Dirofilaria Immitis) Infection in Dogs

Total Page:16

File Type:pdf, Size:1020Kb

Dirofilaria Immitis) Infection in Dogs Current Canine Guidelines for the Prevention, Diagnosis, and Management of Heartworm (Dirofilaria immitis) Infection in Dogs Revised 2018 Current Canine Guidelines for the Prevention, Diagnosis, and Management of Heartworm (Dirofilaria immitis) Infection in Dogs (Revised 2018) CONTENTS Thank You to Our Generous Sponsors: Click on the links below to navigate to each section. Preamble .....................................................................................................................................................................3 HIGHLIGHTS ................................................................................................................................................................3 EPIDEMIOLOGY ..........................................................................................................................................................4 Key Points Minimizing Heartworm Transmission in Relocated Dogs (box) Figure 1. Urban heat island profile. BIOLOGY AND LIFE CYCLE ........................................................................................................................................7 Key Points Figure 2. The heartworm life cycle. Figure 3. Images of a feeding mosquito. HEARTWORM PREVENTION .....................................................................................................................................9 © 2018 American Heartworm Society | PO Box 8266 | Wilmington, DE 19803-8266 | E-mail: [email protected] Key Points Macrocyclic Lactones Reports of Lack of Efficacy Vector Control Measures to Reduce Heartworm Transmission (box) Use of Repellents and Ectoparasiticides Multimodal Risk Management PRIMARY DIAGNOSTIC SCREENING ......................................................................................................................14 Key Points Test Timing for Optimal Results Microfilaria and Antigen Testing Antigen Tests When Should Heat Treatment of Samples Be Considered? (box) Microfilaria Tests How to Perform the Knott Test (box) Testing Considerations Following Noncompliance and When Changing Products Figure 4. Acanthocheilonema reconditum and Dirofilaria immitis. Figure 5. The testing protocol following known noncompliance. 2018 Canine Heartworm Guidelines 1 Other Diagnostic Aids ..............................................................................................................................................18 Prepared by Dr. C. Thomas Nelson, Dr. John Radiography W. McCall, Dr. Stephen Jones, and Dr. Andrew HIGHLIGHTS Echocardiography Moorhead, and approved by the Executive Board of • Diagnostics Figure 6. Moderate heartworm disease (radiographs). the American Heartworm Society: Officers: Dr. Chris AHS recommends annual antigen and Figure 7. Severe heartworm disease (radiographs). Rehm, President; Dr. Stephen Jones, Past President; microfilaria testing. (As the interpretation Figure 8. Echocardiogram. Dr. Tony Rumschlag, Vice President; Dr. Bianca of diagnostics has become more complex, Zaffarano, Secretary-Treasurer; Dr. Patricia Payne, please see the “Microfilaria and Antigen Diagnostics For Pre-Adulticide Evaluation In An Infected Dog ............................................................................18 Editor; Dr. Doug Carithers, Symposium Program Testing” section for more complete Chair; Board Members: Dr. Elizabeth Clyde, Dr. Brian information.) PRINCIPLES OF TREATMENT ..................................................................................................................................20 DiGangi, Dr. Chris Duke, Dr. Andrew Moorhead, Dr. Key Points Charles Thomas Nelson, and Dr. Jennifer Rizzo; and • Prevention Table 1. Summary of Clinical Signs of Canine Heartworm Disease Ex Officio Members: Dr. Marisa Ames, Symposium AHS recommends year-round Figure 9. Image of the main trunk of the right pulmonary artery. Program Co-Chair; Dr. John W. McCall, Associate administration of preventive drugs Figure 10. Image of a dead adult heartworm lodged in a distal pulmonary artery. Editor; Dr. Chris Adolph and Dr. Edward Wakem. approved by the US Food and Drug Administration (FDA) to prevent heartworm Adulticide Therapy ...................................................................................................................................................21 References by Christopher Evans, MS, Research infection and enhance compliance, the Melarsomine Dihydrochloride Professional II, Department of Infectious Diseases, latter being particularly important in Pulmonary Thromboembolism College of Veterinary Medicine, University of light of the documented presence of Georgia. resistant subpopulations. Application Adjunct Therapy .......................................................................................................................................................22 Preamble of an Environmental Protection Agency Steroids (EPA) registered mosquito repellent/ NSAIDs and Aspirin These recommendations supersede previous ectoparasiticide has been shown to Doxycycline editions and are based on the information increase the overall efficacy of a heartworm Macrocyclic Lactones presented at the 2016 Triennial Symposium of prevention program in laboratory Macrocyclic Lactones/Doxycycline the American Heartworm Society (AHS), new studies involving known resistant Figure 11. Pulmonary pathology associated with death of heartworms. research, and additional clinical experience. The heartworm isolates by providing control recommendations for the prevention, diagnosis, of the arthropod vector of heartworm. In AHS-Recommended Protocol ..................................................................................................................................24 and management of heartworm infection in cats Table 2. AHS-Recommended Protocol addition, AHS recommends reduction of are contained in a companion feline document exposure to mosquitoes through standard (available on the AHS website). Elimination of Microfilariae ......................................................................................................................................26 environmental control of mosquitoes and their breeding environments, and when Surgical Extraction of Adult Heartworms ...............................................................................................................26 possible, reducing outdoor exposure during Caval Syndrome (Dirofilarial Hemoglobinuria) key mosquito feeding periods. Pulmonary Arterial Infections • Adulticide Therapy Figure 12. Photographic Image of a heart from a dog suffering from caval syndrome. AHS recommends use of doxycycline and a Figure 13. Echocardiogram image. macrocyclic lactone prior to the three-dose Figure 14. Surgical removal of worms. regimen of melarsomine (one injection of 2.5 mg/kg body weight followed at least Alternative Therapies ................................................................................................................................................28 one month later by two injections of the Long-term Macrocyclic Lactone Administration same dose 24 hours apart) for treatment of Herbal Therapies heartworm disease in both symptomatic and asymptomatic dogs. Any method Compounded Medications .......................................................................................................................................28 utilizing only macrocyclic lactones as a slow-kill adulticide is not recommended. Confirmation of Adulticide Efficacy .........................................................................................................................28 Elective Surgeries in Dogs with Heartworms .........................................................................................................29 REFERENCES .............................................................................................................................................................29 2 American Heartworm Society 2018 Canine Heartworm Guidelines 3 EPIDEMIOLOGY Heartworm infection in dogs has been diagnosed around the globe. In the United States, its territories, and protectorates, heartworm is considered at least regionally endemic in each of the contiguous 48 states, Hawaii, Puerto Rico, US Virgin Islands, and Guam (Bowman et al, 2009; Kozek et al, 1995; Ludlam et al, 1970). Heartworm transmission has not been documented in Alaska; however, there are regions in central Alaska that have mosquito vectors KEY POINTS: and climate conditions to support the transmission EPIDEMIOLOGY of heartworms for brief periods (Darsie and Ward, • Heartworm infection has been diagnosed 2005; Slocombe et al, 1995; Terrell, 1998). Thus, in all 50 states and around the globe. the introduction of microfilaremic dogs or wild • Environmental and climatic changes, canids could set up a nidus of infection for local both natural and those created by transmission of heartworm in this state (see box on Figure 1. Urban heat island profile showing the elevation in urban air temperature compared with rural air temperature. (Image courtesy of Heat Island Group, Lawrence Berkeley National humans, relocation of microfilaremic page 5 for more on the role of transport of infected Laboratory). dogs, and expansion of the territories of dogs). Such relocation of microfilaremic dogs and expansion of the territories of microfilaremic microfilaremic wild canids continue to be Urban sprawl has led to the formation of The length of the heartworm transmission season in wild
Recommended publications
  • NEW RECORDS on ACANTHOCEPHALANS from CALIFORNIA SEA LIONS ZALOPHUS CALIFORNIANUS (PINNIPEDIA, OTARIIDAE) from CALIFORNIA, USA Fa
    Vestnik Zoologii, 52(3): 181–192, 2018 Fauna and Systematics DOI 10.2478/vzoo-2018-0019 UDC 595.133:599.5(794) NEW RECORDS ON ACANTHOCEPHALANS FROM CALIFORNIA SEA LIONS ZALOPHUS CALIFORNIANUS (PINNIPEDIA, OTARIIDAE) FROM CALIFORNIA, USA O. I. Lisitsyna1, O. Kudlai1- 3, T. R. Spraker4, T. A. Kuzmina1* 1Schmalhausen Institute of Zoology, NAS of Ukraine, vul. B. Khmelnytskogo, 15, Kyiv, 01030 Ukraine 2Institute of Ecology, Nature Research Centre, Akademijos, 2, 08412, Vilnius, Lithuania 3 Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom 2520, South Africa 4Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80526, USA *Corresponding author E-mail [email protected] New Records on Acanthocephalans from California Sea Lions Zalophus californianus (Pinnipedia, Otariidae) from California, USA. Lisitsyna, O. I. Kudlai, O., Spraker, T. R., Kuzmina, T. A. — To increase the currently limited knowledge addressing acanthocephalans parasitizing California sea lions (Zalophus californianus), 33 animals including pups, juvenile and adult males and females from the Marine Mammal Center (TMMC), Sausalito, California, USA were examined. Totally, 2,268 specimens of acanthocephalans representing fi ve species from the genera Andracantha (A. phalacrocoracis and Andracantha sp.), Corynosoma (C. strumosum and C. obtuscens) and Profi licollis (P. altmani) were found. Profi licollis altmani and A. phalacrocoracis, predominantly parasitize fi sh-eating birds; they were registered in Z. californianus for the fi rst time. Prevalence and intensity of California sea lion infection and transmission of acanthocephalans in these hosts of diff erent age groups were analyzed and discussed.
    [Show full text]
  • The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca Volvulus Excretory Secretory Products
    pathogens Review The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products Luc Vanhamme 1,*, Jacob Souopgui 1 , Stephen Ghogomu 2 and Ferdinand Ngale Njume 1,2 1 Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; [email protected] (J.S.); [email protected] (F.N.N.) 2 Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon; [email protected] * Correspondence: [email protected] Received: 28 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). Wewill mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes).
    [Show full text]
  • Vector-Borne Diseases of Small Companion Animals in Namibia: Literature Review, Knowledge Gaps and Opportunity for a One Health Approach
    Page 1 of 7 Review Article Vector-borne diseases of small companion animals in Namibia: Literature review, knowledge gaps and opportunity for a One Health approach Authors: Namibia has a rich history in veterinary health but little is known about the vector-borne 1 Bruce H. Noden diseases that affect companion dogs and cats. The aim of this review is to summarise the Minty Soni2 existing published and available unpublished literature, put it into a wider geographical Affiliations: context, and explore some significant knowledge gaps. To date, only two filarial pathogens 1Department of Entomology (Dirofilaria repens and Acanthocheilonema dracunculoides) and three tick-borne pathogens and Plant Pathology, (Babesia canis vogeli, Hepatozoon canis and Ehrlichia canis) have been reported. Most studies Oklahoma State University, United States have focused solely on dogs and cats in the urban Windhoek and surrounding areas, with almost nothing reported in rural farming areas, in either the populous northern regions or 2Rhino Park Veterinary Clinic, the low-income urban areas where animal owners have limited access to veterinary services. Windhoek, Namibia With the development of several biomedical training programmes in the country, there is Correspondence to: now an excellent opportunity to address zoonotic vector-borne diseases through a One Health Bruce Noden approach so as to assess the risks to small companion animals as well as diseases of public health importance. Email: [email protected] Postal address: Introduction 127 Noble Research Center, 2 Department of Entomology Namibia consists of a large land area (823 290 km ) with a relatively small population (2 160 000) and Plant Pathology, (CIA 2014) living in 13 regions.
    [Show full text]
  • Gene Expression in the Microfilariae of Brugia Pahangi
    GENE EXPRESSION IN THE MICROFILARIAE OF BRUGIA PAHANGI RICHARD DAVID EMES A thesis submitted for the degree of Doctor of Philosophy Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Glasgow University June 2000 © Richard D Ernes 2000 ProQuest Number: 13818964 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13818964 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW UNIVERSITY LIBRARY 1184 3 COPH \ To Mum and Dad With love and thanks. List of Contents Page List of Contents i Declaration xi Acknowledgements xii Abbreviations xiv List of Figures xvi Abstract xxii Chapter 1 Introduction. Page 1.1 The parasite. 1 1.1.1 Filarial nematodes. 1 1.1.2 Life cycle. 2 1.2 The human disease. 4 1.2.1 Clinical spectrum of disease. 4 1.2.2 Diagnosis and treatment of lymphatic filariasis. 6 1.2.3 Control of lymphatic filariasis. 8 1.3 The microfilariae. 9 1.3.1 Periodicity of the mf. 9 1.3.2 Non-continuous development of filarial nematodes. 11 1.3.3 The microfilarial sheath.
    [Show full text]
  • Diagnosis of Filarial Infections
    These bench aids were planned and developed by Dr Thomas C. Orihel. William Vincent Professor of Tropical Diseases. Tulane University. School of Public Health and Tropical Medicine. New Orleans. LA. USA; Dr Lawrence R. Ash. Professor Emeritus of Infectious and Tropical Diseases. School of Public Health. University of California. Los Angeles, CA. USA; Dr C. P. Ramachandran, Chief, and Dr Eric Ottesen, Medical Officer. Filariasis Control. Division of Control of Tropical Diseases. World Health Organization. Geneva, Switzerland. Acknowledgements Thanks are due to: Mme Francoise Ardoin (France), Dr Odile Bain (France). Dr John Cross (USA). Dr Vida Dennis (USA), Dr Mark Eberhard (USA). Dr Robert Lowrie Jr (USA), Dr Sri Oemijati (Indonesia). Dr Jean-Claude Petithory (France), Purnomo (Indonesia). and Dr LQrenzo Savioli (WHO), who either provided materials from which the photomicrographs were prepared or contributed in some other way to the development of these bench aids. The American Society of Clinical Pathologists Press (USA) graciously permitted reproduction of images 4f and 5f-h. j. WHO Library Cataloguing in Publication Data Bench aids for the diagnosis of filarial infections. 1.Filariasis - diagnosis ISBN 92 41544899 (NLM Classification: WC 880) The World Health Organization welcomes requests for permission to reproduce or translate its publications, in part or in full. Applications and enquiries should be addressed to the Office of Publications. World Health Organization. Geneva. Switzerland. which will be glad to provide the latest information on any changes made to the text. plans for new editions, and reprints and translations already available. @ World Health Organization 1997 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention.
    [Show full text]
  • Investigations of Filarial Nematode Motility, Response to Drug Treatment, and Pathology
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 8-2015 Investigations of Filarial Nematode Motility, Response to Drug Treatment, and Pathology Charles Nutting Western Michigan University, [email protected] Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Biochemistry Commons, Biology Commons, and the Pathogenic Microbiology Commons Recommended Citation Nutting, Charles, "Investigations of Filarial Nematode Motility, Response to Drug Treatment, and Pathology" (2015). Dissertations. 745. https://scholarworks.wmich.edu/dissertations/745 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. INVESTIGATIONS OF FILARIAL NEMATODE MOTILITY, RESPONSE TO DRUG TREATMENT, AND PATHOLOGY by Charles S. Nutting A dissertation submitted to the Graduate College in partial fulfillment of the requirements for the degree of Doctor of Philosophy Biological Sciences Western Michigan University August 2015 Doctoral Committee: Rob Eversole, Ph.D., Chair Charles Mackenzie, Ph.D. Pamela Hoppe, Ph.D. Charles Ide, Ph.D. INVESTIGATIONS OF FILARIAL NEMATODE MOTILITY, RESPONSE TO DRUG TREATMENT, AND PATHOLOGY Charles S. Nutting, Ph.D. Western Michigan University, 2015 More than a billion people live at risk of chronic diseases caused by parasitic filarial nematodes. These diseases: lymphatic filariasis, onchocerciasis, and loaisis cause significant morbidity, degrading the health, quality of life, and economic productivity of those who suffer from them. Though treatable, there is no cure to rid those infected of adult parasites. The parasites can modulate the immune system and live for 10-15 years.
    [Show full text]
  • Detection of the Filarial Parasite Mansonella Streptocerca in Skin Biopsies by a Nested Polymerase Chain Reaction-Based Assay Peter U
    Smith ScholarWorks Biological Sciences: Faculty Publications Biological Sciences 1998 Detection of the Filarial Parasite Mansonella streptocerca in Skin Biopsies by a Nested Polymerase Chain Reaction-Based Assay Peter U. Fischer Dietrich W. Büttner Jotham Bamuhiiga Steven A. Williams Smith College, [email protected] Follow this and additional works at: https://scholarworks.smith.edu/bio_facpubs Part of the Biology Commons Recommended Citation Fischer, Peter U.; Büttner, Dietrich W.; Bamuhiiga, Jotham; and Williams, Steven A., "Detection of the Filarial Parasite Mansonella streptocerca in Skin Biopsies by a Nested Polymerase Chain Reaction-Based Assay" (1998). Biological Sciences: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/bio_facpubs/41 This Article has been accepted for inclusion in Biological Sciences: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] Am. J. Trop. Med. Hyg., 58(6), 1998, pp. 816±820 Copyright q 1998 by The American Society of Tropical Medicine and Hygiene DETECTION OF THE FILARIAL PARASITE MANSONELLA STREPTOCERCA IN SKIN BIOPSIES BY A NESTED POLYMERASE CHAIN REACTION±BASED ASSAY PETER FISCHER, DIETRICH W. BUÈ TTNER, JOTHAM BAMUHIIGA, AND STEVEN A. WILLIAMS Clark Science Center, Department of Biological Sciences, Smith College, Northampton, Massachusetts; Department of Helminthology and Entomology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Agency for Technical Cooperation and Basic Health Services, Fort Portal, Uganda Abstract. To differentiate the skin-dwelling ®lariae Mansonella streptocerca and Onchocerca volvulus, a nested polymerase chain reaction (PCR) assay was developed from small amounts of parasite material present in skin biopsies. One nonspeci®c and one speci®c pair of primers were used to amplify the 5S rDNA spacer region of M.
    [Show full text]
  • Dirofilaria Immitis
    Alho et al. Parasites & Vectors (2017) 10:142 DOI 10.1186/s13071-017-2073-0 SHORTREPORT Open Access Dirofilaria immitis in pinnipeds and a new host record Ana Margarida Alho1†, Inês Marcelino1†, Vito Colella2, Carla Flanagan3, Nuno Silva3, Jorge Jesus Correia1, Maria Stefania Latrofa2, Domenico Otranto2* and Luís Madeira de Carvalho1 Abstract Background: Dirofilaria immitis is a mosquito-borne pathogen that is spreading worldwide, and the associated infection (i.e. dirofilariosis) is becoming a threat to animals and humans living in endemic areas. Little is known about the occurrence and risk of infection of D. immitis in pinnipeds. Here we report dirofilariosis by D. immitis in several pinniped species kept in captivity in Portugal. Methods: Animals were housed in an oceanographic park located in Algarve, southern Portugal, a geographical area endemic for canine dirofilariosis. To assess the occurrence of D. immitis, blood was collected from the park’sresident pinniped population, which consisted of 16 animals (5 common seals Phoca vitulina, 2 grey seals Halichoerus grypus, 3 California sea lions Zalophus californianus and 6 South African fur seals Arctocephalus pusillus pusillus). Dirofilaria immitis nematodes were detected by real-time PCR and by the presence of circulating antigens. In addition, modified Knott’s technique was performed to detect circulating microfilariae. Necropsies and histopathological examination of two animals which died during the study were also conducted. Results: Out of the 16 pinnipeds housed at the park, seven (43.8%) were positive for D. immitis by real-time PCR (3 P. vitulina,2Z. californianus and 2 A. p. pusillus), two of which (P. vitulina) were also positive for the nematode’s antigen.
    [Show full text]
  • S6 Ivermectin.Pdf
    21st WHO Expert Committee on the Selection and Use of Essential Medicines: Application for inclusion of ivermectin on the WHO Model List of Essential Medicines (EML) and Model List of Essential Medicines for Children (EMLc) Submitted: December 2016 Submitted by: Dr. Antonio Montresor Department of Control of Neglected Tropical Diseases Preventive Chemotherapy and Transmission Control World Health Organization Geneva, Switzerland Application for inclusion of ivermectin on the WHO Model List of Essential Medicines (EML) and Model List of Essential Medicines for Children (EMLc) Contents General items ...................................................................................................................... 4 1. Summary statement of the proposal for inclusion, change or deletion ........................... 4 2. Name of the WHO technical department and focal point supporting the application .... 5 3. Name of organization consulted and/or supporting the application ............................... 5 4. International Nonproprietary Name (INN) and anatomical therapeutic chemical (ATC) code of the medicine ................................................................................................................. 6 5. Formulation(s) and strength(s) proposed for inclusion; including adult and paediatric .. 6 5.1 Strongyloidiasis ....................................................................................................................... 6 5.2 Soil-transmitted helminthiasis ...............................................................................................
    [Show full text]
  • Insect Biodiversity: Science and Society, II R.G
    In: Insect Biodiversity: Science and Society, II R.G. Foottit & P.H. Adler, editors) John Wiley & Sons 2018 Chapter 17 Biodiversity of Ectoparasites: Lice (Phthiraptera) and Fleas (Siphonaptera) Terry D. Galloway Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada https://doi.org/10.1002/9781118945582.ch17 Summary This chapter addresses the two insect orders in which all known species are ectoparasites. The sucking and chewing lice (Phthiraptera) are hemimetabolous insects that spend their entire lives on the bodies of their hosts. Fleas (Siphonaptera), on the other hand, are holometabolous. The diversity of these ectoparasites is limited by the diversity of the birds and mammals available as hosts. Determining the community diversity of lice and fleas is essential to understanding ecological structure and interactions, yet offers a number of challenges to the ectoparasitologist. The chapter explores medical and veterinary importance of lice and fleas. They are more likely to be considered detrimental parasites, perhaps even a threat to conservation efforts by their very presence or by the disease agents they transmit. Perez-Osorio emphasized the importance of a more objective approach to conservation strategies by abandoning overemphasis on charismatic fauna and setting priorities in ecological management of wider biodiversity issues. When most people see a bird or mammal, they don’t look beneath the feathers or hair of that animal to see what is hidden. They see the animal at its face value, and seldom appreciate the diversity of life before them. The animal is typically a mobile menagerie, infested by external parasites and their body laden with internal parasites and pathogens.
    [Show full text]
  • Phocid Seals, Seal Lice and Heartworms: a Terrestrial Host–Parasite System Conveyed to the Marine Environment
    Vol. 77: 235–253, 2007 DISEASES OF AQUATIC ORGANISMS Published October 15 doi: 10.3354/dao01823 Dis Aquat Org REVIEW Phocid seals, seal lice and heartworms: a terrestrial host–parasite system conveyed to the marine environment Sonja Leidenberger1,*, Karin Harding2, Tero Härkönen1 1Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden 2Department of Marine Ecology, Göteborg University, Box 461, 40530 Göteborg, Sweden ABSTRACT: Adaptation of pinnipeds to the marine habitat imposed parallel evolutions in their para- sites. Ancestral pinnipeds must have harboured sucking lice, which were ancestors of the seal louse Echinophthirius horridus. The seal louse is one of the few insects that successfully adjusted to the marine environment. Adaptations such as keeping an air reservoir and the ability to hold on to and move on the host were necessary, as well as an adjustment of their life cycle to fit the diving habits of their host. E. horridus are confined to the Northern Hemisphere and have been reported from 9 spe- cies of northern phocids belonging to 4 genera, including land-locked seal species. The transmission from seal to seal is only possible when animals are hauled-out on land or ice. Lice are rarely found on healthy adult seals, but frequently on weak and young animals. The seal louse is suggested to play an important role as an intermediate host transmitting the heartworm Acanthocheilonema spiro- cauda among seals. However, the evidence is restricted to a single study where the first 3 larval stages of the heartworm were shown to develop in the louse. The fourth-stage larvae develop in the blood system of seals and eventually transform into the adult stage that matures in the heart.
    [Show full text]
  • The Natural History and Ecology of the Bearded Seal (Erginathus Barbatus) and the Ringed Seal (Phoca Hispida)
    Annual Report Contract # 02-5-022-53 Research Unit # 230 Reporting Period: 1 April 1976 ­ 1 April 1977 Number of Pages: 57 The Natural History and Ecology of the Bearded Seal (Erignathus barbatus) and the Ringed Seal (Phoca hispida) Principal Investigators: John J. Burns and Thomas J. Eley Marine Mammals Biologists Alaska Department of Fish and Game 1300 College Road Fairbanks, Alaska 99701 Assisted by: Kathy Frost, Carl Grauvogel, David James, Toni Johnson, Lloyd Lowry, John Matthews, Edward Muktoyuk, Carol Nielsen, Harry Reynolds, Glenn Seaman, Lynn Vaughan April 1, 1977 ?.26 Table of Contents I. Summary of objectives, conclusions and implications with respect to OCS oil and gas development. II. Introduction .••...... III. Current state of knowledge A. Ringed seal . B. Bearded seal. • . • IV. Study area ........ V. Sources, methods and rationale of data collection. VI-VII Results and Discus8ion A. Field activities and specimen collection. B. Marine mammal harvests...•.•. C. Bearded and ringed seal food habits D. Bearded seals . • . E. Ringed seals..... F. Pathology and parasitology. VII. Conclusions - Ringed seal. IX. Needs for further study..... X. Summary of Fourth Quarter Operations XI. References and Literature Cited. • • Appendix I 227 I. Summary of objectives, conclusions and implications with respect to OCS oil and gas development Ringed seals, Phoca hispida, and bearded seals, Erignathus barbatus, are major components of the marine mammal fauna of the Bering, Chukchi and Beaufort Seas. They have been chosen as target species for investigation based upon criteria including their significance in the ecosystem, importance to people residing along the coast and considerations of timeliness, feasibility and applica­ bility to OCS requirements.
    [Show full text]