Platinum Metals Review

Total Page:16

File Type:pdf, Size:1020Kb

Platinum Metals Review UK ISSN 0032-1400 PLATINUM METALS REVIEW A quarterly survey of research on the platinum metals and of developments in their application in industry VOL. 31 OCTOBER 1987 NO. 4 Contents Emission Control for Gas Turbines I 62 Johnson Matthey Metals Loans Scheme 171 Platinum Ternary Alloys 172 Direct Methanol Fuel Cells 173 Fabricating Platinum Disc Microelectrodes 181 An Exchange of Ideas on Catalysis I 82 Corrosion in Nitric Acid Plants 185 The Chemistry of the Platinum Group Metals 186 Weldability Test for Thin Iridium Sheet 193 Exhaust Gas Pollution Control 194 High Temperature Gas Thermometry and the Platinum Metals 196 Abstracts 208 New Patents 215 Index to Volume 31 220 Communications should be addressed to The Editor, Platinum Metals Review Johnson Matthey Public Limited Company, Hatton Garden, London ECl N 8EE Emission Control for Gas Turbines PLATINUM-RHODIUM CATALYSTS FOR CARBON MONOXIDE AND HYDROCARBON REMOVAL By H. J. Jung and E. R. Becker Johnson Matthey, Catalytic Systems Division Johnson Matthey are reporting successful commercialisation of oxidation catalystsfor the clean-up of gas turbine exhaust. The reduction of carbon monoxide and hydrocarbons is achieved with a platinum-rhodium catalyst which minimises the formation of sulphur trioxide. The catalyst system, supported on an energy saving, low pressure drop metal monolith, has been used continuously for five years on large industrial gas turbines. The catalytic control of atmospheric pol- bines in a large stoichiometric excess of oxygen lutants from automobiles has been firmly consists of two parts. The first level of control established in the U.S.A. and Japan, and is is practised by injecting water or steam into the increasingly being adopted by European and combustion zone to lower the combustion tem- other industrial countries. Nitrogen oxides, perature. This “wet firing” allows nitrogen carbon monoxide and hydrocarbons in car oxide levels to be reduced by 50 per cent, from exhaust gas are reduced by controlling the 100 ppm to 50 ppm. The second step is the air : fuel ratio and by simultaneous conversion selective catalytic reaction of ammonia with the of all three pollutants in either a dual bed remaining nitrogen oxide, a process known as catalytic converter or in a single bed “three- Selective Catalytic Reduction (SCR). The way” catalytic converter ( I). The accumulated ammonia is injected into the flue gas and the benefits from this control technology (2) have mixture is then passed over a base metal oxide not been paralleled in the control of emissions catalyst, typically supported on alumina or from stationary sources. Over half of the man- titania (4). The SCR method can achieve made carbon monoxide, hydrocarbons and nitrogen oxide levels below 10 ppm, and it is nitrogen oxides reaching the atmosphere is used in Japan, California and West Germany. emitted from stationary sources including While the waterheam injection minimises power station boilers, industrial boilers, sta- nitrogen oxides formation, it increases the tionary internal combustion engines and gas amount of carbon monoxide and hydrocarbons turbines (3). Strict emission limits for control- in the combustion products which then require ling nitrogen oxides, carbon monoxide, hydro- flue gas treatment to lower the emissions. The carbons and sulphur oxides have been enacted well-established catalytic oxidation technology by many states in the U.S.A. and in West used for automotive emission control can be ex- Germany. tended to control carbon monoxide and hydro- With the exception of rich-burn internal carbon emissions from gas turbines. Johnson combustion engines, all stationary combustion Matthey, a leader in automotive catalyst tech- is carried out using a large excess of oxygen, in nology, has developed oxidation catalyst and order to maximise fuel efficiency. This pre- reactor technology for this purpose, the tech- cludes a direct extension of automotive three- nology being introduced into the market in way catalyst technology to stationary sources. 1982. It is currently available as a stand-alone The control of nitrogen oxides from gas tur- product or in conjunction with Johnson Platinum Metals Rev., 1987, 31, (4), 162-170 162 Fig. 1 A Johnson Matthey emission control reactor is located in the centre of this picture, between the gas turbine and the stack. This reactor contains several catalyst panels measuring 10 feet by 14 feet, and purifies 4 million cubic feet of flue gas per hour. The steam from this plant is pumped underground to assist in the recovery of viscous oil Matthey SCR catalyst and control systems as superheater and 260OC at the inlet of the econo- shown in Figure I. This paper describes the miser. When duct burners are used to make oxidation catalyst and the reactor technology. more steam, the temperature at the inlet to the superheater can be as high as 65oOC. Reactor Design Each application has a unique set of emission Automotive oxidation reactors are required to objectives which the catalyst and reactor are treat relatively small volumes of gas over custom designed to achieve. The main design approximately 2,000 hours of operation at tem- considerations which most oxidation reactors peratures varying from ambient, during start- have in common are: up, to occasional excursions up to 1,0ooOC. In High reactor productivity to minimise contrast, gas turbine exhaust reactors treat volume and cost. much larger quantities of gas, for example, 7.5 Low pressure drop to maximise useful work million cubic feet per hour (SCFH) for a 20 from the expanding gas. MW gas turbine. The catalyst temperature is Low sulphur dioxide conversion to sulphur controlled between 250 and 65ooC, and the trioxide to minimise sulphate particulate catalyst is required to operate without replace- emissions. ment for more than 20,000 hours. A typical gas Continuous operation exceeding 20,000 turbine exhaust heat recovery system, where hours. combustion gases are expanded through a tur- Some co-generation installations require fre- bine to produce electricity, is shown in Figure quent start-up and shut-down features, for 2. Before they go to the stack the exhaust gases which thermal shock resistance is required. pass through a superheater, boiler and econo- Proper relationship to the SCR reactor to miser, where heat is recovered in the form of meet overall emission control objectives, that low and high pressure steam. The exhaust tem- is to minimise the reconversion of ammonia perature is normally 470°C at the inlet to the to nitrogen oxides. The interaction of the Platinum Metals Rev., 1987, 31, (4) 163 Fig. 2 The typical features of a gas turbine exhaust heat recovery system are shown. Although most oxidation Heat Recovery reactors have a number of Boiler common design considera- tions, each application has a unique set of emission objec- tives which catalyst and re- - 470 actor are designed to achieve Gas in - f'4: - -- 262 - Li- -1 - - - ~ 160 Steam out 239 Tcmperat ure Profile Water in SCR reactor with the oxidation reactor has and saturated hydrocarbons, while minimising been reported elsewhere (5). the oxidation of sulphur dioxide. The productivity of a reactor is measured by the hourly gas volume which each unit volume Metal Honeycomb Substrate of reactor can clean up to the specified emission Industrial emission control reactors must level. This is referred to as the gas hourly space result in only a low pressure drop at high flow velocity (GHSV). The productivity of oxidation rates, since minimising co-generation operating reactors equipped with noble metal catalysts costs depends upon minimising the pressure varies from 50,000 to I 50,000 gas volumes per drop. It is generally assumed by turbine hour, per volume of reactor. The oxidation re- operators that every 4 inches of water gauge actor consists of four components: backpressure causes a 0.4 to I. 5 per cent loss of 111 A panel of catalyst blocks which fits into power output. The thin walls of metal substrate the reactor housing, sized to minimise the allow a minimum pressure drop for a given pressure drop of the flue gas through the amount of catalyst coating. Thus the combined reactor. thickness of support and catalyst coating is less [21 A metal honeycomb substrate which pro- than the wall thickness of a ceramic substrate of vides the low pressure drop unit cell of the equivalent surface area. catalyst panel, and forms the interfacial Johnson Matthey's metal honeycomb tech- area between the gas and the catalyst. This nology was originally developed for automotive area is relevant when the reactor is operated emission control in the 1970s (6). The high in the mass transfer limited region of the temperature-resistant ferritic stainless steel temperature range. monoliths and the catalyst coating technology [3l A high surface area refractory oxide coating developed then have now been adapted and which provides the internal surface area for modified to suit the large industrial catalyst the dispersion of the catalyst ingredients. blocks used in SCR and oxidation reactors. 141 The active catalyst material. These blocks measure 2 ft square by 3.5 inches The active catalyst material used in the deep and constitute one cubic foot of effective Johnson Matthey reactors described here is a reactor volume. In addition to the low pressure combination of platinum and rhodium. This drop characteristics, the metal substrate offers catalyst provides high carbon monoxide conver- significant advantages over ceramic substrate in sion and high conversion of both unsaturated situations where thermal shock is experienced. Plarinum Metals Rev., 1987, 31, (4) 164 Fig. 3 The use of heat resistant metal substrates provides low pressure drop characteristics and superior resistance to ther- mal shock. A common foil con- figuration is shown here A number of metal substrate designs are available. The most common is a stack of alternate layers of flat and corrugated foil strips, Figure 3.
Recommended publications
  • Cycloalkanes, Cycloalkenes, and Cycloalkynes
    CYCLOALKANES, CYCLOALKENES, AND CYCLOALKYNES any important hydrocarbons, known as cycloalkanes, contain rings of carbon atoms linked together by single bonds. The simple cycloalkanes of formula (CH,), make up a particularly important homologous series in which the chemical properties change in a much more dramatic way with increasing n than do those of the acyclic hydrocarbons CH,(CH,),,-,H. The cyclo- alkanes with small rings (n = 3-6) are of special interest in exhibiting chemical properties intermediate between those of alkanes and alkenes. In this chapter we will show how this behavior can be explained in terms of angle strain and steric hindrance, concepts that have been introduced previously and will be used with increasing frequency as we proceed further. We also discuss the conformations of cycloalkanes, especially cyclo- hexane, in detail because of their importance to the chemistry of many kinds of naturally occurring organic compounds. Some attention also will be paid to polycyclic compounds, substances with more than one ring, and to cyclo- alkenes and cycloalkynes. 12-1 NOMENCLATURE AND PHYSICAL PROPERTIES OF CYCLOALKANES The IUPAC system for naming cycloalkanes and cycloalkenes was presented in some detail in Sections 3-2 and 3-3, and you may wish to review that ma- terial before proceeding further. Additional procedures are required for naming 446 12 Cycloalkanes, Cycloalkenes, and Cycloalkynes Table 12-1 Physical Properties of Alkanes and Cycloalkanes Density, Compounds Bp, "C Mp, "C diO,g ml-' propane cyclopropane butane cyclobutane pentane cyclopentane hexane cyclohexane heptane cycloheptane octane cyclooctane nonane cyclononane "At -40". bUnder pressure. polycyclic compounds, which have rings with common carbons, and these will be discussed later in this chapter.
    [Show full text]
  • Studies on Photochemical Reactions of Simple Alkenes
    Title STUDIES ON PHOTOCHEMICAL REACTIONS OF SIMPLE ALKENES Author(s) 井上, 佳久 Citation Issue Date Text Version ETD URL http://hdl.handle.net/11094/1547 DOI rights Note Osaka University Knowledge Archive : OUKA https://ir.library.osaka-u.ac.jp/ Osaka University STUDIESON PHOTOCHEMICAL REACTIONS CF SIMPLE ALKENES YOSHIHISA INOUE OSAKA UNIVERSITY OSAKA, JAPAN JANUARY, 1977 ii Preface The work of thi's•theSis 'was performed under the guiqance of Professor Hiroshi Sakurai at the ZnstituteofScientific and lndustrial Research, Osaka University. I arn deeply grateÅíul to Professor Hiroshi Sakurai for his appro- priate guidance and continuOus encouragernent throughout this work since 1972. : am aiso grateful to Professor Yoshinobu Odaira-who initiated me into the organic photochemistry in 1971-1972. : arn indebted to Assistant Professor Setsuo Takamuku for his invaluable discussions throughout the work. Many thanks are given to Drs. Yoshiki Okarrtoto, Chyongjin Pac, Susumu Toki, and Yasuo Shige- mitsu for their helpful suggestions through the stimulating discussions with me. T would like to express my gratitude to Mr. Kazuyoshi Mori- tsugut Mr. Masahiro Kadohira, and Ms. Yoko Kunitomi for their collabo- rations in the course of experiment. Finally I wish to thank all the members of Sakurai Laboratory for their warm friendship. t- ..<2IZI Yoshihisa Inoue Suita, Osaka January, Z977 iii List of Papers The contents of this thesis are composed of the following papers. 1) Mercury Photosensitized Rbaction of Cycloheptene. Mechanism of Norcarane Formation Y. Tnoue, M. Kadohira, S. Takasnuku, and H. Sakurait Tetrahedron Lett., 459(1974). 2) Vapor-phase Photolysis of cis-- and trans-4i5-Diraethylcyclohexenes Y. rnoue, S.
    [Show full text]
  • Revised Group Additivity Values for Enthalpies of Formation (At 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds
    Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds Cite as: Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 Submitted: 17 January 1996 . Published Online: 15 October 2009 N. Cohen ARTICLES YOU MAY BE INTERESTED IN Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties The Journal of Chemical Physics 29, 546 (1958); https://doi.org/10.1063/1.1744539 Critical Evaluation of Thermochemical Properties of C1–C4 Species: Updated Group- Contributions to Estimate Thermochemical Properties Journal of Physical and Chemical Reference Data 44, 013101 (2015); https:// doi.org/10.1063/1.4902535 Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K Journal of Physical and Chemical Reference Data 17, 1637 (1988); https:// doi.org/10.1063/1.555814 Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 25, 1411 © 1996 American Institute of Physics for the National Institute of Standards and Technology. Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds N. Cohen Thermochemical Kinetics Research, 6507 SE 31st Avenue, Portland, Oregon 97202-8627 Received January 17, 1996; revised manuscript received September 4, 1996 A program has been undertaken for the evaluation and revision of group additivity values (GAVs) necessary for predicting, by means of Benson's group additivity method, thermochemical properties of organic molecules. This review reports on the portion of that program dealing with GAVs for enthalpies of formation at 298.15 K (hereinafter abbreviated as 298 K) for carbon-hydrogen and carbon-hydrogen-oxygen compounds.
    [Show full text]
  • Open Ronald Aungst Thesis 2.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science STEREOSELECTIVE SYNTHESIS OF (Z)-2-ACYL-2-ENALS VIA RETROCYCLOADDITIONS OF 5-ACYL-4-ALKYL-4H-1,3-DIOXINS: APPLICATIONS IN NATURAL PRODUCT SYNTHESIS A Thesis in Chemistry By Ronald A. Aungst, Jr. © 2007 Ronald A. Aungst, Jr. Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2007 The thesis of Ronald A. Aungst, Jr., was reviewed and approved* by the following: Raymond L. Funk Professor of Chemistry Thesis Advisor Chair of Committee Steven M. Weinreb Russell and Mildred Marker Professor Of Natural Products Chemistry Kenneth S. Feldman Professor of Chemistry J. Martin Bollinger, Jr. Associate Professor of Biochemistry and Molecular Biology Associate Professor of Chemistry Ayusman Sen Professor of Chemistry Head of Chemistry *Signatures are on file in the Graduate School ABSTRACT Reported herein are several approaches for the synthesis of substituted acrolein derivatives via the retrocycloaddition of substituted 4H-1,3-dioxins. Upon thermal or Lewis acid mediated retro hetero Diels-Alder reactions of these substrates, an appropriately substituted acrolein derivative is generated (stereoselectively in most cases) which can be utilized as a substrate for a variety of cycloaddition reactions. These cycloadditions, including Diels-Alder, hetero Diels-Alder, and [4 + 3], have provided access to several ring systems with excellent control over regio- and stereoselectivity. A strategy for the stereocontrolled synthesis of (Z)-2-acylenals has been developed through utilization of a retrocycloaddition reaction of 5-acyl-4-alkyl-4H- 1,3-dioxins. This approach has provided concise synthetic routes to several natural products containing the 5-acyl-2H-3,4-dihydropyran substructure.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,880,764 Imai Et Al
    United States Patent (19) 11 Patent Number: 4,880,764 Imai et al. (45) Date of Patent: "k Nov. 14, 1989 54 DEHYDROGENATION CATALYST AND 3,931,054 1/1976 Lester .................................. 502/332 PROCESS 3,936,395 2/1976 Hayes ....... ... 252/466 4,003,852 1/1977 Hayes ....... ... 252/466 (75) Inventors: Tamotsu Imai, Mt. Prospect; Hayim 4,104,317 8/1978 Antos ....... ... 585/434 Abrevaya, Wilmette, both of Ill, Y 4,672,146 6/1987 Abrevaya. ... 585/660 4,716, 143 12/1987 Inai .......... ... 585/660 73 Assignee: UOP, Des Plaines, Ill. 4,786,625 1/1988 Imai et al. ... 585/660 Notice: The portion of the term of this patent 4,827,072 5/1989 Imai .......... ... 585/443 subsequent to Nov. 22, 2005 has been Primary Examiner-Asok Pal disclaimed. 57 ABSTRACT Appl. No.: 21 289,137 A novel catalytic composite and a process of its use is 22 Fied: Dec. 23, 1988 disclosed. The catalyst comprises a platinum group metal component, a first modifier component selected Related U.S. Application Data from Group IA and IIA elements of the Periodic Table, 60 Continuation-in-part of Ser. No. 221,977, Jul. 20, 1988, a second modifier components selected from the group Pat. No. 4,827,072, which is a division of Ser. No. of elements consisting of palladium, iridum, and os 31,882, Dec. 11, 1987, Pat. No. 4,786,625, which is a mium, and a third modifier component selected from continuation-in-part of Ser. No. 18,541, Feb. 25, 1987, the elements of Group IVA of the Peridoic Table of the Pat.
    [Show full text]
  • NINETEENTH NATIONAL ORGANIC CHEMISTRY SYMPOSIUM of The
    NINETEENTH NATIONAL ORGANIC CHEMISTRY SYMPOSIUM of the AMERICAN CHEMICAL SOCIETY AUSPICES OF THE DIVISION OF ORGANIC CHEMISTRY AND THE ARIZONA STATE UNIVERSITY * June 13-17,1965 Tempe, Arizona NINETEENTH NATIONAL ORGANIC CHEMISTRY SYMPOSIUM of the . AMERICAN CHEMICAL SOCIETY * Registration: Gammage Auditorium and Palo Verde Hall Sunday June 13 - Thursday June 17 Meetings: Gammage Auditorium G. Biichi J. F. Bunnett E. J. Corey W. G. Dauben W. Herz H. Muxfeldt J. D. Roberts M. Stiles G. Stork H. H. Wasserman K. B. Wiberg 'j I Program Monday, June 13 Registration: Gammage Auditorium and Palo Verde Halls Meetings: Gammage Auditorium 10:00 A.M. Welcome WILLIAM J. BURKE, Vice­ President, Arizona State University. Re­ sponse, T. L. CAIRNS, Chairman, Division of Organic Chemistry, ACS 10:30 A.M. E. J. COREY, "New Methods for the Construction of Complex Molecules." 11:30 A.M. Discussion of Paper 1 2:00 P.M. HARRY H. WASSERMAN, "The Oxi­ dation of Heterocyclic Systems by Mole­ cular Oxygen." 3:00 P.M. Discussion of Paper 2 3:30 P.M. WILLIAM G. DAUBEN, "Some As­ pects of the Photochemistry of Conju­ gated Dienes." 4:30 P.M. Discussion of Paper 3 Tuesday, June 15 9:00A.M. GILBERT STORK, "Progress ill Syn­ thetic Organic Chemistry." 10:00 A.M. Discussion of Paper 4 10:30 A.M. HANS MUXFELDT, "Total Synthesis of Tetracycline Antibiotics." 11:30 A.M. Discussion of Paper 5 8:00 P.M. ARTHUR C. COPE, Roger Adams Award Address, "Resolution and Prop­ erties of trans Cyclic Olefins; Transition Metal Complexes with Organic Com­ pounds." Wednesday, June 16 9:00A.M.
    [Show full text]
  • Complexation with Aqueous Silver Ion and with Molecular Iodine. Jerome Robert Olechowski Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1958 Ring Size and Reactivity of Cyclic Olefins: Complexation With Aqueous Silver Ion and With Molecular Iodine. Jerome Robert Olechowski Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Olechowski, Jerome Robert, "Ring Size and Reactivity of Cyclic Olefins: Complexation With Aqueous Silver Ion and With Molecular Iodine." (1958). LSU Historical Dissertations and Theses. 452. https://digitalcommons.lsu.edu/gradschool_disstheses/452 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. RING SIZE AND REACTIVITY OF CYCLIC OLEFINS: COMPLEXATION WITH AQUEOUS SILVER ION AND WITH MOLECULAR IODINE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Jerome Robert Olechowski B.S., Canlsius College, 1952 M.S., The Pennsylvania State University, 1955 January, 1958 ACKNOWLEDGEMENT The author wishes to thank Dr. James G. Traynham, who suggested and guided this investigation. The author wishes to acknowledge the financial aid from the Celanese Corporation of America and from the Petroleum Research Fund of the American Chemical Society, in the form of fellowships. A person who has never written a dissertation may wonder why authors so frequently acknowledge the patience and understanding of their wives.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,382,349 B2 Harrington Et Al
    USOO9382349B2 (12) United States Patent (10) Patent No.: US 9,382,349 B2 Harrington et al. (45) Date of Patent: *Jul. 5, 2016 (54) POLYALPHAOLEFINS PREPARED USING (58) Field of Classification Search MODIFIED SALAN CATALYST COMPOUNDS CPC ........ C08F 4/60189; C08F 4/76; C08F 10/14: CO8F 210/14 (71) Applicants: ExxonMobil Chemical Patents Inc., USPC ............................ 526/172, 161,348.2, 348.3 Baytown, TX (US); Ramot at Tel-Aviv See application file for complete search history. University Ltd., Tel Aviv (IL) (56) References Cited (72) Inventors: Bruce A. Harrington, Houston, TX U.S. PATENT DOCUMENTS (US); Garth R. Giesbrecht, The 4,066,715 A 1/1978 Isa et al. Woodlands, TX (US); Matthew W. 5,153,157 A 10/1992 Hlatky et al. Holtcamp, Huffman, TX (US); Moshe 5,942.459 A 8/1999 Sugano et al. Kol, Ramat Gan (IL); Konstantin Press, 5,955,557 A * 9/1999 Machida ................... CO8F8/04 Rishon LeZion (IL); Gregory S. Day, 526,346 6,309,997 B1 10/2001 Fujita et al. Pasadena, TX (US) 6,399,724 B1 6/2002 Matsui et al. 6,444,773 B1* 9/2002 Markel ..................... CO8F 2.08 (73) Assignees: ExxonMobil Chemical Patents Inc., 526,348 Baytown, TX (US); Ramot at Tel-Aviv 6,462,136 B1 10/2002 Saito University Ltd., Tel Aviv (IL) 6,531,555 B2 3/2003 Whiteker 6,548,723 B2 4/2003 Bagheri et al. 6,632,899 B2 10/2003 Kol et al. (*) Notice: Subject to any disclaimer, the term of this 6,686,490 B1 2/2004 Kol et al.
    [Show full text]
  • The Intramolecular Ene Reaction of Some 1, 2-Diallylcyclohexanes
    ABSTRACT JACK CHING-PING CHENGfor the MASTER OF SCIENCE (Name of Student) (Degree) in Chemistry presented on 1.1.. 5 /976 (Major Dept. ) (Date) Title: THE INTRAMOLECULAR ENE REACTION OF SOME 1, 2- DIALLYLCYCLOHEXANES Redacted for privacy Abstract approved by: Elliot N. Marvell The familiar equilibrium between 1, 7- octadiene and cyclo- octene at temperatures exceeding 3000, indicates that an ene-retroene process could be used as a six atom ring expansion method. To test this possibility we prepared both cis and trans isomers of 1, 2- diallyl- 1, 2 -bis (trimethylsiloxy) cyclohexane and pyrolyzed this both in liquid and vapor phases.Reaction in either phase was clean leading essen- tially to a single product, 1,8-bis (trimethylsiloxy) bicyclo [6.4.0] dodec-2-ene, the ene product.This was not separated into cis and trans isomers either preparatively or analytically.This cis isomer of the reactant rearranges faster than the trans isomer. A minor by-product was identified as 7- spiro [6.5] dodecen-l-one, which ap- parently arises from 2-bicyclo [6.4.0] dodecen-1,8-diol through a pinacol rearrangement. This reaction must therefore result from the presence of traces of moisture, though it is possible to account for the rearrangement without hydrolysis. A sample of 1, 2-dially1-1-trimethylsiloxy cyclohexane was also prepared and rearranged. The product consisted of two isomers in a 9:1 ratio.The major isomer was 1-trimethylsiloxy-6-bicyclo [ 6. 4.0] dodecene and the mirror isomer was the 2-ene. These results show that the 2-ally1 group acts preferentially as the ene component, a result undoubtedly keyed by steric effects.
    [Show full text]
  • United States Patent Office Patented Aug
    3,830,877 United States Patent Office Patented Aug. 20, 1974 2 a quantity not higher than 10% of the copolymer's total 3,830,877 sequences, may have - in some cases-a number 2. COPOLYALKENAMERS HAVING A SEQUENTIAL lower than 5 or higher than 1000. STRUCTURE, AND METHOD FOR PREPARENG The polymeric chains constituting our sequential co SAME polyalkenamers are therefore characterized-when only Gino Dall Asta, San Giuliano Milanese, and Giuseppe Motroni, Milan, Italy, assignors to Montecatini Edison homosequences are present in said chains-by the fol S.p.A. Milan, Italy lowing general formula (3): No Drawing. Filed Aug. 1, 1972, Ser. No. 277,120 Claims priority, application Italy, Aug. 2, 1971, (3) -CH=CH(-CH2)-2-CH=CH(-CH2)mize 27,061/71 O -CH=CH(-CH) , , int, C, C08f 7/00 wherein ni', m', and z', z', have the values indicated U.S. C. 260-875 7 Claims hereinbefore respectively for m and z. The ratio between the various types of alkenameric ABSTRACT OF THE DISCLOSURE units is generally comprised between 5 and 90% of a 5 type of alkenameric units with respect to the polymer There are disclosed new high molecular weight copoly total. alkenamers the chains of which are made up of two or Besides the structures indicated in formula (3), the se more more alternating types of monomeric units arranged quential copolyalkenamers according to the present in according to either homo-sequences or both homo-Se vention may contain also small amounts, not higher than quences and hetero-sequences (which is to Say Sequences 20 15% of the total copolymer, of other monomeric units, made up of statistically distributed monomeric units).
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School Department of Chemistry STUDIES TOWARD THE TOTAL SYNTHESIS OF STREPTORUBIN B A Dissertation in Chemistry by William Brent Clayton © 2008 William Brent Clayton Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2008 ii The dissertation of William Brent Clayton was reviewed and approved* by the following: Ken S. Feldman Professor of Chemistry Dissertation Advisor Chair of Committee Gong Chen Assistant Professor of Chemistry Scott Phillips Assistant Professor of Chemistry Ronald Hedden Assistant Professor of Materials Science and Engineering Ayusman Sen Professor of Chemistry Head of the Department of Chemistry *Signatures are on file in the Graduate School iii ABSTRACT Streptorubin B is a member of the prodigiosin family of natural products which are receiving considerable attention from academia as well as the pharmaceutical industry for their novel immunosuppressive and cytotoxic properties. Despite this interest, little effort has been shown toward an asymmetric synthesis of streptorubin B or the relationship between its chirality and biological activity. Progress toward the asymmetric synthesis of streptorubin B and its stereoisomers is herein described. Alkynyliodonium salts are versatile substrates which have been used to form a variety of heterocycles and other ring systems. The alkylidenecarbenes generated from the addition of soft nucleophiles to alkynyliodonium salts can insert intramolecularly into carbon-hydrogen bonds and typically do so with a high degree of regio- and stereoselectivity. The C ring of streptorubin B was made using this branch of hypervalent iodine chemistry, but this route was later abandoned due to failure of subsequent steps and instability of the products formed.
    [Show full text]
  • The Stereochemistry of the Catalytic Hydrogenation Of
    - 1 - THE STEREOCHEMISTRY OF THE CATALYTIC HYDROGENATION OF CYCLIC ALLYLIC ALCOHOLS Being a Thesis submitted to the University of Surrey for the Degree of Doctor of Philosophy in the Faculty of Science by Raj Kumar Sehga1 Department of Chemistry, July, 1968 University of Surrey, London, S*W. 11 ProQuest Number: 10803856 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10803856 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 4 8 1 0 6 - 1346 - z - ABSTRACT 2~Butylidenecyclopentanone, 2-butylidenecyclohexanone and 2-butylidenecycloheptanone were prepared by the Heformatsky reaction of 2-bromocyclopentanone, B-b^omocyclo- hexanone enol acetate and 2~bromocycloheptanone respectively with n-butyraldehyde and their structure was confirmed by infrared and ultraviolet spectroscopy. Reduction of the exo-cyclic ketones with LiAlH^ gave the corresponding cyclic allylic alcohols which were purified chromatographically and characterised by their mass spectra. On catalytic hydrogenation of these cyclic allylic alcohols, over a number of catalysts, three components were obtained by chromatography* Xn each case the first components were shown to be the dehydrogenation products, by comparison of theif retention times with authentic samples.
    [Show full text]