The Effects of Fuels on Engine Throttle Transients Jean-Charles W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Engine Components and Filters: Damage Profiles, Probable Causes and Prevention
ENGINE COMPONENTS AND FILTERS: DAMAGE PROFILES, PROBABLE CAUSES AND PREVENTION Technical Information AFTERMARKET Contents 1 Introduction 5 2 General topics 6 2.1 Engine wear caused by contamination 6 2.2 Fuel flooding 8 2.3 Hydraulic lock 10 2.4 Increased oil consumption 12 3 Top of the piston and piston ring belt 14 3.1 Hole burned through the top of the piston in gasoline and diesel engines 14 3.2 Melting at the top of the piston and the top land of a gasoline engine 16 3.3 Melting at the top of the piston and the top land of a diesel engine 18 3.4 Broken piston ring lands 20 3.5 Valve impacts at the top of the piston and piston hammering at the cylinder head 22 3.6 Cracks in the top of the piston 24 4 Piston skirt 26 4.1 Piston seizure on the thrust and opposite side (piston skirt area only) 26 4.2 Piston seizure on one side of the piston skirt 27 4.3 Diagonal piston seizure next to the pin bore 28 4.4 Asymmetrical wear pattern on the piston skirt 30 4.5 Piston seizure in the lower piston skirt area only 31 4.6 Heavy wear at the piston skirt with a rough, matte surface 32 4.7 Wear marks on one side of the piston skirt 33 5 Support – piston pin bushing 34 5.1 Seizure in the pin bore 34 5.2 Cratered piston wall in the pin boss area 35 6 Piston rings 36 6.1 Piston rings with burn marks and seizure marks on the 36 piston skirt 6.2 Damage to the ring belt due to fractured piston rings 37 6.3 Heavy wear of the piston ring grooves and piston rings 38 6.4 Heavy radial wear of the piston rings 39 7 Cylinder liners 40 7.1 Pitting on the outer -
Small Engine Parts and Operation
1 Small Engine Parts and Operation INTRODUCTION The small engines used in lawn mowers, garden tractors, chain saws, and other such machines are called internal combustion engines. In an internal combustion engine, fuel is burned inside the engine to produce power. The internal combustion engine produces mechanical energy directly by burning fuel. In contrast, in an external combustion engine, fuel is burned outside the engine. A steam engine and boiler is an example of an external combustion engine. The boiler burns fuel to produce steam, and the steam is used to power the engine. An external combustion engine, therefore, gets its power indirectly from a burning fuel. In this course, you’ll only be learning about small internal combustion engines. A “small engine” is generally defined as an engine that pro- duces less than 25 horsepower. In this study unit, we’ll look at the parts of a small gasoline engine and learn how these parts contribute to overall engine operation. A small engine is a lot simpler in design and function than the larger automobile engine. However, there are still a number of parts and systems that you must know about in order to understand how a small engine works. The most important things to remember are the four stages of engine operation. Memorize these four stages well, and everything else we talk about will fall right into place. Therefore, because the four stages of operation are so important, we’ll start our discussion with a quick review of them. We’ll also talk about the parts of an engine and how they fit into the four stages of operation. -
Conversion of a Gasoline Internal Combustion Engine to a Hydrogen Engine
Paper ID #3541 Conversion of a Gasoline Internal Combustion Engine to a Hydrogen Engine Dr. Govind Puttaiah P.E., West Virginia University Govind Puttaiah is the Chair and a professor in the Mechanical Engineering Department at West Virginia University Institute of Technology. He has been involved in teaching mechanical engineering subjects during the past forty years. His research interests are in industrial hydraulics and alternate fuels. He is an invited member of the West Virginia Hydrogen Working Group, which is tasked to promote hydrogen as an alternate fuel. Timothy A. Drennen Timothy A. Drennen has a B.S. in mechanical engineering from WVU Institute of Technology and started with EI DuPont de Nemours and Co. in 2010. Mr. Samuel C. Brunetti Samuel C. Brunetti has a B.S. in mechanical engineering from WVU Institute of Technology and started with EI DuPont de Nemours and Co. in 2011. Christopher M. Traylor c American Society for Engineering Education, 2012 Conversion of a Gasoline Internal Combustion Engine into a Hydrogen Engine Timothy Drennen*, Samual Brunetti*, Christopher Traylor* and Govind Puttaiah **, West Virginia University Institute of Technology, Montgomery, West Virginia. ABSTRACT An inexpensive hydrogen injection system was designed, constructed and tested in the Mechanical Engineering (ME) laboratory. It was used to supply hydrogen to a gasoline engine to run the engine in varying proportions of hydrogen and gasoline. A factory-built injection and control system, based on the injection technology from the racing industry, was used to inject gaseous hydrogen into a gasoline engine to boost the efficiency and reduce the amount of pollutants in the exhaust. -
2012 12 Tnoreport Noisevsfuel.Pdf PDF, 280.5 Kbyte
Maatwerkadvies Verkeersemissies Title Road Vehicle Noise versus fuel consumption and pollutants emissions Authors P.J.G. van Beek ([email protected]) M.G. Dittrich ([email protected]) Search terms Engine noise, exhaust emission, CO2 emission Introduction In the context of proposed changes to EU regulations for both vehicle noise and exhaust emissions, clear information on current technology trends is required to be able to identify correlation between these parameters. In this memo a comparison is made between noise emission, fuel consumption and CO 2 emissions of road vehicles. The main focus here is on passenger cars and small delivery vans, but the basic principles also apply to trucks, lorries, buses and motorcycles. In real traffic, vehicle operating conditions vary widely from low to high vehicle speed and/or acceleration accompanied by full (WOT = Wide Open Throttle), partial or idle engine load. All these operating conditions have their own characteristic noise emission, fuel efficiency and exhaust emissions including CO 2. Noise The main exterior noise sources of road vehicles are powertrain noise, tyre-road noise and aerodynamic noise. Powertrain noise is produced by the engine (and turbocharger, if present), intake and exhaust, cooling system and the transmission (gearbox and drive axles). For the relation between noise and fuel efficiency, the engine, the intake and the exhaust are the most important components for which a possible conflict between these two parameters may occur. In contrast, the transmission can be optimized to minimize noise emission, without affecting the fuel consumption. However, all these components are interconnected and therefore interact to a certain degree. -
Virtual Sensor for Automotive Engine to Compensate for the Map, Engine Speed Sensors Faults
Virtual Sensor For Automotive Engine To Compensate For The Map, Engine Speed Sensors Faults By Sohaub S.Shalalfeh Ihab Sh.Jaber Ahmad M.Hroub Supervisor: Dr. Iyad Hashlamon Submitted to the College of Engineering In partial fulfillment of the requirements for the degree of Bachelor degree in Mechatronics Engineering Palestine Polytechnic University March- 2016 Palestine Polytechnic University Hebron –Palestine College of Engineering and Technology Mechanical Engineering Department Project Name Virtual sensor for automotive engine to compensate for the map, engine speed sensors faults Project Team Sohaub S.shalalfeh Ihab Sh.Jaber Ahmad M.Hroub According to the project supervisor and according to the agreement of the testing committee members, this project is submitted to the Department of Mechanical Engineering at College of Engineering in partial fulfillments of the requirements of the Bachelor’s degree. Supervisor Signature ………………………….. Committee Member Signature ……………………… ……………………….. …………………… Department Head Signature ………………………………… I Dedication To our parents. To all our teachers. To all our friends. To all our brothers and sisters. To Palestine Polytechnic University. Acknowledgments We could not forget our families, who stood by us, with their support, love and care for our whole lives; they were with us with their bodies and souls, believed in us and helped us to accomplish this project. We would like to thank our amazing teachers at Palestine Polytechnic University, to whom we would carry our gratitude our whole life. Special thanks -
Throttle Position Sensor (Tps) [ Removal & Installation ]
Printer Friendly View Page 1 of 14 1988 Pontiac Grand Am 2.3L Eng SE 1Search™ TPS THROTTLE POSITION SENSOR Removal Disconnect electrical connection from TPS. Remove TPS retaining screws. Remove TPS sensor. Installation 1. With throttle valve in closed position, install TPS on throttle body. Ensure TPS lever engages with drive lever on throttle shaft. Install retaining screws and electrical connection. 2. On 2.0L and 2.8L (VIN 9) models, tighten screws. No adjustment is required. On all other models, adjust TPS to specification and tighten retaining screws. See THROTTLE POSITION SENSOR under ADJUSTMENTS in this article. THROTTLE POSITION SENSOR (TPS) [ REMOVAL & INSTALLATION ] Removal Remove air cleaner and disconnect TPS electrical lead. Remove attaching screws, lock washers, retainers and TPS sensor. If necessary, remove screw holding TPS actuator lever to end of throttle shaft. NOTE: On 4.3L engines, TPS is nonadjustable. After servicing, perform nonadjustable TPS output check. See appropriate article in TUNE-UP section. Installation 1. With throttle valve in idle (closed) position, install TPS on throttle body. Ensure that TPS pick-up lever is located above TPS actuator lever. Install retainers, screws using thread locking compound (Loctite 262), and lock washers. 2. Connect electrical lead and install air cleaner. With ignition on, connect digital voltmeter to TPS "A" and "B" terminals, rotate TPS to obtain .45-.60 volt. Tighten attaching screws and recheck voltage. THROTTLE POSITION SENSOR (TPS) CHECK/ADJUST The Throttle Position Sensor is not adjustable. This ECM auto-zeros the TPS voltage at idle. This means the ECM reads the TPS voltage at idle as indicating 0% throttle opening (as long as the voltage is within the specified range). -
Study of Spark Ignition Engine Combustion Model for the Analysis of Cyclic Variation and Combustion Stability at Lean Operating Conditions
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2013 STUDY OF SPARK IGNITION ENGINE COMBUSTION MODEL FOR THE ANALYSIS OF CYCLIC VARIATION AND COMBUSTION STABILITY AT LEAN OPERATING CONDITIONS Hao Wu Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Copyright 2013 Hao Wu Recommended Citation Wu, Hao, "STUDY OF SPARK IGNITION ENGINE COMBUSTION MODEL FOR THE ANALYSIS OF CYCLIC VARIATION AND COMBUSTION STABILITY AT LEAN OPERATING CONDITIONS", Master's report, Michigan Technological University, 2013. https://doi.org/10.37099/mtu.dc.etds/662 Follow this and additional works at: https://digitalcommons.mtu.edu/etds STUDY OF SPARK IGNITION ENGINE COMBUSTION MODEL FOR THE ANALYSIS OF CYCLIC VARIATION AND COMBUSTION STABILITY AT LEAN OPERATING CONDITIONS By Hao Wu A REPORT Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Mechanical Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2013 © 2013 Hao Wu This report has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Mechanical Engineering. Department of Mechanical Engineering-Engineering Mechanics Report Advisor: Dr. Bo Chen Committee Member: Dr. Jeffrey D. Naber Committee Member: Dr. Chaoli Wang Department Chair: Dr. William W. Predebon CONTENTS LIST OF FIGURES ........................................................................................................... -
US5136990.Pdf
|||||||||||||| USOO5136990A United States Patent (19) 11) Patent Number: 5,136,990 Motoyama et al. 45) Date of Patent: Aug. 11, 1992 54 FUEL INJECTION SYSTEM INCLUDING 4,779,581 10/1988 Maier ................................ 123A73. A SUPPLEMENTAL FUEL NJECTOR Primary Examiner-Andrew M. Dolinar 75 Inventors: Yu Motoyama; Toshikazu Ozawa; Assistant Examiner-M. Macy Junichi Kaku, all of Iwata, Japan Attorney, Agent, or Firm-Ernest A. Beutler 73 Assignee: Yamaha Hatsudoki Kabushiki Kaisha, 57 ABSTRACT Iwata, Japan A fuel injection system for a two cycle crankcase com 21 Appl. No.: 591,957 pression internal combustion engine including a first injector that supplies fuel directly to the combustion 22 Filed: Oct. 2, 1990 chamber of the engine. An induction system is provided (30) Foreign Application Priority Data for inducting air into the crankcase chamber of the Oct. 2, 1989 JP Japan .................................. 1-257459 engine and in a multiple cylinder engine this includes a manifold having a single inlet. A throttle body having a 51 Int. Cl.............................. 12373 A; FO2B33/04 throttle valve controls the flow of air through the inlet 52 U.S. C. ................................................... 123/73 C and a second fuel injector sprays fuel into the throttle 58 Field of Search ............. 123/73 A, 73 AD, 73 C, body upstream of the throttle valve and against the 123/73 R, 73 B, 304 throttle valve in certain positions of the throttle valve. 56) References Cited In accordance with one disclosed embodiment of the invention, the second fuel injector supplies the fuel U.S. PATENT DOCUMENTS requirements for maximum power while the first fuel 4,446,833 5/1984. -
Design and Assembly of a Throttle for an HCCI Engine
Design and assembly of a throttle for an HCCI engine ÀLEX POYO MUÑOZ Master of Science Thesis Stockholm, Sweden 2009 Design and assembly of a throttle for an HCCI engine Àlex Poyo Muñoz Master of Science Thesis MMK 2009:63 MFM129 KTH Industrial Engineering and Management Machine Design SE-100 44 STOCKHOLM Examensarbete MMK 2009:63 MFM129 Konstruktion och montering av ett gasspjäll för en HCCI-motor. Àlex Poyo Muñoz Godkänt Examinator Handledare 2009-Sept-18 Hans-Erik Ångström Hans-Erik Ångström Uppdragsgivare Kontaktperson KTH Hans-Erik Ångström Sammanfattning Denna rapport handlar om införandet av ett gasspjäll i den HCCI motor som utvecklas på Kungliga Tekniska Högskolan (KTH) i Stockholm. Detta gasspjäll styr effekten och arbetssättet i motorn. Med en gasspjäll är det möjligt att byta från gnistantändning till HCCI-läge. Under projektet har många andra områden förbättrats, till exempel luft- och oljepump. För att dra slutsatser är det nödvändigt att analysera några av motorns data som insamlats under utvecklingen, såsom cylindertryck, insprutningsdata och tändläge. Man analyserade data under olika tidpunkter av motorns utveckling, med olika komponenter, för att uppnå olika prestanda i varje enskilt fall. För att köra motorn i HCCI-läge är det nödvändigt att ha ett lambda-värde mellan 1,5 och 2. Även om resultaten visar att det är bättre att köra i "Pump + Throttle + Intake" kommer pumpen överbelastas på grund av ett extra tryckfall. Av detta skäl kommer är det nödvändigt att arbeta i "Throttle + Pump + Intake" i framtiden. Eftersom det är nödvändigt att minska insprutningstiden, av detta skäl, är det också viktigt att öka luftflödet. -
Spark Ignition and Pre-Chamber Turbulent Jet Ignition Combustion
Downloaded from SAE International by Brought To You Michigan State Univ, Thursday, April 02, 2015 Spark Ignition and Pre-Chamber Turbulent Jet 2012-01-0823 Published Ignition Combustion Visualization 04/16/2012 William P. Attard MAHLE Powertrain LLC Elisa Toulson, Andrew Huisjen, Xuefei Chen, Guoming Zhu and Harold Schock Michigan State University Copyright © 2012 SAE International doi:10.4271/2012-01-0823 ABSTRACT INTRODUCTION AND BACKGROUND Natural gas is a promising alternative fuel as it is affordable, available worldwide, has high knock resistance and low In recent years there has been renewed interest in lean burn carbon content. This study focuses on the combustion technologies, primarily due to the improvement in fuel visualization of spark ignition combustion in an optical single efficiency that these technologies can provide [1,2,3]. Lean cylinder engine using natural gas at several air to fuel ratios burn occurs when fuel is burnt in excess air and running an and speed-load operating points. In addition, Turbulent Jet engine in this manner has many advantages over conventional Ignition optical images are compared to the baseline spark stoichiometric combustion. One advantage of running lean ignition images at the world-wide mapping point (1500 rev/ occurs as the introduction of additional air increases the min, 3.3 bar IMEPn) in order to provide insight into the specific heat ratio, which leads to an increase in thermal relatively unknown phenomenon of Turbulent Jet Ignition efficiency. Additionally, lean engine operation reduces combustion. Turbulent Jet Ignition is an advanced spark pumping losses for a given road load by tending towards initiated pre-chamber combustion system for otherwise throttle-less operation, which can further improve drive-cycle standard spark ignition engines found in current passenger fuel economy. -
Gas Turbine Combustion Chamber (Source: ‘Gas Turbine Theory’, Cohen, Rogers)
Gas Turbine Combustion Chamber (Source: ‘Gas Turbine Theory’, Cohen, Rogers) Akash James Asst. Professor, Dept. of Mechanical Engineering, RSET Simple Open Cycle Gas Turbine Schematic Diagram AJ 2 Contents • Combustion Process • Types of Combustion Chambers • Performance Parameters • Pressure Loss • Combustion Efficiency • Stability Loop • Combustion Intensity AJ 3 Combustion Process Process → Combustion in the normal, open cycle, gas turbine is a continuous process in which fuel is burned in the air supplied by the compressor; an electric spark is required only for initiating the combustion process, and thereafter the flame must be self-sustaining. → Combustion of a liquid fuel involves the mixing of a fine spray of droplets with air, vaporization of the droplets, the breaking down of heavy hydrocarbons into lighter fractions, the intimate mixing of molecules of these hydrocarbons with oxygen molecules, and finally the chemical reactions themselves. → A high temperature, such as is provided by the combustion of an approximately stoichiometric mixture, is necessary if all these processes are to occur sufficiently rapidly for combustion in a moving air stream to be completed in a small space → But in actual practice A/F ratio is in the range of 100:1, while stoichiometric ratio is around 15:1. This is to reduce the turbine inlet temperatures due to practical limits. AJ 4 Factors influencing design → Low turbine inlet temperature → Uniform temperature distribution at turbine inlet (i.e., to avoid local over heating of turbine blades) → Stable operation even when factors like air velocity, A/F ratio & chamber pressure varies greatly, especially for aircraft engines (the limit is the ‘flame- out’ of the combustion chamber) & at the event of a flame-out the combustor should be able to relight quickly. -
Closed Loop Engine Management System
Information Sheet #105 CLOSED-LOOP CONTROL SYSTEMS ON GASEOUS GENERATORS Frequently the engine used to drive the generator in a standby or prime power generator system is a 4-stroke spark ignition (SI) engine. While many smaller portable generators use SI engines fueled by gasoline, the majority of SI engine driven generators above 10kW are fitted with SI engines fueled by gaseous fuel, either natural gas (NG), or liquid petroleum gas (LPG). The majority of gaseous powered SI engines within a generator system are frequently referred to as having a Closed-Loop Engine Control System. In understanding Buckeye Power Sales necessary maintenance required to maintain optimum operation and performance of an SI engine using a closed-loop system, it is Reliable Power Professionals Since 1947 important to be aware of all the components within the system, their functions, and the advantages a closed-loop system. 1.0 WHAT IS A CLOSED-LOOP SYSTEM: The term “loop” in a control system refers to the path taken through various components to obtain a desired output. Used in conjunction with the word “closed” it refers to sensors measuring actual output along the path against required output. The various outputs measured along the path, or loop, are referred to as feedback signals. In a closed- loop system, the feedback along the path constantly enables the engine control system to adjust and ensure the right output is maintained as variations in ambient temperature, load, altitude, and humidity influence combustion and required output. So, in brief, closed-loop systems employ sensors in the loop to constantly provide feedback so the ECU can adjust inputs to obtain the required output.