Skull Base–Related Lesions at Routine Head CT from the Emer

Total Page:16

File Type:pdf, Size:1020Kb

Skull Base–Related Lesions at Routine Head CT from the Emer This copy is for personal use only. To order printed copies, contact [email protected] 1161 TRAUMA/EMERGENCY RADIOLOGY Skull Base–related Lesions at Routine Head CT from the Emer- gency Department: Pearls, Pitfalls, and Lessons Learned Hernan R. Bello, MD Joseph A. Graves, MD Routine non–contrast material–enhanced head CT is one of the Saurabh Rohatgi, MD most frequently ordered studies in the emergency department. Mona Vakil, MD Skull base–related pathologic entities, often depicted on the first or Jennifer McCarty, MD last images of a routine head CT study, can be easily overlooked in Rudy L. Van Hemert, MD the emergency setting if not incorporated in the interpreting radi- Stephen Geppert, MD ologist’s search pattern, as the findings can be incompletely imaged. Ryan B. Peterson, MD Delayed diagnosis, misdiagnosis, or lack of recognition of skull base pathologic entities can negatively impact patient care. This article Abbreviations: ASB = anterior skull base, reviews and illustrates the essential skull base anatomy and com- CCJ = craniocervical junction, CPA = cerebello-­ pontine angle, CSB = central skull base, mon blind spots that are important to radiologists who interpret CSF = cerebrospinal fluid, IIH = idiopathic nonenhanced head CT images in the acute setting. The imaging intracranial hypertension, MCF = middle cra- characteristics of important “do not miss” lesions are emphasized nial fossa, PCF = posterior cranial fossa, PNS = paranasal sinuses, PPF = pterygopalatine fossa, and categorized by their cause and location within the skull base, SIH = spontaneous intracranial hypotension, and the potential differential diagnoses are discussed. An interpre- TMJ = temporomandibular joint tation checklist to improve diagnostic accuracy is provided. RadioGraphics 2019; 39:1161–1182 ©RSNA, 2019 • radiographics.rsna.org https://doi.org/10.1148/rg.2019180118 Content Codes: From the Department of Radiology and Im- aging Sciences, Emory University School of Introduction Medicine, Emory University Midtown Hos- pital, 550 Peachtree Rd, Atlanta, GA 30308 Non–contrast material–enhanced CT of the head is the primary (H.R.B., J.A.G., M.V., R.B.P.); Department of imaging modality used to evaluate patients with neurologic deficits Radiology, University of Massachusetts Medi- who present to the emergency department. Routine head CT often cal School, Worcester, Mass (S.R.); Department of Diagnostic and Interventional Imaging, Uni- includes images of portions of the skull base, extracranial spaces, and versity of Texas Health Science Center at Hous- upper cervical spine. Skull base anatomy is complex, and pathologic ton, Houston, Tex (J.M.); and Department of Radiology, University of Arkansas for Medi- conditions in this region can be subtle and easily overlooked. There- cal Sciences, Little Rock, Ark (R.V.H., S.G.). fore, all radiologists working in the acute care setting must have a Presented as an education exhibit at the 2017 thorough knowledge of normal skull base anatomy at CT and the RSNA Annual Meeting. Received March 30, 2018; revision requested June 21 and received wide spectrum of disease that may manifest in this area. July 17; accepted July 24. For this journal-based SA-CME activity, the authors, editor, and re- viewers have disclosed no relevant relationships. Address correspondence to J.A.G. (e-mail: [email protected]). ©RSNA, 2019 SA-CME LEARNING OBJECTIVES After completing this journal-based SA-CME activity, participants will be able to: ■■Discuss the complex anatomy of the skull base. ■■Characterize easily missed skull base lesions on nonenhanced head CT images in the acute setting. ■■Identify clinical or imaging red flags that may necessitate further workup. See rsna.org/learning-center-rg. 1162 July-August 2019 radiographics.rsna.org greater than 5 mm. Studies have shown the supe- TEACHING POINTS riority of depicting findings on thinly collimated ■■ If there is discordance between the imaging findings and the spiral CT images (2). Obtaining thin-section im- clinical history, a more detailed investigation of the electronic ages of 3 mm or less is recommended in the setting medical record or a direct conversation with the clinician or consultation service members should be performed. of trauma, as use of thick-section images has been ■■ Any time that facial pain or paresthesia (in a trigeminal nerve found to miss a significant number of linear frac- distribution) manifests, the radiologist should interrogate the tures and skull base lesions, particularly when the PPF for evidence of abnormal soft tissue replacing the normal images are obtained in the horizontal plane (3,4). fatty contents, which could indicate extraosseous extension In addition to obtaining directly acquired axial of metastatic disease and compression of the pterygopalatine images, high-resolution multiplanar reformatted ganglion. images, including those obtained in the coronal ■■ The frontal sinus has bony dehiscences, structural abnor- and sagittal planes, may be constructed from the malities that can channel the spread of infection. Patients can present with headaches, photophobia, seizures, or focal neu- axial dataset to increase sensitivity in the acute rologic signs. Complications include subdural and epidural setting (2,5). At our trauma center, in addition to empyema, cerebritis, brain abscess, and meningitis, which are obtaining CT images with 5-mm section thick- often neurosurgical emergencies. ness, we routinely obtain 0.625-mm thin-section ■■ If there is any suggestion of temporal bone injury, evaluating images by using a bone algorithm with sagittal nonenhanced lung-window CT images of the head may allow and coronal reformatted images for all trauma identification of extra-axial pneumocephalus, which is a find- ing highly suggestive of injury. head CT protocols, thereby enhancing the depic- tion of complex skull base anatomy. ■■ When one encounters mastoid effusions (especially a unilat- eral effusion), the soft tissues along the eustachian tube and within the nasopharynx should be thoroughly investigated to Anatomy Review exclude an underlying obstructive mass. The anatomy depicted on the first few images of a routine nonenhanced head CT study can be cat- egorized as being located in the skull base, cranio- cervical junction (CCJ), or extracranial soft tissues. In addition, using a systematic search pattern and having an overall awareness of the neurologic Skull Base manifestations of a skull base lesion can aid in The skull base separates the intracranial and increasing the diagnostic yield for the interpreting extracranial compartments. It is formed from radiologist. These neurologic manifestations are portions of the frontal, ethmoid, sphenoid, paired often referred to as red flags and include cranial temporal, paired parietal, and occipital bones nerve deficits, strokelike symptoms that are atypi- (Fig 1). Arteries, veins, and multiple cranial cal for a specific vascular territory, and progres- nerves traverse the skull base through a constel- sive and/or recurrent onset of symptoms. Delayed lation of canals and foramina. The bones and diagnosis, misdiagnosis, or lack of recognition foramina of the skull base can be segmented into of skull base conditions can negatively impact three main components: anterior, middle, and patient care, highlighting the importance of using posterior (Figs 2,3) (6–9). a mental checklist when interpreting studies of The ASB is formed by the ethmoid, frontal, and the skull base, especially the first few images of sphenoid bones. Laterally, the ASB is composed of the study. the orbital plates of the frontal bones and antero- In this article, we review and illustrate the es- medially by the cribriform plate, crista galli, and sential skull base anatomy and the common blind fovea ethmoidalis of the ethmoid bone. Posteri- spots important to radiologists interpreting a orly, the flat surface of the planum sphenoidale nonenhanced head CT study in the acute setting. separates the sphenoid sinus from the intracranial We review the imaging characteristics of impor- contents. The line dividing the anterior and middle tant “do not miss” lesions at the skull base on the skull base can be drawn along the posterior aspect basis of their anatomic location and manifesta- of the lesser sphenoid wing and along the posterior tions. An interpretation checklist to help improve aspect of the planum sphenoidale, which (depend- diagnostic accuracy is provided. ing on the source used) typically does not include the anterior clinoid processes (6–9). Imaging Parameters The CSB is formed predominantly by the According to the practice parameter for the per- sphenoid and temporal bones. Anteriorly, the formance of head CT developed by the American sphenoid tuberculum sellae, anterior clinoid College of Radiology, the American Society of processes, and greater sphenoid wings define the Neuroradiology, and the Society for Pediatric Ra- CSB. Laterally, the temporal bone squamosal diology (1), contiguous or overlapping axial images portion and parietal bone confine the CSB. The should be acquired with a section thickness of no petrous ridge of the petrous temporal bone seg- RG • Volume 39 Number 4 Bello et al 1163 Figure 1. Basic skull base anatomy. (a) Axial three- dimensional reconstructed CT image with color-coded overlay shows the skull base sections. Blue = central skull base (CSB), purple = posterior skull base, teal = anterior skull base (ASB). (b) Axial CT image with color-coded overlay shows the skull base bones. Blue
Recommended publications
  • The Morphometric Study of Occurrence and Variations of Foramen Ovale S
    Research Article The morphometric study of occurrence and variations of foramen ovale S. Ajrish George*, M. S. Thenmozhi ABSTRACT Background: Foramen vale is one of the important foramina present in the sphenoid bone. Anatomically it is located in the greater wing of the sphenoid bone. The foramen ovale is situated posterolateral to the foramen rotundum and anteromedial to the foramen spinosum. The foramen spinosum is present posterior to the foramen ovale. The carotid canal is present posterior and medial to the foramen spinosum and the foramen rotundum is present anterior to the foramen ovale. The structures which pass through the foramen ovale are the mandibular nerve, emissary vein, accessory middle meningeal artery, and lesser petrosal nerve. The sphenoid bone has a body, a pair of greater wing, pair of lesser wing, pair of lateral pterygoid plate, and a pair of medial pterygoid plate. Aim: The study involves the assessment of any additional features in foramen ovale in dry South Indian skulls. Materials and Methods: This study involves examination of dry adult skulls. First, the foramen ovale is located, and then it is carefully examined for presence of alterations and additional features, and is recorded following computing the data and analyzing it. Results: The maximum length of foramen ovale on the right and left was 10.1 mm, 4.3 mm, respectively. The minimum length of the foramen in right and left was 9.1 mm, 3.2 mm, respectively. The maximum width of foramen ovale on the right and left was 4.8 mm and 2.3 mm, respectively. The minimum width of the foramen in the right and the left side was 5.7 mm and 2.9 mm, respectively.
    [Show full text]
  • Direct Sagittal CT in the Evaluation of Temporal Bone Disease
    371 Direct Sagittal CT in the Evaluation of Temporal Bone Disease 1 Mahmood F. Mafee The human temporal bone is an extremely complex structure. Direct axial and coronal Arvind Kumar2 CT sections are quite satisfactory for imaging the anatomy of the temporal bone; Christina N. Tahmoressi1 however, many relationships of the normal and pathologic anatomic detail of the Barry C. Levin2 temporal bone are better seen with direct sagittal CT sections. The sagittal projection Charles F. James1 is of interest to surgeons, as it has the advantage of following the plane of surgical approach. This article describes the advantages of using direct sagittal sections for Robert Kriz 1 1 studying various diseases of the temporal bone. The CT sections were obtained with Vlastimil Capek the aid of a new headholder added to our GE CT 9800 scanner. The direct sagittal projection was found to be extremely useful for evaluating diseases involving the vertical segment of the facial nerve canal, vestibular aqueduct, tegmen tympani, sigmoid sinus plate, sinodural angle, carotid canal, jugular fossa, external auditory canal, middle ear cavity, infra- and supra labyrinthine air cells, and temporo­ mandibular joint. CT has contributed greatly to an understanding of the complex anatomy and spatial relationship of the minute structures of the hearing and balance organs, which are packed into a small pyramid-shaped petrous temporal bone [1 , 2]. In the past 6 years, high-resolution CT scanning has been rapidly replacing standard tomography and has proved to be the diagnostic imaging method of choice for studying the normal and pathologic details of the temporal bone [3-14].
    [Show full text]
  • A Morphological Study of Jugular Foramen
    Vikas. C. Desai et al /J. Pharm. Sci. & Res. Vol. 9(4), 2017, 456-458 A Morphological Study of Jugular Foramen Vikas. C. Desai1, Pavan P Havaldar2 1. Asst. Prof, Department of Dentistry, BLDE University’s,Shri. B. M. Patil Medical College Hospital and Research Centre,Bijapur – 586103, Karnataka State. 2. Assistant Professor of Anatomy, Gadag Institute of Medical Sciences, Mallasamudra, Mulgund Road, Gadag, Karnataka, India. Abstract Jugular foramen is a large aperture in the base of the skull. It is located behind the carotid canal and is formed by the petrous part of the temporal bone and behind by the occipital bone. The jugular foramen is the main route of venous outflow from the skull and is characterised by laterality based on the predominance of one of the sides. Sigmoid sinus continues as internal jugular vein in posterior part of jugular foramen. Ligation of the internal jugular is sometimes performed during radical neck dissection with the risk of venous infarction, which some adduce to be due to ligation of the dominant internal jugular vein. It is generally said that although the Jugular foramen is larger on the right side compared to the left, its size as well as its height and volume vary in different racial groups and sexes. The foramen’s complex shape, its formation by two bones, and the numerous nerves and venous channels that pass through it further compound its anatomy. The present study was undertaken in 263(526 sides) different medical and dental institutions in Karnataka, India. Out of 263 skulls in 61.21% of cases the right foramina were larger than the left, in 13.68% of cases the left foramina were larger than the right and in 25.09% cases were equal on both sides.
    [Show full text]
  • Gross Anatomy Assignment Name: Olorunfemi Peace Toluwalase Matric No: 17/Mhs01/257 Dept: Mbbs Course: Gross Anatomy of Head and Neck
    GROSS ANATOMY ASSIGNMENT NAME: OLORUNFEMI PEACE TOLUWALASE MATRIC NO: 17/MHS01/257 DEPT: MBBS COURSE: GROSS ANATOMY OF HEAD AND NECK QUESTION 1 Write an essay on the carvernous sinus. The cavernous sinuses are one of several drainage pathways for the brain that sits in the middle. In addition to receiving venous drainage from the brain, it also receives tributaries from parts of the face. STRUCTURE ➢ The cavernous sinuses are 1 cm wide cavities that extend a distance of 2 cm from the most posterior aspect of the orbit to the petrous part of the temporal bone. ➢ They are bilaterally paired collections of venous plexuses that sit on either side of the sphenoid bone. ➢ Although they are not truly trabeculated cavities like the corpora cavernosa of the penis, the numerous plexuses, however, give the cavities their characteristic sponge-like appearance. ➢ The cavernous sinus is roofed by an inner layer of dura matter that continues with the diaphragma sellae that covers the superior part of the pituitary gland. The roof of the sinus also has several other attachments. ➢ Anteriorly, it attaches to the anterior and middle clinoid processes, posteriorly it attaches to the tentorium (at its attachment to the posterior clinoid process). Part of the periosteum of the greater wing of the sphenoid bone forms the floor of the sinus. ➢ The body of the sphenoid acts as the medial wall of the sinus while the lateral wall is formed from the visceral part of the dura mater. CONTENTS The cavernous sinus contains the internal carotid artery and several cranial nerves. Abducens nerve (CN VI) traverses the sinus lateral to the internal carotid artery.
    [Show full text]
  • Septation of the Sphenoid Sinus and Its Clinical Significance
    1793 International Journal of Collaborative Research on Internal Medicine & Public Health Septation of the Sphenoid Sinus and its Clinical Significance Eldan Kapur 1* , Adnan Kapidžić 2, Amela Kulenović 1, Lana Sarajlić 2, Adis Šahinović 2, Maida Šahinović 3 1 Department of anatomy, Medical faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina 2 Clinic for otorhinolaryngology, Clinical centre University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina 3 Department of histology and embriology, Medical faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina * Corresponding Author: Eldan Kapur, MD, PhD Department of anatomy, Medical faculty, University of Sarajevo, Bosnia and Herzegovina Email: [email protected] Phone: 033 66 55 49; 033 22 64 78 (ext. 136) Abstract Introduction: Sphenoid sinus is located in the body of sphenoid, closed with a thin plate of bone tissue that separates it from the important structures such as the optic nerve, optic chiasm, cavernous sinus, pituitary gland, and internal carotid artery. It is divided by one or more vertical septa that are often asymmetric. Because of its location and the relationships with important neurovascular and glandular structures, sphenoid sinus represents a great diagnostic and therapeutic challenge. Aim: The aim of this study was to assess the septation of the sphenoid sinus and relationship between the number and position of septa and internal carotid artery in the adult BH population. Participants and Methods: A retrospective study of the CT analysis of the paranasal sinuses in 200 patients (104 male, 96 female) were performed using Siemens Somatom Art with the following parameters: 130 mAs: 120 kV, Slice: 3 mm.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • Microscopic Anatomy of the Carotid Canal and Its Relations with Cochlea
    Rev Bras Otorrinolaringol. V.71, n.4, 410-4, jul./ago. 2005 ARTIGO ORIGINAL ORIGINAL ARTICLE Anatomia microscópica do canal Microscopic anatomy of the carótico e suas relações com a carotid canal and its relations cóclea e a cavidade timpânica with cochlea and middle ear Norma de Oliveira Penido1, Andrei Borin2, 3 4 Palavras-chave: anatomia, osso temporal, Yotaka Fukuda , Cristina Navarro Santos Lion artéria carótida interna, cóclea, orelha. Key words: anatomy, temporal bone, internal carotid artery, cochlea, ear. Resumo / Summary s relações entre as diversas estruturas nobres e vitais he knowledge of the relations between the noble and queA se apresentam na intimidade do osso temporal consti- vitalT structures of temporal bone is still a great challenge for tuem ainda hoje um grande desafio para o cirurgião otológico. the otologic surgeon. The microscopic anatomic studies of Os estudos micro-anatômicos do mesmo se encontram en- the temporal bone are one of the greatest help to prevent tre as grandes armas na busca deste entendimento. Objeti- lesions during surgical intervention. Aim: To study the vo: Estudar as correlações anatômicas entre o canal carótico anatomic correlations between the carotid canal and the e a cóclea, e a ocorrência de deiscências do mesmo junto à cochlea, and the occurrence of dehiscence of the carotid cavidade timpânica. Material e Método: Estudo microscó- canal in the middle ear tympanic cavity. Material and pico de 122 ossos temporais humanos. Resultados: As dis- Methods: Microscopic study of 122 human temporal bones. tâncias médias entre o canal carótico e os giros cocleares RESULTS: The average distance between the carotid canal foram: no local de menor distância 1,05mm; no giro basal, and the cochlea were: the shortest distance, 1.05mm; basal 2,04mm; no giro médio, 2,32mm; e no giro apical, 5,7mm.
    [Show full text]
  • Lab Manual Axial Skeleton Atla
    1 PRE-LAB EXERCISES When studying the skeletal system, the bones are often sorted into two broad categories: the axial skeleton and the appendicular skeleton. This lab focuses on the axial skeleton, which consists of the bones that form the axis of the body. The axial skeleton includes bones in the skull, vertebrae, and thoracic cage, as well as the auditory ossicles and hyoid bone. In addition to learning about all the bones of the axial skeleton, it is also important to identify some significant bone markings. Bone markings can have many shapes, including holes, round or sharp projections, and shallow or deep valleys, among others. These markings on the bones serve many purposes, including forming attachments to other bones or muscles and allowing passage of a blood vessel or nerve. It is helpful to understand the meanings of some of the more common bone marking terms. Before we get started, look up the definitions of these common bone marking terms: Canal: Condyle: Facet: Fissure: Foramen: (see Module 10.18 Foramina of Skull) Fossa: Margin: Process: Throughout this exercise, you will notice bold terms. This is meant to focus your attention on these important words. Make sure you pay attention to any bold words and know how to explain their definitions and/or where they are located. Use the following modules to guide your exploration of the axial skeleton. As you explore these bones in Visible Body’s app, also locate the bones and bone markings on any available charts, models, or specimens. You may also find it helpful to palpate bones on yourself or make drawings of the bones with the bone markings labeled.
    [Show full text]
  • MBB: Head & Neck Anatomy
    MBB: Head & Neck Anatomy Skull Osteology • This is a comprehensive guide of all the skull features you must know by the practical exam. • Many of these structures will be presented multiple times during upcoming labs. • This PowerPoint Handout is the resource you will use during lab when you have access to skulls. Mind, Brain & Behavior 2021 Osteology of the Skull Slide Title Slide Number Slide Title Slide Number Ethmoid Slide 3 Paranasal Sinuses Slide 19 Vomer, Nasal Bone, and Inferior Turbinate (Concha) Slide4 Paranasal Sinus Imaging Slide 20 Lacrimal and Palatine Bones Slide 5 Paranasal Sinus Imaging (Sagittal Section) Slide 21 Zygomatic Bone Slide 6 Skull Sutures Slide 22 Frontal Bone Slide 7 Foramen RevieW Slide 23 Mandible Slide 8 Skull Subdivisions Slide 24 Maxilla Slide 9 Sphenoid Bone Slide 10 Skull Subdivisions: Viscerocranium Slide 25 Temporal Bone Slide 11 Skull Subdivisions: Neurocranium Slide 26 Temporal Bone (Continued) Slide 12 Cranial Base: Cranial Fossae Slide 27 Temporal Bone (Middle Ear Cavity and Facial Canal) Slide 13 Skull Development: Intramembranous vs Endochondral Slide 28 Occipital Bone Slide 14 Ossification Structures/Spaces Formed by More Than One Bone Slide 15 Intramembranous Ossification: Fontanelles Slide 29 Structures/Apertures Formed by More Than One Bone Slide 16 Intramembranous Ossification: Craniosynostosis Slide 30 Nasal Septum Slide 17 Endochondral Ossification Slide 31 Infratemporal Fossa & Pterygopalatine Fossa Slide 18 Achondroplasia and Skull Growth Slide 32 Ethmoid • Cribriform plate/foramina
    [Show full text]
  • Topographical Anatomy and Morphometry of the Temporal Bone of the Macaque
    Folia Morphol. Vol. 68, No. 1, pp. 13–22 Copyright © 2009 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl Topographical anatomy and morphometry of the temporal bone of the macaque J. Wysocki 1Clinic of Otolaryngology and Rehabilitation, II Medical Faculty, Warsaw Medical University, Poland, Kajetany, Nadarzyn, Poland 2Laboratory of Clinical Anatomy of the Head and Neck, Institute of Physiology and Pathology of Hearing, Poland, Kajetany, Nadarzyn, Poland [Received 7 July 2008; Accepted 10 October 2008] Based on the dissections of 24 bones of 12 macaques (Macaca mulatta), a systematic anatomical description was made and measurements of the cho- sen size parameters of the temporal bone as well as the skull were taken. Although there is a small mastoid process, the general arrangement of the macaque’s temporal bone structures is very close to that which is observed in humans. The main differences are a different model of pneumatisation and the presence of subarcuate fossa, which possesses considerable dimensions. The main air space in the middle ear is the mesotympanum, but there are also additional air cells: the epitympanic recess containing the head of malleus and body of incus, the mastoid cavity, and several air spaces on the floor of the tympanic cavity. The vicinity of the carotid canal is also very well pneuma- tised and the walls of the canal are very thin. The semicircular canals are relatively small, very regular in shape, and characterized by almost the same dimensions. The bony walls of the labyrinth are relatively thin.
    [Show full text]
  • The Axial Skeleton Visual Worksheet
    Biology 201: The Axial Skeleton 1) Fill in the table below with the name of the suture that connects the cranial bones. Suture Cranial Bones Connected 1) Coronal suture Frontal and parietal bones 2) Sagittal suture Left and right parietal bones 3) Lambdoid suture Occipital and parietal bones 4) Squamous suture Temporal and parietal bones Source Lesson: Cranial Bones of the Skull: Structures & Functions 2) Fill in the table below with the name of the bony opening associated with the specific nerve or blood vessel. Bones and Foramina Associated Blood Vessels and/or Nerves Frontal Bone 1) Supraorbital foramen Ophthalmic nerve, supraorbital nerve, artery, and vein Temporal Bone 2) Carotid canal Internal carotid artery 3) Jugular foramen Internal jugular vein, glossopharyngeal nerve, vagus nerve, accessory nerve (Cranial nerves IX, X, XI) Occipital Bone 4) Foramen magnum Spinal cord, accessory nerve (Cranial nerve XI) 5) Hypoglossal canal Hypoglossal nerve (Cranial nerve XII) Sphenoid Bone 6) Optic canal Optic nerve, ophthalmic artery Source Lesson: Cranial Bones of the Skull: Structures & Functions 3) Label the anterior view of the skull below with its correct feature. Frontal bone Palatine bone Ethmoid bone Nasal septum: Perpendicular plate of ethmoid bone Sphenoid bone Inferior orbital fissure Inferior nasal concha Maxilla Orbit Vomer bone Supraorbital margin Alveolar process of maxilla Middle nasal concha Inferior nasal concha Coronal suture Mandible Glabella Mental foramen Nasal bone Parietal bone Supraorbital foramen Orbital canal Temporal bone Lacrimal bone Orbit Alveolar process of mandible Superior orbital fissure Zygomatic bone Infraorbital foramen Source Lesson: Facial Bones of the Skull: Structures & Functions 4) Label the right lateral view of the skull below with its correct feature.
    [Show full text]
  • Syndromes of the Orbital Fissure, Cavernous Sinus, Cerebello
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.2005.075259 on 16 August 2005. Downloaded from SYNDROMES OF THE ORBITAL FISSURE, CAVERNOUS SINUS, CEREBELLO- PONTINE ANGLE, AND SKULL BASE iii29 I Bone, D M Hadley J Neurol Neurosurg Psychiatry 2005;76(Suppl III):iii29–iii38. doi: 10.1136/jnnp.2005.075259 his article outlines the clinical presentation, neuroradiological approach, and the application of helpful ancillary investigations in the diagnosis of a range of cranial nerve syndromes. TThese syndromes are characterised by combinations of cranial nerve lesions that occur because of the involvement of contiguous nerves that direct investigation to a specific site. The syndromes highlight some important basic anatomy—in particular, knowledge of the contents of the cranial nerve exit/entry foramina (table 1) as well as the sites at which cranial nerves are clustered (table 2). The rate of presentation, with or without more widespread neurological or systemic involvement, hints at the particular pathological process at play. Advances in neuroimaging mean that the clinician and neuroradiologist have a range of available modalities to choose from. Discussion and appropriate selection of these is essential to accurate diagnosis and correct management. Magnetic resonance (MR) imaging is the modality of choice to depict many of the lesions involved in producing these syndromes based on their water content and molecular environment. Data can be acquired in multiple planes with differing contrast and is especially useful for showing soft tissue anatomy and pathology. There is now also widespread availability of spiral (helical) volume computed tomography (CT) where high definition planes or surfaces can be reconstructed to produce detailed depiction of bone, contrast filled vessels, and enhancing soft tissues based on their differences in electron density.
    [Show full text]