An Introduction to the Mesozoic Biotas of Scandinavia and Its Arctic Territories

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to the Mesozoic Biotas of Scandinavia and Its Arctic Territories Downloaded from http://sp.lyellcollection.org/ by guest on October 1, 2021 An introduction to the Mesozoic biotas of Scandinavia and its Arctic territories BENJAMIN P. KEAR1*, JOHAN LINDGREN2, JØRN H. HURUM3,4, JESPER MILA` N5,6 & VIVI VAJDA2,7 1Museum of Evolution, Uppsala University, Norbyva¨gen 16, 752 36 Uppsala, Sweden 2Department of Geology, Lund University, So¨lvegatan 12, 223 62 Lund, Sweden 3Natural History Museum, University of Oslo, Postboks 1172, Blindern, 0318 Oslo, Norway 4The University Centre in Svalbard, UNIS, Postboks 156, 9171 Longyearbyen, Norway 5Geomuseum Faxe/Østsjællands Museum, Østervej 2, DK-3640 Faxe, Denmark 6Natural History Museum of Denmark, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark 7Department of Palaeobiology, Swedish Museum of Natural History, Postboks 50007, SE-104 05 Stockholm, Sweden *Corresponding author (e-mail: [email protected]) Abstract: The Mesozoic biotas of Scandinavia have been studied for nearly two centuries. How- ever, the last 15 years have witnessed an explosive advance in research, most notably on the richly fossiliferous Triassic (Olenekian–Carnian) and Jurassic (Tithonian) Lagersta¨tten of the Norwe- gian Arctic Svalbard archipelago, Late Cretaceous (Campanian) Kristianstad Basin and Vomb Trough of Ska˚ne in southern Sweden, and the UNESCO heritage site at Stevns Klint in Denmark – the latter constituting one of the most complete Cretaceous–Palaeogene (Maastrichtian–Danian) boundary sections known globally. Other internationally significant deposits include earliest (Induan) and latest Triassic (Norian–Rhaetian) strata from the Danish autonomous territory of Greenland, and the Early Jurassic (Sinemurian–Pliensbachian) to Early Cretaceous (Berriasian) rocks of southern Sweden and the Danish Baltic island of Bornholm, respectively. Marine palaeo- communities are especially well documented, and comprise prolific benthic macroinvertebrates, together with pelagic cephalopods, chondrichthyans, actinopterygians and aquatic amniotes (ich- thyopterygians, sauropterygians and mosasauroids). Terrestrial plant remains (lycophytes, spheno- phytes, ferns, pteridosperms, cycadophytes, bennettitaleans and ginkgoes), including exceptionally well-preserved carbonized flowers, are also world famous, and are occasionally associated with faunal traces such as temnospondyl amphibian bones and dinosaurian footprints. While this collec- tive documented record is substantial, much still awaits discovery. Thus, Scandinavia and its Arctic territories represent some of the most exciting prospects for future insights into the spectacular his- tory of Mesozoic life and environments. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. The Mesozoic fossil record of Scandinavia and its of palaeontological research in Europe (Rudwick Arctic territories of Greenland and Svalbard span 2008; Evans 2010), and yet many key biotas and the dawn of the Triassic some 252 myr ago (Wordie bioevents from this continent remain comparatively Creek Formation, East Greenland: Nielsen 1935; underexplored. Scandinavia and its Arctic territories Bendix-Almgreen 1976; Looy et al. 2001; Stem- are therefore extremely important because they merik et al. 2001; Bjerager et al. 2006) through to encompass not only a Boreal mid–high palaeolati- the terminal Cretaceous–Palaeogene boundary tude setting (Surlyk 1990; Ditchfield 1997), but 66 myr ago (Møns Klint Formation, Denmark: have also witnessed a burgeoning of novel discover- Damholt & Surlyk 2012; Surlyk et al. 2013; Adolfs- ies that reveal significant insights into the global sen & Ward 2014; Hansen & Surlyk 2014). This spectrum of Mesozoic organisms, ecosystems and interval is marked by the nascence of modern environments. faunal and floral biodiversity, and culminated in This Special Publication aims to encapsulate one of the most cataclysmic extinction events in these latest palaeontological advances, and aug- Earth history. Much of our knowledge about the ments them with topical synopses from leading spe- Mesozoic world has derived from the long tradition cialists in the field. Our introduction is intended to From:Kear, B. P., Lindgren, J., Hurum, J. H., Mila`n,J.&Vajda, V. (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications, 434, http://doi.org/10.1144/SP434.18 # 2016 The Author(s). Published by The Geological Society of London. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Downloaded from http://sp.lyellcollection.org/ by guest on October 1, 2021 B. P. KEAR ET AL. provide additional contextual background, and, in 2015 and references therein), and coincide with particular, emphasizes the broad trends in floral lush vegetation comprising ginkgoes, cycads and successions and the distribution of faunal finds. bennettites, lycophytes, sphenophytes, and ferns Together, these highlight Scandinavia and its Arctic (Vajda et al. 2013). Fossilized fungi and bacterial territories as a regional centre for Mesozoic biotic traces have also been reported from Hopen Island radiations, and a spectacular area for future field in the Svalbard archipelago (McLoughlin & exploration with landmark research potential. Strullu-Derrien 2015). A bone fragment of a Late Triassic sauropodomorph was also recovered from Institutional abbreviations a drill core in the North Sea 2256 m below the seabed (Hurum et al. 2006a). LO, Department of Geology, Lund University, Earliest Triassic (Induan–Olenekian) marine Lund, Sweden; MGUH, Natural History Museum ecosystems are recognized from the Vardebukta of Denmark, Copenhagen, Denmark; OESM, Østs- Formation on Svalbard (Vigran et al. 2014), and jællands Museum, Store Heddinge, Denmark; most prolifically from the world-famous Wordie PMO, University of Oslo Natural History Museum Creek Formation in East Greenland (Fig. 1a–e). (Palaeontological Collection), Oslo, Norway; PMU, These deposits incorporate bivalves, gastropods Palaeontology Collection, Museum of Evolution, and ammonoids, as well as actinopterygian and coe- Uppsala University, Uppsala, Sweden. lacanth fishes (Spath 1932; Nielsen 1942, 1949; Donovan 1964) that span the Permian–Triassic boundary (Twitchett et al. 2001; Bjerager et al. A synthesis of Scandinavian Mesozoic biotas 2006). Potentially anadromous Early Triassic tem- The Triassic nospondyls (primarily tematosaurids, rhytidostians and capitosaurians) have also been described, with The long history of Scandinavia’s terrestrial biotas approximately equivalent occurrences found on is charted through the palynological record, which Spitsbergen and other islands in Svalbard (Sa¨ve- manifests liverworts as the seminal colonizers of So¨derbergh 1936; Cox & Smith 1973; reviewed by continental ecosystems in the early Palaeozoic Kear et al. 2015): these are associated with actino- (Late Ordovician) of southern Sweden (Badawy pterygian fishes (Fig. 1f) and hybodontiform sharks et al. 2014). Increasing abundance and diversity of (Stensio¨ 1921, 1925; Blazejowski et al. 2013). bryophytes and vascular plants occurred throughout Globally renowned Triassic marine amniote the Silurian and Devonian in Ska˚ne (Mehlqvist et al. fossils were recovered from Spitsbergen during 2015) and Gotland (Hagstro¨m 1997), with the gene- the Nordenskio¨ld expeditions of 1864 and 1868 sis of characteristic Mesozoic floras around the (Hulke 1873). More complete material was subse- Permian–Triassic boundary in Greenland, Svalbard quently collected by Swedish scientists in 1908 and the Oslo Rift: these collectively indicate turn- and 1909 (Wiman 1910, 1916a, b, 1928, 1933), over of regional biomes coincident with increasing and constitutes a diverse assemblage of ichthyop- aridity (Bercovici et al. 2015). The Permian–Trias- terygians (Fig. 1g), including the phylogenetically sic extinction event is otherwise expressed by the important basal taxon Grippia longirostris (Max- disappearance of dominant hygrophilous Cordaites well & Kear 2013). Isolated pistosaurid saurop- (which equate to gigantopterids in Cathaysia and terygian remains have also been discovered (Kear glossopterids in Gondwana) and their replacement & Maxwell 2013), and Hurum et al. (2014) docu- by emergent seed plants (Anderson et al. 1999; mented Triassic ichthyosaurian material from McLoughlin 2011). Edgeøya (Vigran et al. 2014). The classic vertebrate The coeval chronicle of Triassic terrestrial successions of Wiman (1910) are, however, still faunas is not well represented until the Norian– used to subdivide the horizons on Spitsbergen Rhaetian of the Fleming Fjord Formation in Jame- (see Maxwell & Kear 2013): the lithostratigraphi- son Land, East Greenland (Klein et al. 2015; cal work of Mørk et al. (1999), equating the Mila`n et al. 2015). Here, body fossils and foot- actinopterygian-andtemnospondyl-dominated‘Fish prints evidence various dinosaurian taxa, especially Niveau’ to the lower Olenekian Lusitaniadalen sauropodomorphs, together with plagiosaurid and Member of the Vikinghøgda Formation; the ‘Grip- capitosaurian temnospondyl amphibians, rare rham- pia Niveau’ and ‘Lower Saurian Niveau’ – both phorhynchoid pterosaurians, and early mammali- representing sequential components of the Late forms (e.g. Bendix-Almgreen 1976; Jenkins et al. Olenekian–Anisian Vendomdalen Member of the 1994; Mila`n et al. 2012a; Sulej et al. 2014; Clem- Vikinghøgda Formation; and derived mixosaurid mensen et al. 2015; Hansen et al. 2015; Klein and shastasaurid ichthyosaurians from the ‘Upper et al. 2015). Fragmentary Late Triassic
Recommended publications
  • For Peer Review
    Biological Journal of the Linnean Society Marine tethysuchian c rocodyliform from the ?Aptian -Albian (Early Cretaceous) of the Isle of Wight, England Journal:For Biological Peer Journal of theReview Linnean Society Manuscript ID: BJLS-3227.R1 Manuscript Type: Research Article Date Submitted by the Author: 05-May-2014 Complete List of Authors: Young, Mark; University of Edinburgh, Biological Sciences; University of Southampton, School of Ocean and Earth Science Steel, Lorna; Natural History Museum, Earth Sciences Foffa, Davide; University of Bristol, Department of Earth Sciences Price, Trevor; Dinosaur Isle Museum, Naish, Darren; University of Southampton, School of Ocean and Earth Science Tennant, Jon; Imperial College London, Department of Earth Science and Engineering Albian, Aptian, Cretaceous, Dyrosauridae, England, Ferruginous Sands Keywords: Formation, Isle of Wight, Pholidosauridae, Tethysuchia, Upper Greensand Formation Biological Journal of the Linnean Society Page 1 of 50 Biological Journal of the Linnean Society 1 2 3 Marine tethysuchian crocodyliform from the ?Aptian-Albian (Early Cretaceous) 4 5 6 of the Isle of Wight, England 7 8 9 10 by MARK T. YOUNG 1,2 *, LORNA STEEL 3, DAVIDE FOFFA 4, TREVOR PRICE 5 11 12 2 6 13 DARREN NAISH and JONATHAN P. TENNANT 14 15 16 1 17 Institute of Evolutionary Biology, School of Biological Sciences, The King’s Buildings, University 18 For Peer Review 19 of Edinburgh, Edinburgh, EH9 3JW, United Kingdom 20 21 2 School of Ocean and Earth Science, National Oceanography Centre, University of Southampton,
    [Show full text]
  • Cryptoclidid Plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert
    Journal of Vertebrate Paleontology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujvp20 Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert Rodrigo A. Otero , Jhonatan Alarcón-Muñoz , Sergio Soto-Acuña , Jennyfer Rojas , Osvaldo Rojas & Héctor Ortíz To cite this article: Rodrigo A. Otero , Jhonatan Alarcón-Muñoz , Sergio Soto-Acuña , Jennyfer Rojas , Osvaldo Rojas & Héctor Ortíz (2020): Cryptoclidid plesiosaurs (Sauropterygia, Plesiosauria) from the Upper Jurassic of the Atacama Desert, Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2020.1764573 To link to this article: https://doi.org/10.1080/02724634.2020.1764573 View supplementary material Published online: 17 Jul 2020. Submit your article to this journal Article views: 153 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujvp20 Journal of Vertebrate Paleontology e1764573 (14 pages) © by the Society of Vertebrate Paleontology DOI: 10.1080/02724634.2020.1764573 ARTICLE CRYPTOCLIDID PLESIOSAURS (SAUROPTERYGIA, PLESIOSAURIA) FROM THE UPPER JURASSIC OF THE ATACAMA DESERT RODRIGO A. OTERO,*,1,2,3 JHONATAN ALARCÓN-MUÑOZ,1 SERGIO SOTO-ACUÑA,1 JENNYFER ROJAS,3 OSVALDO ROJAS,3 and HÉCTOR ORTÍZ4 1Red Paleontológica Universidad de Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Chile, [email protected]; 2Consultora Paleosuchus Ltda., Huelén 165, Oficina C, Providencia, Santiago, Chile; 3Museo de Historia Natural y Cultural del Desierto de Atacama. Interior Parque El Loa s/n, Calama, Región de Antofagasta, Chile; 4Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario, Concepción, Región del Bío Bío, Chile ABSTRACT—This study presents the first plesiosaurs recovered from the Jurassic of the Atacama Desert that are informative at the genus level.
    [Show full text]
  • 8. Archosaur Phylogeny and the Relationships of the Crocodylia
    8. Archosaur phylogeny and the relationships of the Crocodylia MICHAEL J. BENTON Department of Geology, The Queen's University of Belfast, Belfast, UK JAMES M. CLARK* Department of Anatomy, University of Chicago, Chicago, Illinois, USA Abstract The Archosauria include the living crocodilians and birds, as well as the fossil dinosaurs, pterosaurs, and basal 'thecodontians'. Cladograms of the basal archosaurs and of the crocodylomorphs are given in this paper. There are three primitive archosaur groups, the Proterosuchidae, the Erythrosuchidae, and the Proterochampsidae, which fall outside the crown-group (crocodilian line plus bird line), and these have been defined as plesions to a restricted Archosauria by Gauthier. The Early Triassic Euparkeria may also fall outside this crown-group, or it may lie on the bird line. The crown-group of archosaurs divides into the Ornithosuchia (the 'bird line': Orn- ithosuchidae, Lagosuchidae, Pterosauria, Dinosauria) and the Croco- dylotarsi nov. (the 'crocodilian line': Phytosauridae, Crocodylo- morpha, Stagonolepididae, Rauisuchidae, and Poposauridae). The latter three families may form a clade (Pseudosuchia s.str.), or the Poposauridae may pair off with Crocodylomorpha. The Crocodylomorpha includes all crocodilians, as well as crocodi- lian-like Triassic and Jurassic terrestrial forms. The Crocodyliformes include the traditional 'Protosuchia', 'Mesosuchia', and Eusuchia, and they are defined by a large number of synapomorphies, particularly of the braincase and occipital regions. The 'protosuchians' (mainly Early *Present address: Department of Zoology, Storer Hall, University of California, Davis, Cali- fornia, USA. The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds (ed. M.J. Benton), Systematics Association Special Volume 35A . pp. 295-338. Clarendon Press, Oxford, 1988.
    [Show full text]
  • Forgotten Crocodile from the Kirtland Formation, San Juan Basin, New
    posed that the narial cavities of Para- Wima1l- saurolophuswere vocal resonating chambers' Goniopholiskirtlandicus Apparently included with this material shippedto Wiman was a partial skull that lromthe Wiman describedas a new speciesof croc- forgottencrocodile odile, Goniopholis kirtlandicus. Wiman publisheda descriptionof G. kirtlandicusin Basin, 1932in the Bulletin of the GeologicalInstitute KirtlandFormation, San Juan of IJppsala. Notice of this specieshas not appearedin any Americanpublication. Klilin NewMexico (1955)presented a descriptionand illustration of the speciesin French, but essentially repeatedWiman (1932). byDonald L. Wolberg, Vertebrate Paleontologist, NewMexico Bureau of lVlinesand Mineral Resources, Socorro, NIM Localityinformation for Crocodilian bone, armor, and teeth are Goni o p holi s kir t landicus common in Late Cretaceous and Early Ter- The skeletalmaterial referred to Gonio- tiary deposits of the San Juan Basin and pholis kirtlandicus includesmost of the right elsewhere.In the Fruitland and Kirtland For- side of a skull, a squamosalfragment, and a mations of the San Juan Basin, Late Creta- portion of dorsal plate. The referral of the ceous crocodiles were important carnivores of dorsalplate probably represents an interpreta- the reconstructed stream and stream-bank tion of the proximity of the material when community (Wolberg, 1980). In the Kirtland found. Figs. I and 2, taken from Wiman Formation, a mesosuchian crocodile, Gonio- (1932),illustrate this material. pholis kirtlandicus, discovered by Charles H. Wiman(1932, p. 181)recorded the follow- Sternbergin the early 1920'sand not described ing locality data, provided by Sternberg: until 1932 by Carl Wiman, has been all but of Crocodile.Kirtland shalesa 100feet ignored since its description and referral. "Skull below the Ojo Alamo Sandstonein the blue Specimensreferred to other crocodilian genera cley.
    [Show full text]
  • South Asians in Scandinavia: Diasporic Identity Processes Rashmi Singla Roskilde University, [email protected]
    Grand Valley State University ScholarWorks@GVSU Papers from the International Association for Cross- IACCP Cultural Psychology Conferences 2009 South Asians in Scandinavia: Diasporic Identity Processes Rashmi Singla Roskilde University, [email protected] Follow this and additional works at: https://scholarworks.gvsu.edu/iaccp_papers Part of the Psychology Commons Recommended Citation Singla, R. (2009). South Asians in Scandinavia: Diasporic identity processes. In G. Aikaterini & K. Mylonas (Eds.), Quod Erat Demonstrandum: From Herodotus’ ethnographic journeys to cross-cultural research: Proceedings from the 18th International Congress of the International Association for Cross-Cultural Psychology. https://scholarworks.gvsu.edu/iaccp_papers/39/ This Article is brought to you for free and open access by the IACCP at ScholarWorks@GVSU. It has been accepted for inclusion in Papers from the International Association for Cross-Cultural Psychology Conferences by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. South Asians in Scandinavia: Diasporic Identity Processes Rashmi Singla, Roskilde University, Denmark, [email protected] This chapter1 probes selected social-psychological aspects for South Asian young adults in Denmark and is a follow up of a Danish project conducted in the mid-nineties. The diasporic conceptualizations in respect to human centeredness and cultural processes in migration combined with life course perspective, provide the theoretical framework for this study. In-depth interviews were employed, and information was analyzed through meaning condensation and subsequent categorization of the narratives. The results show the reinterpretation of the self, “others” and home in the diasporic families, for the parental as well as the young generation. The chapter also depicts the young adults’ diasporic identities involving the ancestral countries as well as the Scandinavian welfare societies.
    [Show full text]
  • New Theropod, Thyreophoran, and Small Sauropod Tracks from the Middle Jurassic Bagå Formation, Bornholm, Denmark
    New theropod, thyreophoran, and small sauropod tracks from the Middle Jurassic Bagå Formation, Bornholm, Denmark JESPER MILÀN Milàn, J. 2011. New theropod, thyreophoran, and small sauropod tracks from the Middle Jurassic Bagå Formation, Bornholm, Denmark © 2011 by Bulletin of the Geological Society of Denmark, Vol. 59, pp. 51–59. ISSN 0011–6297. (www.2dgf.dk/publikationer/bulletin) https://doi.org/10.37570/bgsd-2011-59-06 Three new dinosaur tracks are described from the Middle Jurassic Bagå Formation of Bornholm, Denmark. The tracks are all preserved as natural casts on the underside of fluvial sandstone blocks originating from the old Hasle Klinkefabrik’s clay pit, now called Pyritsøen. The new tracks are from a medium-sized theropod, a thyreophoran, and a small sauropod. Together with a thyreophoran track and large sauropod tracks described in 2005, the Middle Jurassic dinosaur fauna of Bornholm now comprises theropods, two sizes of sauropods and at least one type of thyreophoran dinosaur. This is important additional data for the very scarce Middle Jurassic dinosaurian skeletal record of Europe. Received 22 November 2010 Accepted in revised form Key words: Dinosaur fauna, trace fossils, Middle Jurassic, theropod, thyreophoran, sauropod. 21 September 2011 Published online Jesper Milàn [[email protected]], GeomuseumFaxe, Østsjællands Museum, Østervej 2, DK-4640 Faxe, 30 September 2011 Denmark. Also Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark. Remains of Mesozoic terrestrial vertebrates are scarce Dinosaur remains are more commonly encountered in Denmark and have so far only been found in the in the southern part of Sweden, where numerous di- few Mesozoic outcrops along the west and southwest nosaur tracks and trackways of theropod dinosaurs, a coast of the Baltic island of Bornholm (Fig.
    [Show full text]
  • Data Structure
    Data structure – Water The aim of this document is to provide a short and clear description of parameters (data items) that are to be reported in the data collection forms of the Global Monitoring Plan (GMP) data collection campaigns 2013–2014. The data itself should be reported by means of MS Excel sheets as suggested in the document UNEP/POPS/COP.6/INF/31, chapter 2.3, p. 22. Aggregated data can also be reported via on-line forms available in the GMP data warehouse (GMP DWH). Structure of the database and associated code lists are based on following documents, recommendations and expert opinions as adopted by the Stockholm Convention COP6 in 2013: · Guidance on the Global Monitoring Plan for Persistent Organic Pollutants UNEP/POPS/COP.6/INF/31 (version January 2013) · Conclusions of the Meeting of the Global Coordination Group and Regional Organization Groups for the Global Monitoring Plan for POPs, held in Geneva, 10–12 October 2012 · Conclusions of the Meeting of the expert group on data handling under the global monitoring plan for persistent organic pollutants, held in Brno, Czech Republic, 13-15 June 2012 The individual reported data component is inserted as: · free text or number (e.g. Site name, Monitoring programme, Value) · a defined item selected from a particular code list (e.g., Country, Chemical – group, Sampling). All code lists (i.e., allowed values for individual parameters) are enclosed in this document, either in a particular section (e.g., Region, Method) or listed separately in the annexes below (Country, Chemical – group, Parameter) for your reference.
    [Show full text]
  • Arctic Species Trend Index 2010
    Arctic Species Trend Index 2010Tracking Trends in Arctic Wildlife CAFF CBMP Report No. 20 discover the arctic species trend index: www.asti.is ARCTIC COUNCIL Acknowledgements CAFF Designated Agencies: • Directorate for Nature Management, Trondheim, Norway • Environment Canada, Ottawa, Canada • Faroese Museum of Natural History, Tórshavn, Faroe Islands (Kingdom of Denmark) • Finnish Ministry of the Environment, Helsinki, Finland • Icelandic Institute of Natural History, Reykjavik, Iceland • The Ministry of Infrastructure and Environment, the Environmental Agency, the Government of Greenland • Russian Federation Ministry of Natural Resources, Moscow, Russia • Swedish Environmental Protection Agency, Stockholm, Sweden • United States Department of the Interior, Fish and Wildlife Service, Anchorage, Alaska CAFF Permanent Participant Organisations: • Aleut International Association (AIA) • Arctic Athabaskan Council (AAC) • Gwich’in Council International (GCI) • Inuit Circumpolar Conference (ICC) Greenland, Alaska and Canada • Russian Indigenous Peoples of the North (RAIPON) • The Saami Council This publication should be cited as: Louise McRae, Christoph Zöckler, Michael Gill, Jonathan Loh, Julia Latham, Nicola Harrison, Jenny Martin and Ben Collen. 2010. Arctic Species Trend Index 2010: Tracking Trends in Arctic Wildlife. CAFF CBMP Report No. 20, CAFF International Secretariat, Akureyri, Iceland. For more information please contact: CAFF International Secretariat Borgir, Nordurslod 600 Akureyri, Iceland Phone: +354 462-3350 Fax: +354 462-3390 Email: [email protected] Website: www.caff.is Design & Layout: Lily Gontard Cover photo courtesy of Joelle Taillon. March 2010 ___ CAFF Designated Area Report Authors: Louise McRae, Christoph Zöckler, Michael Gill, Jonathan Loh, Julia Latham, Nicola Harrison, Jenny Martin and Ben Collen This report was commissioned by the Circumpolar Biodiversity Monitoring Program (CBMP) with funding provided by the Government of Canada.
    [Show full text]
  • Triassic) in Barreal Depocenter, San Juan Province, Argentina
    Andean Geology ISSN: 0718-7092 ISSN: 0718-7106 [email protected] Servicio Nacional de Geología y Minería Chile Stratigraphical, sedimentological and palaeofloristic characterization of the Sorocayense Group (Triassic) in Barreal depocenter, San Juan Province, Argentina Bodnar, Josefina; Iglesias, Ari; Colombi, Carina E.; Drovandi, Juan Martín Stratigraphical, sedimentological and palaeofloristic characterization of the Sorocayense Group (Triassic) in Barreal depocenter, San Juan Province, Argentina Andean Geology, vol. 46, no. 3, 2019 Servicio Nacional de Geología y Minería, Chile Available in: https://www.redalyc.org/articulo.oa?id=173961656006 This work is licensed under Creative Commons Attribution 3.0 International. PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Josefina Bodnar, et al. Stratigraphical, sedimentological and palaeofloristic characterization of ... Research article Stratigraphical, sedimentological and palaeofloristic characterization of the Sorocayense Group (Triassic) in Barreal depocenter, San Juan Province, Argentina Caracterización estratigráfica, sedimentológica y paleoflorística del Grupo Sorocayense (Triásico) en el área de Barreal, provincia de San Juan, Argentina Josefina Bodnar *12 Redalyc: https://www.redalyc.org/articulo.oa? Universidad Nacional de La Plata, Argentina id=173961656006 [email protected] Ari Iglesias 23 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina [email protected] Carina E. Colombi 24 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina [email protected] Juan Martín Drovandi 24 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina [email protected] Received: 30 November 2017 Accepted: 30 October 2018 Published: 04 February 2019 Abstract: e northern area of Cuyo Basin (west-central Argentina) corresponds to the Rincón Blanco half-graben, whose filling is arranged into the Rincón Blanco and Sorocayense groups.
    [Show full text]
  • Brains and Intelligence
    BRAINS AND INTELLIGENCE The EQ or Encephalization Quotient is a simple way of measuring an animal's intelligence. EQ is the ratio of the brain weight of the animal to the brain weight of a "typical" animal of the same body weight. Assuming that smarter animals have larger brains to body ratios than less intelligent ones, this helps determine the relative intelligence of extinct animals. In general, warm-blooded animals (like mammals) have a higher EQ than cold-blooded ones (like reptiles and fish). Birds and mammals have brains that are about 10 times bigger than those of bony fish, amphibians, and reptiles of the same body size. The Least Intelligent Dinosaurs: The primitive dinosaurs belonging to the group sauropodomorpha (which included Massospondylus, Riojasaurus, and others) were among the least intelligent of the dinosaurs, with an EQ of about 0.05 (Hopson, 1980). Smartest Dinosaurs: The Troodontids (like Troödon) were probably the smartest dinosaurs, followed by the dromaeosaurid dinosaurs (the "raptors," which included Dromeosaurus, Velociraptor, Deinonychus, and others) had the highest EQ among the dinosaurs, about 5.8 (Hopson, 1980). The Encephalization Quotient was developed by the psychologist Harry J. Jerison in the 1970's. J. A. Hopson (a paleontologist from the University of Chicago) did further development of the EQ concept using brain casts of many dinosaurs. Hopson found that theropods (especially Troodontids) had higher EQ's than plant-eating dinosaurs. The lowest EQ's belonged to sauropods, ankylosaurs, and stegosaurids. A SECOND BRAIN? It used to be thought that the large sauropods (like Brachiosaurus and Apatosaurus) and the ornithischian Stegosaurus had a second brain.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Tennant Et Al AAM.Pdf
    Zoological Journal of the Linnean Society Evolutionary relations hips and systematics of Atoposauridae (Crocodylomorpha: Neosuchia): implications for the rise of Eusuchia Journal:For Zoological Review Journal of the Linnean Only Society Manuscript ID ZOJ-08-2015-2274.R1 Manuscript Type: Original Article Bayesian, Crocodiles, Crocodyliformes < Taxa, Implied Weighting, Laurasia Keywords: < Palaeontology, Mesozoic < Palaeontology, phylogeny < Phylogenetics Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online. S1 Atoposaurid character matrix.nex Page 1 of 167 Zoological Journal of the Linnean Society 1 2 3 1 Abstract 4 5 2 Atoposaurids are a group of small-bodied, extinct crocodyliforms, regarded as an important 6 3 component of Jurassic and Cretaceous Laurasian semi-aquatic ecosystems. Despite the group being 7 8 4 known for over 150 years, the taxonomic composition of Atoposauridae and its position within 9 5 Crocodyliformes are unresolved. Uncertainty revolves around their placement within Neosuchia, in 10 11 6 which they have been found to occupy a range of positions from the most basal neosuchian clade to 12 13 7 more crownward eusuchians. This problem stems from a lack of adequate taxonomic treatment of 14 8 specimens assigned to Atoposauridae, and key taxa such as Theriosuchus have become taxonomic 15 16 9 ‘waste baskets’. Here, we incorporate all putative atoposaurid species into a new phylogenetic data 17 10 matrix comprising 24 taxa scored for 329 characters. Many of our characters are heavily revised or 18 For Review Only 19 11 novel to this study, and several ingroup taxa have never previously been included in a phylogenetic 20 21 12 analysis.
    [Show full text]