrostatic effect and how far its electrostatic effect persists. The Debye length of semiconductors is given ε is the dielectric constant kB is the Boltzmann’s constant T is the kelvins temperature Ndop is the net density of dopants Slide 15/17 Wei SHA 7. Boundary Conditions (1) Tangential component of E field is continuous across dielectric boundary El⋅=d 0 Γ θθ= EE1122sin sin = EE12tt Normal component of D field is continuous across dielectric boundary DS⋅=d 0 S θθ= DD1122cos cos = DD12nn Slide 16/17 Ref: Xie, Section 3.1.1 and 3.4 Wei SHA 7. Boundary Conditions (2) Dirichlet boundary condition (Red line) Φ= ()|r r→∞ 0 unbounded problem (reference potential) Φ=()|r = V electrodes (optoelectronics) rre Neumann boundary condition (Blue line) ∂Φ()r εσ = surface charge rS∈ s ∂n (semiconductor-insulator interface) ∂Φ()r non-electrode (truncation) boundaries ∈ = 0 ∂n rS (floating BCs, optoelectronics) Slide 17/17 Wei SHA.
Recommended publications
  • P142 Lecture 19
    P142 Lecture 19 SUMMARY Vector derivatives: Cartesian Coordinates Vector derivatives: Spherical Coordinates See Appendix A in “Introduction to Electrodynamics” by Griffiths P142 Preview; Subject Matter P142 Lecture 19 • Electric dipole • Dielectric polarization • Electric fields in dielectrics • Electric displacement field, D • Summary Dielectrics: Electric dipole The electric dipole moment p is defined as p = q d where d is the separation distance between the charges q pointing from the negative to positive charge. Lecture 5 showed that Forces on an electric dipole in E field Torque: Forces on an electric dipole in E field Translational force: Dielectric polarization: Microscopic Atomic polarization: d ~ 10-15 m Molecular polarization: d ~ 10-14 m Align polar molecules: d ~ 10-10 m Competition between alignment torque and thermal motion or elastic forces Linear dielectrics: Three mechanisms typically lead to Electrostatic precipitator Linear dielectric: Translational force: Electrostatic precipitator Extract > 99% of ash and dust from gases at power, cement, and ore-processing plants Electric field in dielectrics: Macroscopic Electric field in dielectrics: Macroscopic Polarization density P in dielectrics: Polarization density in dielectrics: Polarization density in dielectrics: The dielectric constant κe • Net field in a dielectric Enet = EExt/κe • Most dielectrics linear up to dielectric strength Volume polarization density Electric Displacement Field Electric Displacement Field Electric Displacement Field Electric Displacement Field Summary; 1 Summary; 2 Refraction of the electric field at boundaries with dielectrics Capacitance with dielectrics Capacitance with dielectrics Electric energy storage • Showed last lecture that the energy stored in a capacitor is given by where for a dielectric • Typically it is more useful to express energy in terms of magnitude of the electric field E.
    [Show full text]
  • Electrostatics Vs Magnetostatics Electrostatics Magnetostatics
    Electrostatics vs Magnetostatics Electrostatics Magnetostatics Stationary charges ⇒ Constant Electric Field Steady currents ⇒ Constant Magnetic Field Coulomb’s Law Biot-Savart’s Law 1 ̂ ̂ 4 4 (Inverse Square Law) (Inverse Square Law) Electric field is the negative gradient of the Magnetic field is the curl of magnetic vector electric scalar potential. potential. 1 ′ ′ ′ ′ 4 |′| 4 |′| Electric Scalar Potential Magnetic Vector Potential Three Poisson’s equations for solving Poisson’s equation for solving electric scalar magnetic vector potential potential. Discrete 2 Physical Dipole ′′′ Continuous Magnetic Dipole Moment Electric Dipole Moment 1 1 1 3 ∙̂̂ 3 ∙̂̂ 4 4 Electric field cause by an electric dipole Magnetic field cause by a magnetic dipole Torque on an electric dipole Torque on a magnetic dipole ∙ ∙ Electric force on an electric dipole Magnetic force on a magnetic dipole ∙ ∙ Electric Potential Energy Magnetic Potential Energy of an electric dipole of a magnetic dipole Electric Dipole Moment per unit volume Magnetic Dipole Moment per unit volume (Polarisation) (Magnetisation) ∙ Volume Bound Charge Density Volume Bound Current Density ∙ Surface Bound Charge Density Surface Bound Current Density Volume Charge Density Volume Current Density Net , Free , Bound Net , Free , Bound Volume Charge Volume Current Net , Free , Bound Net ,Free , Bound 1 = Electric field = Magnetic field = Electric Displacement = Auxiliary
    [Show full text]
  • Dielectric Permittivity Model for Polymer–Filler Composite Materials by the Example of Ni- and Graphite-Filled Composites for High-Frequency Absorbing Coatings
    coatings Article Dielectric Permittivity Model for Polymer–Filler Composite Materials by the Example of Ni- and Graphite-Filled Composites for High-Frequency Absorbing Coatings Artem Prokopchuk 1,*, Ivan Zozulia 1,*, Yurii Didenko 2 , Dmytro Tatarchuk 2 , Henning Heuer 1,3 and Yuriy Poplavko 2 1 Institute of Electronic Packaging Technology, Technische Universität Dresden, 01069 Dresden, Germany; [email protected] 2 Department of Microelectronics, National Technical University of Ukraine, 03056 Kiev, Ukraine; [email protected] (Y.D.); [email protected] (D.T.); [email protected] (Y.P.) 3 Department of Systems for Testing and Analysis, Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 01109 Dresden, Germany * Correspondence: [email protected] (A.P.); [email protected] (I.Z.); Tel.: +49-3514-633-6426 (A.P. & I.Z.) Abstract: The suppression of unnecessary radio-electronic noise and the protection of electronic devices from electromagnetic interference by the use of pliable highly microwave radiation absorbing composite materials based on polymers or rubbers filled with conductive and magnetic fillers have been proposed. Since the working frequency bands of electronic devices and systems are rapidly expanding up to the millimeter wave range, the capabilities of absorbing and shielding composites should be evaluated for increasing operating frequency. The point is that the absorption capacity of conductive and magnetic fillers essentially decreases as the frequency increases. Therefore, this Citation: Prokopchuk, A.; Zozulia, I.; paper is devoted to the absorbing capabilities of composites filled with high-loss dielectric fillers, in Didenko, Y.; Tatarchuk, D.; Heuer, H.; which absorption significantly increases as frequency rises, and it is possible to achieve the maximum Poplavko, Y.
    [Show full text]
  • Review of Electrostatics and Magenetostatics
    Review of electrostatics and magenetostatics January 12, 2016 1 Electrostatics 1.1 Coulomb’s law and the electric field Starting from Coulomb’s law for the force produced by a charge Q at the origin on a charge q at x, qQ F (x) = 2 x^ 4π0 jxj where x^ is a unit vector pointing from Q toward q. We may generalize this to let the source charge Q be at an arbitrary postion x0 by writing the distance between the charges as jx − x0j and the unit vector from Qto q as x − x0 jx − x0j Then Coulomb’s law becomes qQ x − x0 x − x0 F (x) = 2 0 4π0 jx − xij jx − x j Define the electric field as the force per unit charge at any given position, F (x) E (x) ≡ q Q x − x0 = 3 4π0 jx − x0j We think of the electric field as existing at each point in space, so that any charge q placed at x experiences a force qE (x). Since Coulomb’s law is linear in the charges, the electric field for multiple charges is just the sum of the fields from each, n X qi x − xi E (x) = 4π 3 i=1 0 jx − xij Knowing the electric field is equivalent to knowing Coulomb’s law. To formulate the equivalent of Coulomb’s law for a continuous distribution of charge, we introduce the charge density, ρ (x). We can define this as the total charge per unit volume for a volume centered at the position x, in the limit as the volume becomes “small”.
    [Show full text]
  • Metamaterials and the Landau–Lifshitz Permeability Argument: Large Permittivity Begets High-Frequency Magnetism
    Metamaterials and the Landau–Lifshitz permeability argument: Large permittivity begets high-frequency magnetism Roberto Merlin1 Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 Edited by Federico Capasso, Harvard University, Cambridge, MA, and approved December 4, 2008 (received for review August 26, 2008) Homogeneous composites, or metamaterials, made of dielectric or resonators, have led to a large body of literature devoted to metallic particles are known to show magnetic properties that con- metamaterials magnetism covering the range from microwave to tradict arguments by Landau and Lifshitz [Landau LD, Lifshitz EM optical frequencies (12–16). (1960) Electrodynamics of Continuous Media (Pergamon, Oxford, UK), Although the magnetic behavior of metamaterials undoubt- p 251], indicating that the magnetization and, thus, the permeability, edly conforms to Maxwell’s equations, the reason why artificial loses its meaning at relatively low frequencies. Here, we show that systems do better than nature is not well understood. Claims of these arguments do not apply to composites made of substances with ͌ ͌ strong magnetic activity are seemingly at odds with the fact that, Im ␧S ϾϾ ␭/ഞ or Re ␧S ϳ ␭/ഞ (␧S and ഞ are the complex permittivity ␭ ϾϾ ഞ other than magnetically ordered substances, magnetism in na- and the characteristic length of the particles, and is the ture is a rather weak phenomenon at ambient temperature.* vacuum wavelength). Our general analysis is supported by studies Moreover, high-frequency magnetism ostensibly contradicts of split rings, one of the most common constituents of electro- well-known arguments by Landau and Lifshitz that the magne- magnetic metamaterials, and spherical inclusions.
    [Show full text]
  • Chapter 16 – Electrostatics-I
    Chapter 16 Electrostatics I Electrostatics – NOT Really Electrodynamics Electric Charge – Some history •Historically people knew of electrostatic effects •Hair attracted to amber rubbed on clothes •People could generate “sparks” •Recorded in ancient Greek history •600 BC Thales of Miletus notes effects •1600 AD - William Gilbert coins Latin term electricus from Greek ηλεκτρον (elektron) – Greek term for Amber •1660 Otto von Guericke – builds electrostatic generator •1675 Robert Boyle – show charge effects work in vacuum •1729 Stephen Gray – discusses insulators and conductors •1730 C. F. du Fay – proposes two types of charges – can cancel •Glass rubbed with silk – glass charged with “vitreous electricity” •Amber rubbed with fur – Amber charged with “resinous electricity” A little more history • 1750 Ben Franklin proposes “vitreous” and “resinous” electricity are the same ‘electricity fluid” under different “pressures” • He labels them “positive” and “negative” electricity • Proposaes “conservation of charge” • June 15 1752(?) Franklin flies kite and “collects” electricity • 1839 Michael Faraday proposes “electricity” is all from two opposite types of “charges” • We call “positive” the charge left on glass rubbed with silk • Today we would say ‘electrons” are rubbed off the glass Torsion Balance • Charles-Augustin de Coulomb - 1777 Used to measure force from electric charges and to measure force from gravity = - - “Hooks law” for fibers (recall F = -kx for springs) General Equation with damping - angle I – moment of inertia C – damping
    [Show full text]
  • Modeling Optical Metamaterials with Strong Spatial Dispersion
    Fakultät für Physik Institut für theoretische Festkörperphysik Modeling Optical Metamaterials with Strong Spatial Dispersion M. Sc. Karim Mnasri von der KIT-Fakultät für Physik des Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Tag der mündlichen Prüfung: 29. November 2019 Referent: Prof. Dr. Carsten Rockstuhl (Institut für theoretische Festkörperphysik) Korreferent: Prof. Dr. Michael Plum (Institut für Analysis) KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft Erklärung zur Selbstständigkeit Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, die wörtlich oder inhaltlich über- nommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der gültigen Fassung vom 24. Mai 2018 beachtet habe. Karlsruhe, den 21. Oktober 2019, Karim Mnasri Als Prüfungsexemplar genehmigt von Karlsruhe, den 28. Oktober 2019, Prof. Dr. Carsten Rockstuhl iv To Ouiem and Adam Thesis abstract Optical metamaterials are artificial media made from subwavelength inclusions with un- conventional properties at optical frequencies. While a response to the magnetic field of light in natural material is absent, metamaterials prompt to lift this limitation and to exhibit a response to both electric and magnetic fields at optical frequencies. Due tothe interplay of both the actual shape of the inclusions and the material from which they are made, but also from the specific details of their arrangement, the response canbe driven to one or multiple resonances within a desired frequency band. With such a high number of degrees of freedom, tedious trial-and-error simulations and costly experimen- tal essays are inefficient when considering optical metamaterials in the design of specific applications.
    [Show full text]
  • APPENDICES 206 Appendices
    AAPPENDICES 206 Appendices CONTENTS A.1 Units 207-208 A.2 Abbreviations 209 SUMMARY A description is given of the units used in this thesis, and a list of frequently used abbreviations with the corresponding term is given. Units Description of units used in this thesis and conversion factors for A.1 transformation into other units The formulas and properties presented in this thesis are reported in atomic units unless explicitly noted otherwise; the exceptions to this rule are energies, which are most frequently reported in kcal/mol, and distances that are normally reported in Å. In the atomic units system, four frequently used quantities (Planck’s constant h divided by 2! [h], mass of electron [me], electron charge [e], and vacuum permittivity [4!e0]) are set explicitly to 1 in the formulas, making these more simple to read. For instance, the Schrödinger equation for the hydrogen atom is in SI units: È 2 e2 ˘ Í - h —2 - ˙ f = E f (1) ÎÍ 2me 4pe0r ˚˙ In atomic units, it looks like: È 1 1˘ - —2 - f = E f (2) ÎÍ 2 r ˚˙ Before a quantity can be used in the atomic units equations, it has to be transformed from SI units into atomic units; the same is true for the quantities obtained from the equations, which can be transformed from atomic units into SI units. For instance, the solution of equation (2) for the ground state of the hydrogen atom gives an energy of –0.5 atomic units (Hartree), which can be converted into other units quite simply by multiplying with the appropriate conversion factor (see table A.1.1).
    [Show full text]
  • A Beautiful Approach: Transformational Optics
    A beautiful approach: “Transformational optics” [ several precursors, but generalized & popularized by Ward & Pendry (1996) ] warp a ray of light …by warping space(?) [ figure: J. Pendry ] Euclidean x coordinates transformed x'(x) coordinates amazing Solutions of ordinary Euclidean Maxwell equations in x' fact: = transformed solutions from x if x' uses transformed materials ε' and μ' Maxwell’s Equations constants: ε0, μ0 = vacuum permittivity/permeability = 1 –1/2 c = vacuum speed of light = (ε0 μ0 ) = 1 ! " B = 0 Gauss: constitutive ! " D = # relations: James Clerk Maxwell #D E = D – P 1864 Ampere: ! " H = + J #t H = B – M $B Faraday: ! " E = # $t electromagnetic fields: sources: J = current density E = electric field ρ = charge density D = displacement field H = magnetic field / induction material response to fields: B = magnetic field / flux density P = polarization density M = magnetization density Constitutive relations for macroscopic linear materials P = χe E ⇒ D = (1+χe) E = ε E M = χm H B = (1+χm) H = μ H where ε = 1+χe = electric permittivity or dielectric constant µ = 1+χm = magnetic permeability εµ = (refractive index)2 Transformation-mimicking materials [ Ward & Pendry (1996) ] E(x), H(x) J–TE(x(x')), J–TH(x(x')) [ figure: J. Pendry ] Euclidean x coordinates transformed x'(x) coordinates J"JT JµJT ε(x), μ(x) " ! = , µ ! = (linear materials) det J det J J = Jacobian (Jij = ∂xi’/∂xj) (isotropic, nonmagnetic [μ=1], homogeneous materials ⇒ anisotropic, magnetic, inhomogeneous materials) an elementary derivation [ Kottke (2008) ] consider×
    [Show full text]
  • Gauss' Theorem (See History for Rea- Son)
    Gauss’ Law Contents 1 Gauss’s law 1 1.1 Qualitative description ......................................... 1 1.2 Equation involving E field ....................................... 1 1.2.1 Integral form ......................................... 1 1.2.2 Differential form ....................................... 2 1.2.3 Equivalence of integral and differential forms ........................ 2 1.3 Equation involving D field ....................................... 2 1.3.1 Free, bound, and total charge ................................. 2 1.3.2 Integral form ......................................... 2 1.3.3 Differential form ....................................... 2 1.4 Equivalence of total and free charge statements ............................ 2 1.5 Equation for linear materials ...................................... 2 1.6 Relation to Coulomb’s law ....................................... 3 1.6.1 Deriving Gauss’s law from Coulomb’s law .......................... 3 1.6.2 Deriving Coulomb’s law from Gauss’s law .......................... 3 1.7 See also ................................................ 3 1.8 Notes ................................................. 3 1.9 References ............................................... 3 1.10 External links ............................................. 3 2 Electric flux 4 2.1 See also ................................................ 4 2.2 References ............................................... 4 2.3 External links ............................................. 4 3 Ampère’s circuital law 5 3.1 Ampère’s original
    [Show full text]
  • Measurement of Dielectric Material Properties Application Note
    with examples examples with solutions testing practical to show written properties. dielectric to the s-parameters converting for methods shows Italso analyzer. a network using materials of properties dielectric the measure to methods the describes note The application | | | | Products: Note Application Properties Material of Dielectric Measurement R&S R&S R&S R&S ZNB ZNB ZVT ZVA ZNC ZNC Another application note will be will note application Another <Application Note> Kuek Chee Yaw 04.2012- RAC0607-0019_1_4E Table of Contents Table of Contents 1 Overview ................................................................................. 3 2 Measurement Methods .......................................................... 3 Transmission/Reflection Line method ....................................................... 5 Open ended coaxial probe method ............................................................ 7 Free space method ....................................................................................... 8 Resonant method ......................................................................................... 9 3 Measurement Procedure ..................................................... 11 4 Conversion Methods ............................................................ 11 Nicholson-Ross-Weir (NRW) .....................................................................12 NIST Iterative...............................................................................................13 New non-iterative .......................................................................................14
    [Show full text]
  • Arxiv:1905.08341V1 [Physics.App-Ph] 20 May 2019 by Discussing the Influence of the Presented Method in Not Yet Conducted for Cylindrical Metasurfaces
    Illusion Mechanisms with Cylindrical Metasurfaces: A General Synthesis Approach Mahdi Safari1, Hamidreza Kazemi2, Ali Abdolali3, Mohammad Albooyeh2;∗, and Filippo Capolino2 1Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada 2Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92617, USA 3Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran corresponding author: ∗[email protected] We explore the use of cylindrical metasurfaces in providing several illusion mechanisms including scattering cancellation and creating fictitious line sources. We present the general synthesis approach that leads to such phenomena by modeling the metasurface with effective polarizability tensors and by applying boundary conditions to connect the tangential components of the desired fields to the required surface polarization current densities that generate such fields. We then use these required surface polarizations to obtain the effective polarizabilities for the synthesis of the metasurface. We demonstrate the use of this general method for the synthesis of metasurfaces that lead to scattering cancellation and illusion effects, and discuss practical scenarios by using loaded dipole antennas to realize the discretized polarization current densities. This study is the first fundamental step that may lead to interesting electromagnetic applications, like stealth technology, antenna synthesis, wireless power transfer, sensors, cylindrical absorbers, etc. I. INTRODUCTION formal metaurfaces with large radial curvatures (at the wavelength scale) [41]. However, that method was based on the analysis of planar structures with open bound- Metasurfaces are surface equivalents of bulk meta- aries while a cylindrical metasurface can be generally materials, usually realized as dense planar arrays of closed in its azimuthal plane and it involves rather differ- subwavelength-sized resonant particles [1{4].
    [Show full text]