The Possible Detection of a Binary Companion to a Type Ibn Supernova Progenitor J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fundamental Properties of Core-Collapse Supernova and GRB Progenitors: Predicting the Look of Massive Stars Before Death
A&A 558, A131 (2013) Astronomy DOI: 10.1051/0004-6361/201321906 & c ESO 2013 Astrophysics Fundamental properties of core-collapse supernova and GRB progenitors: predicting the look of massive stars before death Jose H. Groh1, Georges Meynet1, Cyril Georgy2, and Sylvia Ekström1 1 Geneva Observatory, Geneva University, Chemin des Maillettes 51, 1290 Sauverny, Switzerland e-mail: [email protected] 2 Astrophysics group, EPSAM, Keele University, Lennard-Jones Labs, ST5 5BG Keele, UK Received 16 May 2013 / Accepted 20 August 2013 ABSTRACT We investigate the fundamental properties of core-collapse supernova (SN) progenitors from single stars at solar metallicity. For this purpose, we combine Geneva stellar evolutionary models with initial masses of Mini = 20−120 M with atmospheric and wind models using the radiative transfer code CMFGEN. We provide synthetic photometry and high-resolution spectra of hot stars at the pre-SN stage. For models with Mini = 9−20 M, we supplement our analysis using publicly available MARCS model atmospheres of RSGs to estimate their synthetic photometry. We employ well-established observational criteria of spectroscopic classification and find that, depending on their initial mass and rotation, massive stars end their lives as red supergiants (RSG), yellow hypergiants (YHG), luminous blue variables (LBV), and Wolf-Rayet (WR) stars of the WN and WO spectral types. For rotating models, we obtained the + following types of SN progenitors: WO1–3 (Mini ≥ 32 M), WN10–11 (25 < Mini < 32 M), LBV (20 ≤ Mini ≤ 25 M), G1 Ia (18 < Mini < 20 M), and RSGs (9 ≤ Mini ≤ 18 M). For non-rotating models, we found spectral types WO1–3 (Mini > 40 M), WN7–8 (25 < Mini ≤ 40 M), WN11h/LBV (20 < Mini ≤ 25 M), and RSGs (9 ≤ Mini ≤ 20 M). -
OGLE-2014-SN-131: a Long-Rising Type Ibn Supernova from a Massive Progenitor E
Astronomy & Astrophysics manuscript no. output c ESO 2017 March 8, 2017 OGLE-2014-SN-131: A long-rising Type Ibn supernova from a massive progenitor E. Karamehmetoglu1, F. Taddia1, J. Sollerman1, Ł. Wyrzykowski2, S. Schmidl3, M. Fraser4, C. Fremling1, J. Greiner5; 6, C. Inserra7, Z. Kostrzewa-Rutkowska2; 8; 9, K. Maguire7, S. Smartt7, M. Sullivan10, and D. R. Young7 1 Department of Astronomy, The Oskar Klein Centre, Stockholm University, AlbaNova, 10691 Stockholm, Sweden. e-mail: [email protected] 2 Warsaw University Astronomical Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland. 3 Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany. 4 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK. 5 Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany. 6 Excellence Cluster Universe, Technische Universität München, Boltzmannstrasse 2, 85748 Garching, Germany. 7 Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK. 8 SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, the Netherlands. 9 Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands. 10 Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK. Received date / Accepted date ABSTRACT Context. Type Ibn supernovae (SNe Ibn) are thought to be the core-collapse explosions of massive stars whose ejecta interact with He-rich circumstellar material (CSM). Aims. We report the discovery of a SN Ibn, with the longest rise-time ever observed, OGLE-2014-SN-131. We discuss the potential powering mechanisms and the progenitor nature of this peculiar stripped-envelope (SE), circumstellar-interacting SN. -
Download a PDF of the Abstracts Booklet
TALKS SN2016 ABSTRACTS BOOKLET 2 1.- SESSION: Cultural NAME: Cristian Moreno Pakarati AFFILIATION: Ahirenga Research TITTLE: A new proposal for a division of Easter Island's history ABSTRACT: This paper presents an original interpretation of the long-term history of the island, dividing it in three main periods. By this, it pretends to contribute a new vision on a topic long abandoned by the growingly specialized archaeology that focuses more and more on the smallest of details. The scheme is as follows: a first period, as an era of open ocean navigation and relatively frequent contact with other Polynesian people; a second period, as an era of extreme isolation where the Rapanui culture developed many of its unique traits within the Polynesian and World context; and a third period, of contacts with "the West", starting in 1722 with the Dutch expedition of Roggeveen. By this, it pretends to simplify the timeline of events on the island and contextualize better the statue-carving era and the Bird-cult of Easter Island. 2.- SESSION: 01 NAME: Edmundo Edwards AFFILIATION: Pacific Islands Research Institute TITTLE: Archeoastronomy of Eastern Polynesia and Easter Island ABSTRACT: Some 3,500 years ago in a span of about 500 years, the Lapita, the ancestors of the Polynesians, used their knowledge of the stars to settle an area 4,300 km wide in what is considered one of the speediest human expansions of the pre-historic world. Their descendants, the Polynesians, eventually settled hundreds of islands crossing millions of square kilometres of water without navigational instruments, guided by nothing more than complex astronomical observations and an understanding of natural signs. -
Gaia TGAS Search for Large Magellanic Cloud Runaway Supergiant Stars: Candidate Hypervelocity Star Discovery, and the Nature Of
Astronomy & Astrophysics manuscript no. lennon˙gaia˙v2˙arx c ESO 2017 March 14, 2017 Gaia TGAS search for Large Magellanic Cloud runaway supergiant stars Candidate hypervelocity star discovery, and the nature of R 71 Daniel J. Lennon1, Roeland P. van der Marel2, Mercedes Ramos Lerate3, William O’Mullane1, and Johannes Sahlmann1;2 1 ESA, European Space Astronomy Centre, Apdo. de Correos 78, E-28691 Villanueva de la Canada,˜ Madrid, Spain 2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 3 VitrocisetBelgium for ESA, European Space Astronomy Centre, Apdo. de Correos 78, E-28691 Villanueva de la Canada,˜ Madrid, Spain Received ; accepted ABSTRACT Aims. To search for runaway stars in the Large Magellanic Cloud (LMC) among the bright Hipparcos supergiant stars included in the Gaia DR1 TGAS catalog. Methods. We compute the space velocities of the visually brightest stars in the Large Magellanic Cloud that are included in the Gaia TGAS proper motion catalog. This sample of 31 stars contains a Luminous Blue Variable (LBV), emission line stars, blue and yellow supergiants and a SgB[e] star. We combine these results with published radial velocities to derive their space velocities, and by comparing with predictions from stellar dynamical models we obtain their (peculiar) velocities relative to their local stellar environment. Results. Two of the 31 stars have unusually high proper motions. Of the remaining 29 stars we find that most objects in this sample have velocities that are inconsistent with a runaway nature, being in very good agreement with model predictions of a circularly rotating disk model. -
New Regimes in the Observation of Core-Collapse Supernovae
New Regimes in the Observation of Core-Collapse Supernovae Maryam Modjaz1;2, Claudia P. Gutierrez´ 3, and Iair Arcavi4 1Center for Cosmology and Particle Physics, New York University, 726 The CCSN Classification Landscape Broadway, New York, NY 10003, USA 2Center for Computational Astrophysics, Flatiron Institute,162 5th Av- enue, 10010, New York, NY, USA SN classification has been a challenge since the 1940’s [2], 3Department of Physics and Astronomy, University of Southampton, but especially recently, as innovative surveys have brought a Southampton, SO17 1BJ, UK large increase of new and debated types. Classification schemes 4The School of Physics and Astronomy, Tel Aviv University, Tel Aviv are important as physically motivated ones can give crucial in- 69978, Israel sight into the explosion physics and stellar evolution pathways that lead to the different kinds of important explosions. Core-collapse Supernovae (CCSNe) mark the deaths of stars The classical classification scheme [e.g., 3, 4] relies mostly more massive than about eight times the mass of the sun on spectra and has two main types: Type I SNe (SNe I) which (M ) and are intrinsically the most common kind of catas- do not show hydrogen lines, and Type II SNe (SNe II) which do. trophic cosmic explosions. They can teach us about many In Figure 1 (left panel), we present spectra around peak important physical processes, such as nucleosynthesis and brightness of the main CCSN classes. Among them, SNe II stellar evolution, and thus, they have been studied exten- are perhaps the most heterogeneous class with a large range of sively for decades. -
THE MAGELLANIC CLOUDS NEWSLETTER an Electronic Publication Dedicated to the Magellanic Clouds, and Astrophysical Phenomena Therein
THE MAGELLANIC CLOUDS NEWSLETTER An electronic publication dedicated to the Magellanic Clouds, and astrophysical phenomena therein No. 131 — 1 October 2014 http://www.astro.keele.ac.uk/MCnews Editor: Jacco van Loon Editorial Dear Colleagues, It is my pleasure to present you the 131st issue of the Magellanic Clouds Newsletter. Enjoy! Want your results on the front cover of the newsletter? Just send a picture (preferably postscript format) and brief description to [email protected]. The next issue is planned to be distributed on the 1st of December. Editorially Yours, Jacco van Loon 1 Refereed Journal Papers OGLE-LMC-ECL-11893: The discovery of a long-period eclipsing binary with a circumstellar disk Subo Dong1, Boaz Katz2,11, Jos´eL. Prieto3,12, Andrzej Udalski4,13, Szymon KozÃlowski4,13, R.A. Street5,14, D.M. Bramich6,14, Y. Tsapras5,7,14, M. Hundertmark8,14, C. Snodgrass9,14, K. Horne8,14, M. Dominik8,14,15 and R. Figuera Jaimes8,10,14 1Kavli Institute for Astronomy and Astrophysics, Peking University, China 2Institute for Advanced Study, USA 3Department of Astrophysical Sciences, Princeton University, USA 4Warsaw University Observatory, Poland 5Las Cumbres Observatory Global Telescope Network, USA 6Qatar Environment and Energy Research Institute, Qatar Foundation, Qatar 7School of Physics and Astronomy, Queen Mary University of London, UK 8SUPA, School of Physics and Astronomy, University of St. Andrews, UK 9Max Planck Institute for Solar System Research, Germany 10European Southern Observatory, Germany 11John N. Bahcall Fellow 12Carnegie–Princeton Fellow 13The OGLE Collaboration 14The RoboNet Collaboration 15Royal Society University Research Fellow We report the serendipitous discovery of a disk-eclipse system OGLE-LMC-ECL-11893. -
Biennial Report 2006 2007 Published in Spain by the Isaac Newton Group of Telescopes (ING) ISSN 1575–8966 Legal License: TF–1142 /99
I SAAC N EWTON G ROUP OF T ELESCOPES Biennial Report 2006 2007 Published in Spain by the Isaac Newton Group of Telescopes (ING) ISSN 1575–8966 Legal license: TF–1142 /99 Apartado de correos, 321 E-38700 Santa Cruz de La Palma; Canary Islands; Spain Tel: +34 922 425 400 Fax: +34 922 425 401 URL: http://www.ing.iac.es/ Editor and designer: Javier Méndez ([email protected]) Printing: Gráficas Sabater. Tel: +34 922 623 555 Front cover: The Milky Way from the site of the William Herschel Telescope. Credit: Nik Szymanek. Inset: Photograph of the WHT at sunset. Credit: Nik Szymanek. Other picture credits: Nik Szymanek (WHT, p. 4; INT, p. 4; JKT, p. 4; ING, p. 5); Jens Moser (WHT, back; INT, back); Nik Szymanek (JKT, back). The ING Biennial Report is available online at http://www.ing.iac.es/PR/AR/. ISAAC NEWTON GROUP OF TELESCOPES Biennial Report of the STFC-NWO-IAC ING Board 2006 – 2007 ISAAC NEWTON GROUP William Herschel Telescope Isaac Newton Telescope Jacobus Kapteyn Telescope 4 • ING BIENNIAL R EPORT 2006–2007 OF TELESCOPES The Isaac Newton Group of Telescopes (ING) consists of the 4.2- metre William Herschel Telescope (WHT), the 2.5-metre Isaac Newton Telescope (INT) and the 1.0-metre Jacobus Kapteyn Telescope (JKT). The ING is located 2350 metres above sea level at the Observatorio del Roque de los Muchachos (ORM) on the island of La Palma, Canary Islands, Spain. The WHT is the largest telescope of its kind in Western Europe. The construction, operation, and development of the ING telescopes are the result of a collaboration between the United Kingdom, The Netherlands and Spain. -
TYPE Ibn SUPERNOVAE SHOW PHOTOMETRIC HOMOGENEITY
Draft version August 23, 2016 Preprint typeset using LATEX style emulateapj v. 01/23/15 TYPE Ibn SUPERNOVAE SHOW PHOTOMETRIC HOMOGENEITY AND SPECTRAL DIVERSITY AT MAXIMUM LIGHT EVIDENCE FOR TWO SPECTRAL SUBCLASSES Griffin Hosseinzadeh1,2,*, Iair Arcavi1,3, Stefano Valenti4, Curtis McCully1,2, D. Andrew Howell1,2, Joel Johansson5, Jesper Sollerman6, Andrea Pastorello7, Stefano Benetti7, Yi Cao8, S. Bradley Cenko9,10, KelseyI. Clubb 11, Alessandra Corsi12, Gina Duggan8, Nancy Elias-Rosa7, Alexei V. Filippenko11, Ori D. Fox13, Christoffer Fremling6, Assaf Horesh8, Emir Karamehmetoglu6, Mansi Kasliwal8, G. H. Marion14, Eran Ofek5, David Sand12, Francesco Taddia6, WeiKang Zheng11, Morgan Fraser15, Avishay Gal-Yam5, Cosimo Inserra16, Russ Laher17, Frank Masci17, Umaa Rebbapragada18, Stephen Smartt16, Ken W. Smith16, Mark Sullivan19, Jason Surace17, Przemek Wo´zniak20 1Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr Ste 102, Goleta, CA 93117-5575, USA 2Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA 3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030, USA 4Department of Physics, University of California, 1 Shields Ave, Davis, CA 95616-5270, USA 5Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel 6Oskar Klein Centre, Department of Astronomy, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden 7INAF-Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, I-35122 Padova, -
Active Luminous Blue Variables in the Large Magellanic Cloud
The Astronomical Journal, 154:15 (26pp), 2017 July https://doi.org/10.3847/1538-3881/aa6195 © 2017. The American Astronomical Society. All rights reserved. Active Luminous Blue Variables in the Large Magellanic Cloud Nolan R. Walborn1,6, Roberto C. Gamen2,7, Nidia I. Morrell3, Rodolfo H. Barbá4,8,9, Eduardo Fernández Lajús2,7, and Rodolfo Angeloni5 1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA; [email protected] 2 Instituto de Astrofísica de La Plata, CONICET–UNLP and Facultad de Ciencias Astronómicas y Geofísicas, UNLP, Paseo del Bosque s/n, La Plata, Argentina; [email protected], efl[email protected] 3 Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena, Chile; [email protected] 4 Departamento de Física y Astronomía, Universidad de La Serena, Cisternas 1200 Norte, La Serena, Chile; [email protected] 5 Gemini Observatory, Colina El Pino, Casilla 603, La Serena, Chile; [email protected] Received 2016 October 17; revised 2017 February 15; accepted 2017 February 18; published 2017 June 20 Abstract We present extensive spectroscopic and photometric monitoring of two famous and currently highly active luminous blue variables (LBVs) in the Large Magellanic Cloud (LMC), together with more limited coverage of three further, lesser known members of the class. R127 was discovered as an Ofpe/WN9 star in the 1970s but entered a classical LBV outburst in or about 1980 that is still in progress, thus enlightening us about the minimum state of such objects. R71 is currently the most luminous star in the LMC and continues to provide surprises, such as the appearance of [Ca II] emission lines, as its spectral type becomes unprecedentedly late. -
Part 2. the Status of Stellar Variability Section 2A. Pulsating Stars
58 Part 2A: Maeder; Aerts et al., JAAVSO Volume 35, 2006 Part 2. The Status of Stellar Variability Section 2A. Pulsating Stars Overview of Stellar Pulsations and Driving Mechanisms in Relation to the Evolution of Stars (Abstract) André Maeder Geneva Observatory, CH-1290 Sauverny, Switzerland Abstract An overview of pulsations and instabilities throughout the HR diagram will be presented in relation to a description of the main phases of stellar evolution. The various groups of variable stars will be discussed as well as their properties. We shall also examine the basic physics of stellar pulsations, with a particular emphasis on the driving mechanisms. These mechanisms are essentially effects due to stellar opacity and radiation pressure. Radiation also plays a major role in producing stellar winds and the many consequences of these winds on the evolution will be illustrated. Pulsating B Stars Discovered by HIpparCOS (Abstract) C. Aerts Postdoctoral Fellow, Fund for Scientific Research, Flanders, Belgium Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200, B, B-3001 Leuven, Belgium C. Waelkens P. De Cat K. Kolenberg E. Kestens Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200, B, B-3001 Leuven, Belgium M. Grenon L. Eyer Observatoire de Genève, CH-1290 Sauverny, Switzerland The follow-up data were performed with the Swiss Telescope of the Geneva Observatory and with ESO’s CAT telescope, both at La Silla, Chile Abstract We present a classification of 267 new variable B-type stars discovered by HIPPARCOS, which results in, among others, a huge number of new Slowly Pulsating B stars and several supergiants with α Cyg-type variations. -
First Detection of Crystalline Silicates in the LMC
UvA-DARE (Digital Academic Repository) Dust in R71: first detection of crystalline silicates in the LMC Voors, R.H.M.; Waters, L.B.F.M.; Morris, P.W.; Trams, N.R.; de Koter, A.; Bouwman, J. Publication date 1999 Published in Astronomy & Astrophysics Link to publication Citation for published version (APA): Voors, R. H. M., Waters, L. B. F. M., Morris, P. W., Trams, N. R., de Koter, A., & Bouwman, J. (1999). Dust in R71: first detection of crystalline silicates in the LMC. Astronomy & Astrophysics, 341, L67-L70. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:01 Oct 2021 Astron. Astrophys. 341, L67–L70 (1999) ASTRONOMY AND ASTROPHYSICS Letter to the Editor LETTER Dust in R71: first detection of crystalline silicates in the LMC? R.H.M. -
UC Berkeley UC Berkeley Previously Published Works
UC Berkeley UC Berkeley Previously Published Works Title Massive stars exploding in a He-rich circumstellar medium - VI. Observations of two distant Type Ibn supernova candidates discovered by La Silla-QUEST Permalink https://escholarship.org/uc/item/4vh8s6jh Journal Monthly Notices of the Royal Astronomical Society, 449(2) ISSN 0035-8711 Authors Pastorello, A Hadjiyska, E Rabinowitz, D et al. Publication Date 2015-05-11 DOI 10.1093/mnras/stv335 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Mon. Not. R. Astron. Soc. 000, 1–14 (201X) Printed 25 September 2018 (MN LATEX style file v2.2) Massive stars exploding in a He-rich circumstellar medium. VI. Observations of two distant Type Ibn supernova candidates discovered by La Silla-QUEST A. Pastorello,1⋆ E. Hadjiyska,2 D. Rabinowitz,2 S. Valenti,3,4 M. Turatto,1 G. Fasano,1 S. Benitez-Herrera,5 C. Baltay,2 S. Benetti,1 M. T. Botticella,6 E. Cappellaro,1 N. Elias-Rosa,1 N. Ellman,2 U. Feindt,7 A. V. Filippenko,8 M. Fraser,9 A. Gal-Yam,10 M. L. Graham,8 D. A. Howell,3,4 C. Inserra,11 P. L. Kelly,8 R. Kotak,11 M. Kowalski,7 R. McKinnon,2 A. Morales-Garoffolo,12 P. E. Nugent,13,8 S. J. Smartt,11 K. W. Smith,11 M. D. Stritzinger,14 M. Sullivan,15 S. Taubenberger,5,16 E. S. Walker,2 O. Yaron,10 and D. R. Young.11 1INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 2Department of Physics, Yale University, P.O.