Keep the Phone in Your Pocket: Enabling Smartphone Operation with an IMU Ring for Visually Impaired People

Total Page:16

File Type:pdf, Size:1020Kb

Keep the Phone in Your Pocket: Enabling Smartphone Operation with an IMU Ring for Visually Impaired People Keep the Phone in Your Pocket: Enabling Smartphone Operation with an IMU Ring for Visually Impaired People GUANHONG LIU∗, YIZHENG GU∗, YIWEN YIN, CHUN YU‡, YUNTAO WANG†, HAIPENG MI, and YUANCHUN SHI‡, Tsinghua University, China Previous studies have shown that visually impaired users face a unique set of pain points in smartphone interaction including locating and removing the phone from a pocket, two-handed interaction while holding a cane, and keeping personal data private in a public setting. In this paper, we present a ring-based input interaction that enables in-pocket smartphone operation. By wearing a ring with an Inertial Measurement Unit on the index finger, users can perform gestures on any surface (e.g., tables, thighs) using subtle, one-handed gestures and receive auditory feedback via earphones. We conducted participatory studies to obtain a set of versatile commands and corresponding gestures. We subsequently trained an SVM model to recognize these gestures and achieved a mean accuracy of 95.5% on 15 classifications. Evaluation results showed that our ring interaction is more efficient than some baseline phone interactions and is easy, private, and fun touse. CCS Concepts: • Human-centered computing → Accessibility technologies; Gestural input. Additional Key Words and Phrases: accessibility, gestural input ACM Reference Format: Guanhong Liu, Yizheng Gu, Yiwen Yin, Chun Yu, Yuntao Wang, Haipeng Mi, and Yuanchun Shi. 2020. Keep the Phone in Your Pocket: Enabling Smartphone Operation with an IMU Ring for Visually Impaired People. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 2, Article 58 (June 2020), 23 pages. https://doi.org/10.1145/3397308 1 INTRODUCTION Smartphones are an indispensable tool for visually impaired (VI) people. As shown in Figure1(a), VI users operate smartphones via a screen reader (e.g., VoiceOver or Talkback), following a touch and listen model. Previous studies have demonstrated that VI users encounter the following issues when using a smartphone. Getting the phone out of a pocket is inconvenient and time-consuming [8, 43]. It’s difficult for VI users to access or locate smartphones in a timely manner [32]. When using smartphones, VI people are constrained to two-handed interaction: one holding the phone, the other one interacting with the screen by performing gestures or touch-and-explore [39]. Therefore, using a smartphone is difficult when only one hand is available, such as when walking withacaneor ∗Both authors contributed equally to this study †This is the corresponding author ‡Also with Institute for Accessibility Development, Tsinghua University Authors’ address: Guanhong Liu, [email protected]; Yizheng Gu, [email protected]; Yiwen Yin, yyw17@mails. tsinghua.edu.cn; Chun Yu, [email protected]; Yuntao Wang, [email protected]; Haipeng Mi, [email protected]; Yuanchun Shi, [email protected], Key Laboratory of Pervasive Computing, Ministry of Education, Beijing Key Lab of Networked Multimedia, Beijing National Research Center for Information Science and Technology, Department of Computer Science and Technology, Department of Information Art Design, Tsinghua University, Beijing, China. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation onthefirst page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy 58 otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]. © 2018 Association for Computing Machinery. 2474-9567/2020/6-ART58 $15.00 https://doi.org/10.1145/3397308 Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 58. Publication date: June 2020. 58:2 • Liu et al. Fig. 1. (a) A visually impaired user operates a smartphone. (b), (c) and (d): Using an IMU ring to perform gestures on a table, on the top of the thigh, and on the side of the thigh to operate the phone without taking it out of her pocket a dog. To address these issues, we can develop a socially acceptable phone controlling system that allows users to use one hand to interact with smartphones without touching the phone. Prior works have provided a handful of wearable solutions. Previous studies using wristband-based interac- tion [43] allowed users to perform a set five of predefined gestures on a wristband to operate a smartphone. This interaction method addressed the pain points of acquiring the phone but failed to provide one-handed interaction. Ring-based surface-specific interaction [8], in which users wear a ring embedded with sensors worn on the index finger and use their thumb to rub on the side of the index finger, allowed users to perform gestures toissuesix commands to screen reader software. Location-specific on-body interaction [31, 35], enabled users wearing a ring equipped with a camera, IMU, and IR reflectance sensors, to quickly complete simple tasks like checking the date and time by performing different gestures on different body locations such as the thighs, ears, andsoon. In this paper, we present a ring-based gesture input system to enhance phone interaction. Our system uses a smart ring with a single Inertial Measurement Unit (IMU) to sense gesture inputs and delivers feedback to the user via earphones. Wearing the ring on the middle phalanx of the index finger, users can perform 15 subtle gestures on any surface (e.g., tables, thighs) to operate their phones. This interaction not only addresses the pain points associated with fishing a phone out of a pocket and one-handed operation, but also mitigates privacy and social concerns, such as unintentionally exposing personal data to bystanders, and unwanted attention in public settings due to special postures used to operate the phone [39, 43]. We use an IMU ring as a gesture sensing device. Compared with other sensing form factors like wrist-worn devices [15, 21, 40, 51], when using the index finger to perform gestures on a given surface, a ring is betterat sensing subtle gestures like taps and swipes. We believe it reduces interaction fatigue and is more efficient, for one-handed, subtle, and socially inconspicuous interaction. We address three research questions in this work: 1) What gestures should be included for ring-based interac- tions that work on any surface? 2) What is the optimal technical implementation to recognize those gestures? 3) How usable is this interaction? To address the first question, we conducted focus groups to obtain a set of 15 versatile commands forphone operation. We then designed a gesture vocabulary and conducted a gesture ease-of-use scoring study to understand the participants’ preferences. Finally, we mapped gestures to commands based on the idiomatic gestures of existing screen reader software, semantic relationships between commands and gestures, and gesture ease-of-use score. Our interaction surfaces include the user’s thighs, which are soft, not flat, and covered with the user’s clothing. For the second question, we collected data from 20 participants with different types of clothing. We then used this training data to identify the moment when a user’s finger touches down on the interaction surface [10], trained an SVM model, and achieved an average of 95.5% accuracy on 15 classifications. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 58. Publication date: June 2020. Keep the Phone in Your Pocket: Enabling Smartphone Operation with an IMU Ring for Visually Impaired People • 58:3 For the third question, we evaluated the gestures’ practice time, compared the accuracy and efficiency on three interaction surfaces (table surfaces, top of the thigh, side of the thigh), and compared the efficiency with the baseline – phone interaction. Results showed that users acquired ring interaction gestures in less than 10 minutes; When the phone was in the user’s pocket, the ring interaction was more efficient than the baseline interaction on all three surfaces. Specifically, our contributions are as follows: (1) This work enables VI people to operate smartphones via gestures input on any surface with an IMU ring for the first time. Based on data we collected from user studies, we designed a set of versatile commands and suitable gestures to control smartphones. (2) This work shows that a ring with a single IMU sensor has a good performance on recognizing 15 touch gestures on three different surfaces. (3) This work provides empirical results for usability evaluation, demonstrating that our ring interaction is learnable and and is more efficient than the baseline interaction when the phone is in the user’s pocket. 2 RELATED WORK In this section, we briefly review prior research, including input techniques that enable users to operatea smartphone without touching it, use smart rings to control devices, and phone-free interaction for VI users. 2.1 Input Techniques for a Smartphone Operation without Touching It In the future, smartphones will become smaller and smaller and even allow for invisible integration into ubiquitous surfaces and human skin [28]. In anticipation of this trend, some researches have explored phone-free interaction. For example, OmmiTouch [14] and Imaginary Phone [12] focused on using a projector to project the phone’s interface onto an ordinary surface (e.g., wall, hand, etc.), and then using a camera to track users’ hands to enable input. In terms of smartphones’ current form, screen-touch is the primary input method. However, this kind of interaction is difficult in some scenarios (e.g., when users’ hands are wet). Therefore, many researchers have explored screen-touch-free interactions, such as mid-air gesture input [7, 11], lip-motion input [36], acoustic input [50] and so on.
Recommended publications
  • Wireless Quarter Is Published on Behalf Nordic’S Nrf51822 Soc And, According to Integration of an On-Board Speaker, a MEMS During the COVID-19 Pandemic
    Issue 4, 2020 GREENER HOUSE GAS: HYDROGEN SMART METERS HOLD THE KEY TO CLEANER ENERGY MUSIC UNPLUGGED: A PERFECT BLEND OF ART AND TECHNOLOGY THE PATENT DEBATE: WHY STANDARD ESSENTIAL PATENTS AREN’T WORKING The IoT is the New Normal To remain viable in a post COVID-19 world, business and industry are embracing the IoT on a massive scale NORDIC ADDS Wi-Fi ACCELERATING THE INSIDE THE TO ITS PORTFOLIO SMART HOME VISION nRF CONNECT SDK Contents Welcome News 3 Svenn-Tore Larsen News News Extra 7 CEO The latest developments from Nordic Semiconductor Nordic adds Wi-Fi to IoT portfolio Analysis 8 Project CHIP aims to unlock Smart Home Amazon smart home potential ordic’s staff are committed to a vision of the company becoming a billion-dollar firm in the next several years. But Comment 9 Nordic and Amazon LE Audio moves a step closer Nit’s an ambitious target and we won’t get there unless we Wi-Fi is rapidly maintain existing client loyalty and attract new business. IoT is the New Normal 10 evolving into We regularly ask our customers how we can get better and it collaborate on The pandemic accelerates an industrial seems that while we’ve built a leading reputation in short range adoption of wireless tech IoT protocol. wireless and are making an impact with our low power cellular IoT Sidewalk project Greener House Gas 14 solutions, our customers would like an end-to-end IoT solution That makes Cellular IoT-powered hydrogen Nordic Semiconductor and Amazon are cooperating on the from Nordic; one capable of connecting wireless sensors to the it a perfect smart meters in the pipeline development of Bluetooth LE solutions for Amazon Sidewalk, a Cloud, for every application.
    [Show full text]
  • Study of User Interfaces for Wireless Applications with Wearable Device….Venkatesh S Et Al
    Study of User Interfaces for Wireless Applications with Wearable Device….Venkatesh S et al., International Journal of Technology and Engineering System (IJTES) Vol 7. No.5 2015 Pp. 484-490 ©gopalax Journals, Singapore available at : www.ijcns.com ISSN: 0976-1345 ------------------------------------------------------------------------------------------------------------------ Study of User Interfaces for Wireless Applications with Wearable Device Venkatesh S1 Dr.T.Rama Rao2 Head of the Department2 1,2Department of Telecommunication Engineering, SRM University, Kattankulathur , Chennai. Abstract Mobile computing is beginning to break the chains that tie us to our desks, but many of today’s mobile devices can still be a bit awkward to carry around. In the next age of computing, there will be an explosion of computer parts across our bodies, rather than across our desktops. In this paper, we present a design for wearable device, which communicates and stores personal information of your smart phone. The wearable device is controlled through a dedicated app for Android and iPhone smart phones and the Smartphone pairs with the wearable device using Bluetooth and it is set to vibrate and lights up when the Smartphone receives a call, text, email, or calendar alert and is also capable for data transmission through USB. Keywords— Bluetooth, Wearable Computing, Call alert. -------------------------------------------------------------------------------------------------------------------------------------------------------- I. Introduction fact that the call alert functionality is not proper To deploy computer and network services that for the actual situation of mobile phone’s user. users might travel requires prohibitive If the call alert is in “vibration” mode, or too expensive in infrastructure and maintenance. low volume ring, the user may not realize the Hoverer the alternative: wearable computers.
    [Show full text]
  • Zsense: Enabling Shallow Depth Gesture Recognition for Greater Input Expressivity on Smart Wearables
    Mid-Air Gestures and Interaction CHI 2015, Crossings, Seoul, Korea zSense: Enabling Shallow Depth Gesture Recognition for Greater Input Expressivity on Smart Wearables Anusha Withana, Roshan Peiris, Nipuna Samarasekara, Suranga Nanayakkara Augmented Senses Group, International Design Center, Singapore University of Technology and Design, Singapore {anusha | roshan peiris | nipuna | suranga}@sutd.edu.sg a b c d Figure 1: Shallow depth gesture recognition with zSense: a), b) Extending interaction space of a smartwatch and a smartglass, c) Enabling gesture interaction on a smart ring, d) zSense Sensor-emitter modules. ABSTRACT smartglasses2, smart rings [24] and other body-worn acces- In this paper we present zSense, which provides greater input sories [25]. These compact devices often have to compro- expressivity for spatially limited devices such as smart wear- mise between reduction of form factor and sophistication of ables through a shallow depth gesture recognition system us- interactions [30]. Among potential solutions, mid air ges- ing non-focused infrared sensors. To achieve this, we intro- tures have been one of the leading frontiers [19, 10, 27] as duce a novel Non-linear Spatial Sampling (NSS) technique it extends the interaction space beyond the device’s surface that significantly cuts down the number of required infrared area. However, many existing approaches [22] require signif- sensors and emitters. These can be arranged in many different icant processing power, physical space and energy resources configurations; for example, number of sensor emitter units that are extremely limited in compact devices. In addition, can be as minimal as one sensor and two emitters. We imple- for smaller devices, shallow depth or close proximity gestures mented different configurations of zSense on smart wearables are more desirable [6].
    [Show full text]
  • A Trimodal Study of Ring-Sized Interfaces for One-Handed Drone Control
    How Subtle Can It Get? A Trimodal Study of Ring-sized Interfaces for One-Handed Drone Control YUI-PAN YAU∗, Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong LIK HANG LEE†, Center for Ubiquitous Computing, The University of Oulu, Finland ZHENG LI, Department of Computer Science and Engineering, The Hong Kong University of Science and 63 Technology, Hong Kong and Fudan University, Shanghai, China TRISTAN BRAUD, Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong YI-HSUAN HO, Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong PAN HUI, Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong and Department of Computer Science, The University of Helsinki, Finland Flying drones have become common objects in our daily lives, serving a multitude of purposes. Many of these purposes involve outdoor scenarios where the user combines drone control with another activity. Traditional interaction methods rely on physical or virtual joysticks that occupy both hands, thus restricting drone usability. In this paper, we investigate one-handed human-to-drone-interaction by leveraging three modalities: force, touch, and IMU. After prototyping three different combinations of these modalities on a smartphone, we evaluate them against the current commercial standard through two user experiments. These experiments help us to find the combination of modalities that strikes a compromise between user performance, perceived task load, wrist rotation, and interaction area size. Accordingly, we select a method that achieves faster task completion times than the two-handed commercial baseline by 16.54% with the merits of subtle user behaviours inside a small-size ring-form device and implements this method within the ring-form device.
    [Show full text]
  • Smart Wearable Devices in Cardiovascular Care: Where We Are and How to Move Forward
    REVIEWS Smart wearable devices in cardiovascular care: where we are and how to move forward Karim Bayoumy1,11, Mohammed Gaber2,11, Abdallah Elshafeey 3, Omar Mhaimeed3, Elizabeth H. Dineen 4, Francoise A. Marvel5, Seth S. Martin5, Evan D. Muse6, Mintu P. Turakhia7,8, Khaldoun G. Tarakji9 and Mohamed B. Elshazly 3,5,10 ✉ Abstract | Technological innovations reach deeply into our daily lives and an emerging trend supports the use of commercial smart wearable devices to manage health. In the era of remote, decentralized and increasingly personalized patient care, catalysed by the COVID-19 pandemic, the cardiovascular community must familiarize itself with the wearable technologies on the market and their wide range of clinical applications. In this Review, we highlight the basic engineering principles of common wearable sensors and where they can be error-prone. We also examine the role of these devices in the remote screening and diagnosis of common cardiovascular diseases, such as arrhythmias, and in the management of patients with established cardiovascular conditions, for example, heart failure. To date, challenges such as device accuracy, clinical validity, a lack of standardized regulatory policies and concerns for patient privacy are still hindering the widespread adoption of smart wearable technologies in clinical practice. We present several recommendations to navigate these challenges and propose a simple and practical ‘ABCD’ guide for clinicians, personalized to their specific practice needs, to accelerate the integration of these devices into the clinical workflow for optimal patient care. Technological innovations continue to become exceed- forward as we embark on a new decade of clinical inno- ingly ingrained into everyday life and consumers are vation.
    [Show full text]
  • A Smart Ring for Women Safety Using Iot
    International Journal of Latest Engineering Research and Applications (IJLERA) ISSN: 2455-7137 Volume –05, Issue – 03, March 2020, PP – 47-50 SMARISA: A Smart Ring for Women Safety Using Iot Aniesh.T.R1, Bipin.M2, Dilipan.R3, Savitha.G4 1,2,3(Student, Department of Electronics and communication Engineering, Jeppiaar SRR Engineering College, India) 4(Assistant Professor, Department of Electronics and communication Engineering, Jeppiaar SRR Engineering College, India) Abstract: In the present situation, because of their family situation and passion women need to take every step equal to men. But they cannot step out of their safe zone at any time of the day, cannot wear clothes as per their will, nor can they can go for work in peace. Due to these reasons, there is a need for women security system. This proposed system adopted IoT technology to improve the women safety. Using IoT, physical devices can communicate with each other over internet irrespective with distance. The proposed system is a real-time, portable and secure system which used to send alert message to their relatives and nearby police station. This system consists of Raspberry pi zero board, raspberry pi camera, buzzer and a push button along with power supply. An android application is designed to simplify the user interface of smart band. Priority user has to install mobile application and select emergency contacts list (Mobile Number as well as Mail ID) to send information when they are in danger. When the button connected with raspberry pi is pressed, raspberry pi captures the image of the crime and send the emergency signal to the cloud database.
    [Show full text]
  • Trump Camp Posts Fake Video of Biden () Tesla Bot Explained
    As technology gives, so does it take away () Amazon's Astro robot is an adorable privacy nightmare () Introducing Amazon Astro – Household Robot for Home Monitoring, with Alexa () Serving robot finds work at Victoria restaurant () Utopia VR - The Metaverse for Everyone () Utopia VR Promo Video () Facebook warned over ‘very small’ indicator LED on smart glasses, as EU DPAs flag privacy concerns () Google’s Former AI Ethics Chief Has a Plan to Rethink Big Tech () Introducing iPhone 13 Pro | Apple () Introducing Apple Watch Series 7 | Apple () Apple reveals Apple Watch Series 7, featuring a larger, more advanced display () Xiaomi shows off concept smart glasses with MicroLED display () Xiaomi Smart Glasses | Showcase | A display in front of your eyes () ‘Neurograins’ Could be the Next Brain-Computer Interfaces () Welcome back to the moment. With Ray-Ban x Facebook () Facebook's Ray-Ban Stories smart glasses: Cool or creepy? () Introducing WHOOP 4.0 - The Personalized Digital Fitness and Health Coach () Introducing WHOOP Body - The Future of Wearable Technology () The Future of Communication in the Metaverse () Making pancakes with Reachy through VR Teleoperation () Trump Camp Posts Fake Video Of Biden () More than 50 robots are working at Singapore's high-tech hospital () The manual for Facebook’s Project Aria AR glasses shows what it’s like to wear them () Tesla Bot explained () Tesla Bot Takes Tech Demos to Their Logical, Absurd Conclusion () Watch brain implant help man 'speak' for the first time in 15 years () An Artificial Intelligence Helped Write This Play. It May Contain Racism () Elon Musk REVEALS Tesla Bot () Page 1 of 166 Meet Grace, a humanoid robot designed for healthcare () Horizon Workrooms - Remote Collaboration Reimagined () Atlas | Partners in Parkour () Inside the lab: How does Atlas work? () Neural recording and stimulation using wireless networks of microimplants () The Metaverse is a Dystopian Nightmare.
    [Show full text]
  • Deliverable 4.1.1 State of the Art Lifewear, Mobilized
    DELIVERABLE 4.1.1 STATE OF THE ART LIFEWEAR, MOBILIZED LIFESTYLE WITH WEARABLES COUNTRY PARTICIPANT VERSION DATE DESCRIPTION Spain I&IMS v.05 30/03/2012 State of art added Spain SAIW v.06 16/04/2012 State of art added Spain I&IMS v.07 30/05/2012 State of art added Turkey Mobilera v.08 15/06/2012 State of art added LifeWear, Mobilized Lifestyle with Wearables CONTENTS 1 AMBIENT INTELLIGENCE ............................................................................................................ 3 1.1 INTRODUCTION & DEFINITION ........................................................................................................... 3 1.2 CURRENT AND PAST PROJECTS ........................................................................................................... 5 1.3 LIFEWEAR INNOVATION ................................................................................................................... 6 2 AMBIENT ASSISTED LIVING ........................................................................................................ 7 2.1 INTRODUCTION & DEFINITION ........................................................................................................... 7 2.2 CURRENT AND PAST PROJECTS ........................................................................................................... 9 2.3 LIFEWEAR INNOVATION ................................................................................................................. 10 3 CONTEXT CREATION AND MAINTENANCE ................................................................................
    [Show full text]
  • Utilizing Motion Sensors for Gesture Recognition
    applied sciences Article Smart Rings vs. Smartwatches: Utilizing Motion Sensors for Gesture Recognition Marc Kurz * , Robert Gstoettner and Erik Sonnleitner Department of Mobility and Energy, University of Applied Sciences Upper Austria, 4232 Hagenberg, Austria; [email protected] (R.G.); [email protected] (E.S.) * Correspondence: [email protected]; Tel.: +43-(0)50-8042-2827 Abstract: Since electronic components are constantly getting smaller and smaller, sensors and logic boards can be fitted into smaller enclosures. This miniaturization lead to the development of smart rings containing motion sensors. These sensors of smart rings can be used to recognize hand/finger gestures enabling natural interaction. Unlike vision-based systems, wearable systems do not require a special infrastructure to operate in. Smart rings are highly mobile and are able to communicate wirelessly with various devices. They could potentially be used as a touchless user interface for countless applications, possibly leading to new developments in many areas of computer science and human–computer interaction. Specifically, the accelerometer and gyroscope sensors of a custom-built smart ring and of a smartwatch are used to train multiple machine learning models. The accuracy of the models is compared to evaluate whether smart rings or smartwatches are better suited for gesture recognition tasks. All the real-time data processing to predict 12 different gesture classes is done on a smartphone, which communicates wirelessly with the smart ring and the smartwatch. The system achieves accuracy scores of up to 98.8%, utilizing different machine learning models. Each machine learning model is trained with multiple different feature vectors in order to find optimal features for the gesture recognition task.
    [Show full text]
  • JD Edwards Enterpriseone Wearable Technology
    JD Edwards EnterpriseOne Wearable Technology O R A C L E BUSINESS BRIEF | A P R I L 2 0 1 5 Disclaimer The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle. [JD EDWARDS ENTERPRISEONE WEARABLE TECHNOLOGY Table of Contents Disclaimer 1 Introduction 1 Wearable Technology – Definition and Social Acceptance 2 Types of Wearable Devices 2 Work Metaphors in the Post-PC Era Optimized by Device 3 Wearables as an Intuitive Extension of Mobile Devices 5 Business Value of Wearables to the Enterprise 6 Warehouse Management 6 Manufacturing 7 Engineering and Construction 7 Field Services 8 A Real-Life JD Edwards Customer Wearables Scenario 8 Integrating Wearable Devices with JD Edwards EnterpriseOne Applications 9 Extending JD Edwards Applications to the Smartwatch Platform 12 Scenario 1 12 Scenario 2 13 Scenario 3 14 Security and Privacy Concerns with Wearables 15 Security and Privacy Solutions 15 Security Solutions Provided by Oracle 16 Conclusion 16 JD EDWARDS ENTERPRISEONE WEARABLE TECHNOLOGY . [JD EDWARDS ENTERPRISEONE WEARABLE TECHNOLOGY Introduction Enterprise organizations around the globe are constantly searching for innovative technologies to enable them to reduce operational cost, increase revenue, and comply with regulations. Each improvement in these areas helps companies sharpen their competitive edge by utilizing optimal technology to empower their workforce to be more productive and effective when solving every-day business challenges.
    [Show full text]
  • Watch-Ring Interaction and Sensing Technique for Wrist Gestures and Macro-Micro Pointing
    WRIST: Watch-Ring Interaction and Sensing Technique for Wrist Gestures and Macro-Micro Pointing Hui-Shyong Yeo Juyoung Lee Hyung-il Kim School of Computer Science Graduate School of Culture Technology Graduate School of Culture Technology University of St. Andrews KAIST KAIST Fife, United Kingdom Daejeon, Republic of Korea Daejeon, Republic of Korea [email protected] [email protected] [email protected] Aakar Gupta Andrea Bianchi Daniel Vogel Cheriton School of Computer Science Department of Industrial Design Cheriton School of Computer Science University of Waterloo KAIST University of Waterloo Waterloo, Canada Daejeon, Republic of Korea Waterloo, Canada [email protected] [email protected] [email protected] Hideki Koike Woontack Woo Aaron Quigley Department of Computer Science Graduate School of Culture Technology School of Computer Science Tokyo Institute of Technology KAIST University of St. Andrews Tokyo, Japan Daejeon, Republic of Korea Fife, United Kingdom [email protected] [email protected] [email protected] ABSTRACT present a set of applications that demonstrate the benefits of To better explore the incorporation of pointing and gesturing WRIST. We conclude with a discussion of the limitations and into ubiquitous computing, we introduce WRIST, an inter- highlight possible future pathways for research in pointing action and sensing technique that leverages the dexterity and gesturing with wearable devices. of human wrist motion. WRIST employs a sensor fusion CCS CONCEPTS approach which combines inertial measurement unit (IMU) data from a smartwatch and a smart ring. The relative ori- • Human-centered computing → User studies; Point- entation difference of the two devices is measured asthe ing devices; Pointing; Gestural input.
    [Show full text]
  • A Smart Wearable Ring Device for Sensing Hand Tremor of Parkinson's Patients
    Computer Modeling in Tech Science Press Engineering & Sciences DOI: 10.32604/cmes.2021.014558 ARTICLE A Smart Wearable Ring Device for Sensing Hand Tremor of Parkinson’s Patients Haixia Yang1, Yixian Shen2,WeiZhuang2,ChunmingGao3,DongDai4 and Weigong Zhang1,* 1School of Instrument Science and Engineering, Southeast University, Nanjing, 210096, China 2School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China 3School of Engineering and Technology, University of Washington, Tacoma, 98402, USA 4School of Cyber Science and Engineering, Southeast University, Nanjing, 210096, China *Corresponding Author: Weigong Zhang. Email: [email protected] Received: 08 October 2020 Accepted: 19 November 2020 ABSTRACT Parkinson’s disease (PD) is a very common neurodegenerative disease that occurs mostly in the elderly. There are many main clinical manifestations of PD, such as tremor, bradykinesia, muscle rigidity, etc. Based on the current research on PD, the accurate and convenient detection of early symptoms is the key to detect PD. With the development of microelectronic and sensor technology, it is much easier to measure the barely noticeable tremor in just one hand for the early detection of Parkinson’s disease. In this paper, we present a smart wearable device for detecting hand tremor, in which MPU6050 (MIDI Processing Unit) consisting of a 3-axis gyroscope and a 3-axis accelerometer is used to collect acceleration and angular velocity of fingers. By analyzing the time of specific finger movements, we successfully recognized the tremor signals with high accuracy. Meanwhile, with Bluetooth 4.0 (Bluetooth Low Energy, BLE) and networking terminal ability, tremor data can be transferred to a monitoring device in real time with extremely low energy consumption.
    [Show full text]