Causes and Timing of Future Biosphere Extinctions

Total Page:16

File Type:pdf, Size:1020Kb

Causes and Timing of Future Biosphere Extinctions Biogeosciences, 3, 85–92, 2006 www.biogeosciences.net/3/85/2006/ Biogeosciences © Author(s) 2006. This work is licensed under a Creative Commons License. Causes and timing of future biosphere extinctions S. Franck, C. Bounama, and W. von Bloh Potsdam Institute for Climate Impact Research, Potsdam, Germany Received: 28 September 2005 – Published in Biogeosciences Discuss.: 7 November 2005 Revised: 25 January 2006 – Accepted: 26 January 2006 – Published: 10 March 2006 Abstract. We present a minimal model for the global carbon boiling-point of water. Within the framework of Earth sys- cycle of the Earth containing the reservoirs mantle, ocean tem science (Franck et al., 2000, 2002) our planet is de- floor, continental crust, biosphere, and the kerogen, as well scribed as a system of certain interacting components (man- as the combined ocean and atmosphere reservoir. The model tle, oceanic crust, continental lithosphere, atmosphere, hy- is specified by introducing three different types of biosphere: drosphere, and biosphere) that develops under increasing procaryotes, eucaryotes, and complex multicellular life. Dur- external forcing (increasing insolation) and changing inter- ing the entire existence of the biosphere procaryotes are al- nal forcing (decreasing spreading rate, growing continen- ways present. 2 Gyr ago eucaryotic life first appears. The tal area). Within certain limits the Earth system is able to emergence of complex multicellular life is connected with an self-regulate against changing external and internal forcing. explosive increase in biomass and a strong decrease in Cam- The life span of the biosphere is related to these limits of brian global surface temperature at about 0.54 Gyr ago. In self-regulation. Lovelock and Whitfield (1982) published the long-term future the three types of biosphere will die out the first estimations of the biosphere’s life span. Accord- in reverse sequence of their appearance. We show that there ing to their semi-quantitative model, photosynthesis ceases is no evidence for an implosion-like extinction in contrast to already in about 100 Myr because the atmospheric carbon the Cambrian explosion. In dependence of their temperature dioxide content falls below the minimum value for C3-plants tolerance complex multicellular life and eucaryotes become (150 ppm). The first quantitative model for the long-term fu- extinct in about 0.8–1.2 Gyr and 1.3–1.5 Gyr, respectively. ture of the biosphere was proposed by Caldeira and Kast- The ultimate life span of the biosphere is defined by the ex- ing (1992). With the help of a more sensitive climate model tinction of procaryotes in about 1.6 Gyr. and under the assumption of a minimum atmospheric CO2 value of 10 ppm for C4-plants, they calculated that the bio- sphere’s life span extends up to about 800 Myr. Franck et al. (2000) developed an Earth system model that takes into 1 Introduction account quantitatively the internal forcing by geodynamics. The general basis of this paper is the long-term evolution of This effect results in a reduction of the biosphere life span the global carbon cycle from the Archaean up to about 2 Gyr from 800 Myr to 600 Myr. The biotic enhancement of weath- into the future and its consequences for the Earth’s climate ering and its influence on the life span was investigated by and the biosphere. In particular, we investigate the influ- Lenton and von Bloh (2001). According to their results the ence of geosphere-biosphere interactions on the life span of current biosphere should remain resilient to carbon cycle per- the biosphere. The problem of the long-term existence of turbation or mass extinction events for at least 800 Myr and the biosphere was first discussed by astrophysicists. They may survive for up to 1.2 Gyr. The question of the life span analysed increase of insolation during Sun’s evolution on the of the biosphere is also connected to the question of the fate main sequence. Already in the 1960s, Unsold¨ (1967) pre- of the Earth’s ocean. Bounama et al. (2001) have shown that dicted the ultimate end of terrestrial life in about 3.5 Gyr liquid water will be always available in the surface reservoirs when solar luminosity will be about 40% higher than now as a result of internal processes. The extinction of the bio- and temperatures at the Earth’s surface will be above the sphere will not be caused by the catastrophic loss of water but by other limiting factors caused by the external forcing Correspondence to: C. Bounama of increasing solar luminosity. ([email protected]) Published by Copernicus GmbH on behalf of the European Geosciences Union. 86 S. Franck et al.: Causes and timing of future biosphere extinctions dC All these estimations of the biosphere life span deal with f = + − −1 Fprec Co+a,Cc Fhyd τf Cf (4) a rather simple unique biosphere existing within a certain dt temperature tolerance window and above a certain minimum value of atmospheric CO2 content. A natural extension to dCbio,1 −1 = 5 (Co+a) − τ C a more specific biosphere is to introduce three types of bio- dt 1 bio,1 bio,1 sphere (procaryotes, eucaryotes, complex multicellular life) . with different temperature tolerance windows and different . (5.1...5.n) biotic enhancement of weathering. According to Ward and dCbio,n −1 = 5n (Co+a) − τ C Brownlee (2002) the long-term future of the biosphere is in dt bio,n bio,n some sense a mirror image of the history: the different bio- sphere types will become extinct in reverse sequence of their n appearance. dCker X −1 −1 = γ τ C ,i − τ C (6) In the present paper we apply our general model for the dt bio,i bio ker ker i=1 long-term co-evolution of the geosphere and the biosphere (Franck et al., 2002) with three different biosphere pools The variable t is the time, τf the residence time of carbon in (procaryotes, simple eucaryotes, and complex multicellular the seafloor, A the accretion ratio of carbon, R the regassing life) to investigate the long-term evolution of the biosphere. ratio, SA the areal spreading rate, fc the degassing fraction Our model was previously used to investigate the Cam- of carbon, dm the melt generation depth, Vm the mantle vol- brian explosion as triggered by geosphere-biosphere feed- ume, Fweath the weathering rate, Fprec the rate of carbonate backs (von Bloh et al., 2003). We found that the Cam- precipitation, Fhyd the hydrothermal flux, γ the fraction of brian explosion was mainly driven by extrinsic environmen- dead biomass transferred to the kerogen, τbio,i the residence tal causes and so rapid because of a positive feedback be- time of carbon in the type i biosphere, 5i the total produc- tween the spread of biosphere, increased silicate weathering, tivity of the type i biosphere, and τker is the residence time and a consequent cooling of the climate. of carbon in the kerogen. The accretion ratio, A, is defined The main questions to be answered in the following are: as the fraction of seafloor carbonates accreted to the conti- What are the life spans of the three different types of bio- nents to the total seafloor carbonates. The regassing ratio, sphere and what are the reasons for their extinction? R, is defined as the fraction of seafloor carbonates regassed into the mantle to the total subducting carbonates. SA and dm are calculated from a parameterized thermal evolution 2 Model description model of whole mantle convection including the water ex- change between mantle and surface reservoirs (Franck and The global carbon cycle model of Franck et al. (2002) de- Bounama, 1995). The box model including the pertinent scribes the evolution of the mass of carbon in the mantle, fluxes is sketched in Fig. 1. Cm, in the combined reservoir consisting of ocean and at- mosphere, Co+a, in the continental crust, Cc, in the ocean 2.1 Climate modelling crust and floor, Cf , in the kerogen, Cker, and in the differ- ent biospheres, Cbio,i(i=1, . , n), where n is the number In order to calculate the surface temperature, Ts, we need of the distinct parameterized biosphere types. The equations a climate model, which links the temperature to the given for the efficiency of carbon transport between reservoirs take partial pressure of atmospheric CO2 and the solar constant, into account mantle de- and regassing, carbonate precipita- S. We apply the grey atmosphere model of Lenton (2000). tion, carbonate accretion, evolution of continental biomass, The temperature is determined using energy balance between the storage of dead organic matter, and weathering processes. the incoming and outgoing radiation: dCm −1 4 (1 − a) S 3 = τ (1 − A) RCf − SA fc dm Cm/Vm (1) σ T = 1 + τ , (7) dt f s 4 4 where σ is the Stefan-Boltzmann constant, a is the aver- dC o+a = −1 − − + + age planetary albedo, and τ is the vertical opacity of the τf (1 A)(1 R) Cf SA fc dm Cm/Vm dt greenhouse atmosphere. The opacities of the two greenhouse n + + − X −1 + −1 − gases, CO2 and H2O, are assumed to be independent from Fweath (Co+a,Cc) (1 γ ) τbio,iCbio,i τker Cker i=1 each other: n X τ = τ pCO + τ pH O . (8) − 5i (Co+a) − Fprec (Co+a,Cc) − Fhyd (2) 2 2 i=1 The opacity of CO2 is assumed to be a function of its mix- ing ratio. It is derived from the results of varying CO2 in dCc −1 = τ AC − F (C + ,C ) (3) dt f f weath o a c a radiative-convective climate model (Kasting et al., 1993).
Recommended publications
  • The Role of Extinction in Evolution DAVID M
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 6758-6763, July 1994 Colloquium Paper Ths paper was presented at a colloquium entled "Tempo and Mode in Evolution" organized by Walter M. Fitch and Francisco J. Ayala, held January 27-29, 1994, by the National Academy of Sciences, in Irvine, CA. The role of extinction in evolution DAVID M. RAuP Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637 ABSTRACT The extinction of species is not normally must remember what has already been said on the probable consideed an important element of neodarwinian theory, in wide intervals of time between our consecutive formations; contrast to the opposite phenomenon, specatlon. This is sur- and in these intervals there may have been much slower prising in view of the special importance Darwin attced to extermination. (pp. 321-322) extinction, and because the number ofspecies extinctions in the Like his geologist colleague Charles Lyell, Darwin was history oflife is almost the same as the number oforiginations; contemptuous ofthose who thought extinctions were caused present-day biodiversity Is the result of a trivial surplus of by great catastrophes. cumulated over millions of years. For an evolu- tions, ... so profound is our ignorance, and so high our presump- tionary biologist to ignore extinction is probably as foolhardy tion, that we marvel when we hear of the extinction of an as for a demographer to ignore mortality. The past decade has organic being; and as we do not see the cause, we invoke seen a resurgence of interest in extinction, yet research on the cataclysms to desolate the world, or invent laws on the topic Is stifl at a reconnaissance level, and our present under- duration of the forms of life! (p.
    [Show full text]
  • One Million Species Face Extinction
    IN FOCUS NEWS But the excitement around cancer immuno therapies — two researchers won a Nobel prize last year for pioneering them — has been tempered after several partici- pants in US clinical trials died from side effects. Regulators around the world have moved slowly to approve the treatments for sale. The US Food and Drug Admin- istration has approved only three cancer immunotherapies so far, and the Chinese drug regulator has approved none. THE OCEAN AGENCY/XL CATLIN SEAVIEW SURVEY SEAVIEW CATLIN THE OCEAN AGENCY/XL Before 2016, Chinese regulations for the sale of cell therapies were ambiguous, and many hospitals sold the treatments to patients while safety and efficacy testing was still under way. Ren Jun, an oncolo- gist at the Beijing Shijitan Hospital Cancer Center, estimates that roughly one million people paid for such procedures. But the market came under scrutiny when it was revealed that a university student with Habitats such as coral reefs have been hit hard by pollution and climate change. a rare cancer had paid more than 200,000 yuan (US$30,000) for an experimental BIODIVERSITY immunotherapy, after seeing it promoted by a hospital on the Internet. The treatment was unsuccessful, and the student later died. The government cracked down on hospi- One million species tals selling cell therapies — although clinical trials in which participants do not pay for treatment were allowed to continue. face extinction GATHERING EVIDENCE Under the proposed regulations, roughly Landmark United Nations report finds that human activities 1,400 elite hospitals that conduct medical threaten ecosystems around the world. research, known as Grade 3A hospitals, would be able to apply for a licence to sell cell therapies, after proving that they BY JEFF TOLLEFSON in Paris to finalize and approve it.
    [Show full text]
  • Global Catastrophic Risks Survey
    GLOBAL CATASTROPHIC RISKS SURVEY (2008) Technical Report 2008/1 Published by Future of Humanity Institute, Oxford University Anders Sandberg and Nick Bostrom At the Global Catastrophic Risk Conference in Oxford (17‐20 July, 2008) an informal survey was circulated among participants, asking them to make their best guess at the chance that there will be disasters of different types before 2100. This report summarizes the main results. The median extinction risk estimates were: Risk At least 1 million At least 1 billion Human extinction dead dead Number killed by 25% 10% 5% molecular nanotech weapons. Total killed by 10% 5% 5% superintelligent AI. Total killed in all 98% 30% 4% wars (including civil wars). Number killed in 30% 10% 2% the single biggest engineered pandemic. Total killed in all 30% 10% 1% nuclear wars. Number killed in 5% 1% 0.5% the single biggest nanotech accident. Number killed in 60% 5% 0.05% the single biggest natural pandemic. Total killed in all 15% 1% 0.03% acts of nuclear terrorism. Overall risk of n/a n/a 19% extinction prior to 2100 These results should be taken with a grain of salt. Non‐responses have been omitted, although some might represent a statement of zero probability rather than no opinion. 1 There are likely to be many cognitive biases that affect the result, such as unpacking bias and the availability heuristic‒‐well as old‐fashioned optimism and pessimism. In appendix A the results are plotted with individual response distributions visible. Other Risks The list of risks was not intended to be inclusive of all the biggest risks.
    [Show full text]
  • Anthropogenic Causation and Prevention Relating to The
    ;;;;;;;;;;;;;;;;;;;;;; XIJDITPDJFUZIBTEFSJWFEUIFCBTJTPGJUTBHSJDVMUVSFBOE Anthropogenic NFEJDJOF .ZFST ɨFëSTUSFBTPOIJHIMJHIUTUIFDVMUVSBMJNQPSUBODF Causation and PGOBUVSFɨFFYJTUFODFPGPSHBOJTNTBSFBOJOUFHSBMQBSU PGIVNBODVMUVSFTNBOZìPSBBOEGBVOBBSFFTTFOUJBMUP Prevention Relating to IVNBOMJWFMJIPPET USBEJUJPOT BSU BOEBFTUIFUJDBMMZQMFBTJOH naturalFOWJSPONFOUTɨFJEFBUIBUUIFiPCTFSWBUJPOBOE the Holocene Extinction DPOUFNQMBUJPOwPGUIFOBUVSBMXPSMEIBTFTTFOUJBMMZTIBQFE NBOZBTQFDUTPGIVNBODJWJMJ[BUJPOJNQMJFTUIBUMPTTPGOBUVSF Jesse S. Browning XJMMJOUVSOIBWFBEFUSJNFOUBMJNQBDUPO)VNBOJUZ +FQTPO English 225 BOE$BOOFZ ɨJTFTUBCMJTIFTPOFSFBTPOXIZIVNBOT WBMVFDPOTFSWBUJPOPGOBUVSF Introduction 4FDPOE JUJTVOFUIJDBMGPSIVNBOCFJOHTUPESJWFPUIFS ɨFUVNVMUVPVTTUBUFPGUIFCJPTQIFSFJTMBSHFMZBUUSJCVUBCMF TQFDJFTUPFYUJODUJPOɨJTCFMJFGJNQMJFTUIBUUIFIVNBO UPBOUISPQPHFOJDJOQVUBOETFWFSBMBTQFDUTPGUIJTDPNQMFY DBQBDJUZGPSDPNQBTTJPO BOEUIFQSPQFOTJUZGPSQFPQMFUPCF TJUVBUJPOBSFXPSUIZPGDPOTJEFSBUJPOɨFBJNPGUIJTQBQFSJT DPNQBTTJPOBUFUPXBSETPUIFSPSHBOJTNT JTPOFPGUIFiUPPMTw UPGVSUIFSVOEFSTUBOEUIFMPTTPGCJPEJWFSTJUZUIBUJTDVSSFOUMZ UIBUDPOTFSWBUJPOJTUTPGUFOVTFJOUIFOBNFPGDPOTFSWBUJPO UBLJOHQMBDF0QJOJPOTUFOEUPEJêFSSFHBSEJOHUIFSFMBUJWF $POTFSWBUJPOJTUTGPDVTFêPSUTPOXIBUBSFDPOTJEFSFE JNQPSUBODFPGJTTVFTPGTVDINBHOJUVEFɨFDVSSFOUMPTT iDIBSJTNBUJDwDSFBUVSFT$IBSJTNBUJDDSFBUVSFTBSFUIPTFTQFDJFT PGCJPEJWFSTJUZJTFWPMVUJPOBSJMZJNQPSUBOUBTJUJTDVSSFOUMZ DPOTJEFSFECZNBOZUPCFDVUF DVEEMZ PSCFBVUJGVMBOJNBMT JNQBDUJOHUIFUSFOEPGMJGFPO&BSUI TVDIBT1BOEBT 5JHFST BOE1PMBS#FBST FUD *OPSEFSUPBDIJFWFBCFUUFSVOEFSTUBOEJOHPGTBJEJTTVFJU
    [Show full text]
  • Fossil Record – Timing of Events and Extinction
    Biology 1B—Evolution Lecture 11, Insights from the Fossil Record – timing of events and extinction Fossil Record (speciation) Microevolution Macroevolution The fossil record is our primary source of information on the past, including the timing of various extinction and evolutionary events and the phenotypes of ancestral forms. Sedimentary rocks created by erosion (often in a marine environment) form strata, with different layers corresponding to different time periods. Consider the Grand Canyon, formed by the Colorado River over 20 million years: the exposed strata, from the top of nearby Bryce Canyon to the bottom of the Grand Canyon itself, cover the last billion years. These layers can be dated by analyzing proportions of different isotopes present in each of the strata. Fossils provided both key evidence and frustration to Darwin when writing the Origin of the Species. Fossils showed there were many creatures which no longer existed; but these animals existed at some point, and must have been adapted to the environment in which they lived. This further reinforced the idea that the present and past are ruled by the same physical processes. However, it was frustrating in that many complex creatures seemed to suddenly appear in the fossil record, without preceding transitional forms. Darwin predicted that these gaps would be filled, and many of the gaps he predicted have now been filled. Some major transitions in earth history Billions of Years Ago Earth and Solar System formation 4.5 Earliest prokaryote fossils 3.5 Increase in oxygen – implies photosynthesis 2.7 Single-celled fossil eukaryotes 2.1-1.2 Complex metazoan (multi-celled animals) 0.5 Hominids (apes and humans) 0.005 The Cambrian Explosion is a time period from 550 million years ago (appearance of complex metazoans) when many species and new body forms appear in the fossil record.
    [Show full text]
  • Fueling Extinction: How Dirty Energy Drives Wildlife to the Brink
    Fueling Extinction: How Dirty Energy Drives Wildlife to the Brink The Top Ten U.S. Species Threatened by Fossil Fuels Introduction s Americans, we are living off of energy sources produced That hasn’t stopped oil and gas companies from gobbling in the age of the dinosaurs. Fossil fuels are dirty. They’re up permits and leases for millions of acres of our pristine Adangerous. And, they’ve taken an incredible toll on our public land, which provides important wildlife habitat and country in many ways. supplies safe drinking water to millions of Americans. And the industry is demanding ever more leases, even though it is Our nation’s threatened and endangered wildlife, plants, birds sitting on thousands of leases it isn’t using—an area the size of and fish are among those that suffer from the impacts of our Pennsylvania. fossil fuel addiction in the United States. This report highlights ten species that are particularly vulnerable to the pursuit Oil companies have generated billions of dollars in profits, and of oil, gas and coal. Our outsized reliance on fossil fuels and paid their senior executives $220 million in 2010 alone. Yet the impacts that result from its development, storage and ExxonMobil, Chevron, Shell, and BP combined have reduced transportation is making it ever more difficult to keep our vow to their U.S. workforce by 11,200 employees since 2005. protect America’s wildlife. The American people are clearly getting the short end of the For example, the Arctic Ocean is home to some of our most stick from the fossil fuel industry, both in terms of jobs and in beloved wildlife—polar bears, whales, and seals.
    [Show full text]
  • A Biological Analysis of Malthusian Law
    Western Michigan University ScholarWorks at WMU Best Midwestern High School Writing: A Best Midwestern High School Writing 2014 Celebration and Recognition of Outstanding Winners Prose 5-2014 A Biological Analysis of Malthusian Law William Chen Carmel High School Follow this and additional works at: https://scholarworks.wmich.edu/hs_writing_2014 Carmel High School Carmel, IN Grade: 11-12 Genre: Non-fiction First place winner WMU ScholarWorks Citation Chen, William, "A Biological Analysis of Malthusian Law" (2014). Best Midwestern High School Writing 2014 Winners. 12. https://scholarworks.wmich.edu/hs_writing_2014/12 This Eleventh - Twelfth Grade Non-fiction Writing Winner is brought to you for free and open access by the Best Midwestern High School Writing: A Celebration and Recognition of Outstanding Prose at ScholarWorks at WMU. It has been accepted for inclusion in Best Midwestern High School Writing 2014 Winners by an authorized administrator of ScholarWorks at WMU. For more information, please contact wmu- [email protected]. Chen 1 William Chen Rebecca Summerhays EXPO-20d Writing about Social and Ethical Issues 27 July 2013 A Biological Analysis of Malthusian Law Known for his work on political economy, Thomas Malthus published An Essay on the Principle of Population in 1798. In it, he establishes two fundamental ideas: “Population, when unchecked, increases in a geometrical ratio. Subsistence increases only in an arithmetical ratio” (454). From them, Malthus concludes that because men must eat to survive and reproduction will not end, there must be some natural force that checks the population and prevents man’s extinction (454). His answer is that by natural law suffering, such as misery, disease, and starvation, limits the surplus population (454).
    [Show full text]
  • The Sixth Great Extinction Donations Events "Soon a Millennium Will End
    The Rewilding Institute, Dave Foreman, continental conservation Home | Contact | The EcoWild Program | Around the Campfire About Us Fellows The Pleistocene-Holocene Event: Mission Vision The Sixth Great Extinction Donations Events "Soon a millennium will end. With it will pass four billion years of News evolutionary exuberance. Yes, some species will survive, particularly the smaller, tenacious ones living in places far too dry and cold for us to farm or graze. Yet we Resources must face the fact that the Cenozoic, the Age of Mammals which has been in retreat since the catastrophic extinctions of the late Pleistocene is over, and that the Anthropozoic or Catastrophozoic has begun." --Michael Soulè (1996) [Extinction is the gravest conservation problem of our era. Indeed, it is the gravest problem humans face. The following discussion is adapted from Chapters 1, 2, and 4 of Dave Foreman’s Rewilding North America.] Click Here For Full PDF Report... or read report below... Many of our reports are in Adobe Acrobat PDF Format. If you don't already have one, the free Acrobat Reader can be downloaded by clicking this link. The Crisis The most important—and gloomy—scientific discovery of the twentieth century was the extinction crisis. During the 1970s, field biologists grew more and more worried by population drops in thousands of species and by the loss of ecosystems of all kinds around the world. Tropical rainforests were falling to saw and torch. Wetlands were being drained for agriculture. Coral reefs were dying from god knows what. Ocean fish stocks were crashing. Elephants, rhinos, gorillas, tigers, polar bears, and other “charismatic megafauna” were being slaughtered.
    [Show full text]
  • Resilience to Global Catastrophe
    Resilience to Global Catastrophe Seth D. Baumi* Keywords: Resilience, catastrophe, global, collapse *Corresponding author: [email protected] Introduction The field of global catastrophic risk (GCR) studies the prospect of extreme harm to global human civilization, up to and including the possibility of human extinction. GCR has attracted substantial interest because the extreme severity of global catastrophe makes it an important class of risk, even if the probabilities are low. For example, in the 1990s, the US Congress and NASA established the Spaceguard Survey for detecting large asteroids and comets that could collide with Earth, even though the probability of such a collision was around one-in-500,000 per year (Morrison, 1992). Other notable GCRs include artificial intelligence, global warming, nuclear war, pandemic disease outbreaks, and supervolcano eruptions. While GCR has been defined in a variety of ways, Baum and Handoh (2014, p.17) define it as “the risk of crossing a large and damaging human system threshold”. This definition posits global catastrophe as an event that exceeds the resilience of global human civilization, potentially sending humanity into a fundamentally different state of existence, as in the notion of civilization collapse. Resilience in this context can be defined as a system’s capacity to withstand disturbances while remaining in the same general state. Over the course of human history, there have been several regional-scale civilization collapses, including the Akkadian Empire, the Old and New Kingdoms of Egypt, and the Mayan civilization (Butzer & Endfield, 2012). The historical collapses are believed to be generally due to a mix of social and environmental causes, though the empirical evidence is often limited due to the long time that has lapsed since these events.
    [Show full text]
  • Thomas Malthus and the Making of the Modern World
    THOMAS MALTHUS AND THE MAKING OF THE MODERN WORLD Alan Macfarlane 1 CONTENTS Acknowledgements 3 References, Conventions and Measures 3 Preface 4 The Encounter with Malthus 5 Thomas Malthus and his Theory 12 Part 1: Malthus (1963-1978) Population Crisis: Anthropology’s Failure 15 Resources and Population 23 Modes of Reproduction 40 Part 2: Malthus and Marriage (1979-1990) Charles Darwin and Thomas Malthus 44 The Importance of Malthusian Marriage 57 The Malthusian Marriage System and its Origins 68 The Malthusian Marriage System in Perspective 76 Part 3: Malthus and Death (1993-2007) The Malthusian Trap 95 Design and Chance 107 Epilogue: Malthus today 124 Bibliography 131 2 ACKNOWLEDGEMENTS My work on Malthus over the years has been inspired by many friends and teachers. It is impossible to name them all, but I would like to pay especial tribute to Jack Goody, John Hajnal, Keith Hopkins, Peter Laslett, Chris Langford, Roger Schofield Richard Smith and Tony Wrigley, who have all helped in numerous ways. Other acknowledgements are made in the footnotes. Gabriel Andrade helpfully commented on several of the chapters. As always, my greatest debts are to Gerry Martin, with whom I often discussed the Malthusian Trap, and to Sarah Harrison who has always encouraged my interest in population and witnessed its effects with me in the Himalayas. REFERENCES, CONVENTIONS AND MEASURES Spelling has not been modernized. American spelling (e.g. labor for labour) has usually been changed to the English variant. Italics in quotations are in the original, unless otherwise indicated. Variant spellings in quotations have not been corrected.
    [Show full text]
  • Evolution, Extinction and the Fossil Record Life of the Earth
    7 Articles atmosphere, taking into account temperature, cloud cover, wind and rainfall. They found the warmer eddies in the Southern Ocean were typically 0.5°C warmer than their surroundings and the cold ones were 0.5°C colder than the water beyond. Throughout the South- ern Ocean, these temperature anomalies correspond to changes in cloud cover and water content, as well as the frequency and prob- ability of rainfall. The reason? They alter the flux of heat between the ocean and the atmosphere. In the atmosphere, low pressure systems are the ones that generate rainfall. As these systems pass cold-core eddies, which have less heat to release, the cloud cover drops, moisture declines and rainfall reduces by 2-6%. The converse is true for warm-core eddies, which stimulate rainfall in their local vicinity. As well as providing the fuel for rain-filled clouds, the oceans shape where rain forms and falls around the planet. The heat energy heist undertaken by the Northern Hemisphere as it harvests energy from the south drives the differences in rainfall either side of the equator. Eddies bud off large ocean currents, like the Gulf Stream, bringing packages And an eddy in the ocean is all that’s needed to create a small, but of cold water into warmer regions and pockets of warmer water into colder significant, change in the amount of rainfall close to the water mass. regions. These 10–100 km across masses of water have a big impact on local Combined, these studies highlight just how wonderfully connected wind and rainfall patterns.
    [Show full text]
  • Robots, Extinction, and Salvation: on Altruism in Human–Posthuman Interactions
    religions Article Robots, Extinction, and Salvation: On Altruism in Human–Posthuman Interactions Juraj Odorˇcák * and Pavlína Bakošová Centre for Bioethics UCM, Department of Philosophy and Applied Philosophy, University of Sts. Cyril and Methodius in Trnava, 917 01 Trnava, Slovakia; [email protected] * Correspondence: [email protected] Abstract: Posthumanism and transhumanism are philosophies that envision possible relations between humans and posthumans. Critical versions of posthumanism and transhumanism examine the idea of potential threats involved in human–posthuman interactions (i.e., species extinction, species domination, AI takeover) and propose precautionary measures against these threats by elaborating protocols for the prosocial use of technology. Critics of these philosophies usually argue Citation: Odorˇcák, Juraj, and Pavlína against the reality of the threats or dispute the feasibility of the proposed measures. We take this Bakošová. 2021. Robots, Extinction, and Salvation: On Altruism in debate back to its modern roots. The play that gave the world the term “robot” (R.U.R.: Rossum’s Human–Posthuman Interactions. Universal Robots) is nowadays remembered mostly as a particular instance of an absurd apocalyptic Religions 12: 275. https://doi.org/ vision about the doom of the human species through technology. However, we demonstrate that Karel 10.3390/rel12040275 Capekˇ assumed that a negative interpretation of human–posthuman interactions emerges mainly from the human inability to think clearly about extinction, spirituality, and technology. We propose Academic Editor: Takeshi Kimura that the conflictual interpretation of human–posthuman interactions can be overcome by embracing Capek’sˇ religiously and philosophically-inspired theory of altruism remediated by technology. We Received: 1 April 2021 argue that this reinterpretation of altruism may strengthen the case for a more positive outlook on Accepted: 12 April 2021 human–posthuman interactions.
    [Show full text]