An Introduction to Q-Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Local Time for Lattice Paths and the Associated Limit Laws
Local time for lattice paths and the associated limit laws Cyril Banderier Michael Wallner CNRS & Univ. Paris Nord, France LaBRI, Université de Bordeaux, France http://lipn.fr/~banderier/ http://dmg.tuwien.ac.at/mwallner/ https://orcid.org/0000-0003-0755-3022 https://orcid.org/0000-0001-8581-449X Abstract For generalized Dyck paths (i.e., directed lattice paths with any finite set of jumps), we analyse their local time at zero (i.e., the number of times the path is touching or crossing the abscissa). As we are in a discrete setting, the event we analyse here is “invisible” to the tools of Brownian motion theory. It is interesting that the key tool for analysing directed lattice paths, which is the kernel method, is not directly applicable here. Therefore, we in- troduce a variant of this kernel method to get the trivariate generating function (length, final altitude, local time): this leads to an expression involving symmetric and algebraic functions. We apply this analysis to different types of constrained lattice paths (mean- ders, excursions, bridges, . ). Then, we illustrate this approach on “bas- ketball walks” which are walks defined by the jumps −2, −1, 0, +1, +2. We use singularity analysis to prove that the limit laws for the local time are (depending on the drift and the type of walk) the geometric distribution, the negative binomial distribution, the Rayleigh distribution, or the half- normal distribution (a universal distribution up to now rarely encountered in analytic combinatorics). Keywords: Lattice paths, generating function, analytic combinatorics, singularity analysis, kernel method, gen- eralized Dyck paths, algebraic function, local time, half-normal distribution, Rayleigh distribution, negative binomial distribution 1 Introduction This article continues our series of investigations on the enumeration, generation, and asymptotics of directed lattice arXiv:1805.09065v1 [math.CO] 23 May 2018 paths [ABBG18a, ABBG18b, BF02, BW14, BW17, BG06, BKK+17, Wal16]. -
The Cambridge Mathematical Journal and Its Descendants: the Linchpin of a Research Community in the Early and Mid-Victorian Age ✩
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 31 (2004) 455–497 www.elsevier.com/locate/hm The Cambridge Mathematical Journal and its descendants: the linchpin of a research community in the early and mid-Victorian Age ✩ Tony Crilly ∗ Middlesex University Business School, Hendon, London NW4 4BT, UK Received 29 October 2002; revised 12 November 2003; accepted 8 March 2004 Abstract The Cambridge Mathematical Journal and its successors, the Cambridge and Dublin Mathematical Journal,and the Quarterly Journal of Pure and Applied Mathematics, were a vital link in the establishment of a research ethos in British mathematics in the period 1837–1870. From the beginning, the tension between academic objectives and economic viability shaped the often precarious existence of this line of communication between practitioners. Utilizing archival material, this paper presents episodes in the setting up and maintenance of these journals during their formative years. 2004 Elsevier Inc. All rights reserved. Résumé Dans la période 1837–1870, le Cambridge Mathematical Journal et les revues qui lui ont succédé, le Cambridge and Dublin Mathematical Journal et le Quarterly Journal of Pure and Applied Mathematics, ont joué un rôle essentiel pour promouvoir une culture de recherche dans les mathématiques britanniques. Dès le début, la tension entre les objectifs intellectuels et la rentabilité économique marqua l’existence, souvent précaire, de ce moyen de communication entre professionnels. Sur la base de documents d’archives, cet article présente les épisodes importants dans la création et l’existence de ces revues. 2004 Elsevier Inc. -
James Joseph Sylvester1
Chapter 8 JAMES JOSEPH SYLVESTER1 (1814-1897) James Joseph Sylvester was born in London, on the 3d of September, 1814. He was by descent a Jew. His father was Abraham Joseph Sylvester, and the future mathematician was the youngest but one of seven children. He received his elementary education at two private schools in London, and his secondary education at the Royal Institution in Liverpool. At the age of twenty he entered St. John’s College, Cambridge; and in the tripos examination he came out sec- ond wrangler. The senior wrangler of the year did not rise to any eminence; the fourth wrangler was George Green, celebrated for his contributions to mathe- matical physics; the fifth wrangler was Duncan F. Gregory, who subsequently wrote on the foundations of algebra. On account of his religion Sylvester could not sign the thirty-nine articles of the Church of England; and as a consequence he could neither receive the degree of Bachelor of Arts nor compete for the Smith’s prizes, and as a further consequence he was not eligible for a fellowship. To obtain a degree he turned to the University of Dublin. After the theological tests for degrees had been abolished at the Universities of Oxford and Cam- bridge in 1872, the University of Cambridge granted him his well-earned degree of Bachelor of Arts and also that of Master of Arts. On leaving Cambridge he at once commenced to write papers, and these were at first on applied mathematics. His first paper was entitled “An analytical development of Fresnel’s optical theory of crystals,” which was published in the Philosophical Magazine. -
The Walk of Life Vol
THE WALK OF LIFE VOL. 03 EDITED BY AMIR A. ALIABADI The Walk of Life Biographical Essays in Science and Engineering Volume 3 Edited by Amir A. Aliabadi Authored by Zimeng Wan, Mamoon Syed, Yunxi Jin, Jamie Stone, Jacob Murphy, Greg Johnstone, Thomas Jackson, Michael MacGregor, Ketan Suresh, Taylr Cawte, Rebecca Beutel, Jocob Van Wassenaer, Ryan Fox, Nikolaos Veriotes, Matthew Tam, Victor Huong, Hashim Al-Hashmi, Sean Usher, Daquan Bar- row, Luc Carney, Kyle Friesen, Victoria Golebiowski, Jeffrey Horbatuk, Alex Nauta, Jacob Karl, Brett Clarke, Maria Bovtenko, Margaret Jasek, Allissa Bartlett, Morgen Menig-McDonald, Kate- lyn Sysiuk, Shauna Armstrong, Laura Bender, Hannah May, Elli Shanen, Alana Valle, Charlotte Stoesser, Jasmine Biasi, Keegan Cleghorn, Zofia Holland, Stephan Iskander, Michael Baldaro, Rosalee Calogero, Ye Eun Chai, and Samuel Descrochers 2018 c 2018 Amir A. Aliabadi Publications All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher. ISBN: 978-1-7751916-1-2 Atmospheric Innovations Research (AIR) Laboratory, Envi- ronmental Engineering, School of Engineering, RICH 2515, University of Guelph, Guelph, ON N1G 2W1, Canada It should be distinctly understood that this [quantum mechanics] cannot be a deduction in the mathematical sense of the word, since the equations to be obtained form themselves the postulates of the theory. Although they are made highly plausible by the following considerations, their ultimate justification lies in the agreement of their predictions with experiment. —Werner Heisenberg Dedication Jahangir Ansari Preface The essays in this volume result from the Fall 2018 offering of the course Control of Atmospheric Particulates (ENGG*4810) in the Environmental Engineering Program, University of Guelph, Canada. -
From Arthur Cayley Via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and Superstrings to Cantorian Space–Time
Available online at www.sciencedirect.com Chaos, Solitons and Fractals 37 (2008) 1279–1288 www.elsevier.com/locate/chaos From Arthur Cayley via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and superstrings to Cantorian space–time L. Marek-Crnjac Institute of Mathematics, Physics and Mechanics, Jadranska ulica 19, P.O. Box 2964, SI-1001 Ljubljana, Slovenia Abstract In this work we present a historical overview of mathematical discoveries which lead to fundamental developments in super string theory, super gravity and finally to E-infinity Cantorian space–time theory. Cantorian space–time is a hierarchical fractal-like semi manifold with formally infinity many dimensions but a finite expectation number for these dimensions. The idea of hierarchy and self-similarity in science was first entertain by Right in the 18th century, later on the idea was repeated by Swedenborg and Charlier. Interestingly, the work of Mohamed El Naschie and his two contra parts Ord and Nottale was done independently without any knowledge of the above starting from non- linear dynamics and fractals. Ó 2008 Published by Elsevier Ltd. 1. Introduction Many of the profound mathematical discovery and dare I say also inventions which were made by the mathemati- cians Arthur Cayley, Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan and Emmy Noether [1] are extremely important for high energy particles in general [2] as well as in the development of E-infinity, Cantorian space–time the- ory [3,4]. The present paper is dedicated to the historical background of this subject. 2. Arthur Cayley – beginner of the group theory in the modern way Arthur Cayley was a great British mathematician. -
LMS – EPSRC Durham Symposium
LMS – EPSRC Durham Symposium Anthony Byrne Grants and Membership Administrator 12th July 2016, Durham The work of the LMS for mathematics The charitable aims of the Society: Funding the advancement of mathematical knowledge Encouraging mathematical research and collaboration ’, George Legendre Celebrating mathematical 30 Pieces achievements Publishing and disseminating mathematical knowledge Advancing and promoting mathematics The attendees of the Young Researchers in Mathematics Conference 2015, held at Oxford Historical Moments of the London Mathematical Society 1865 Foundation of LMS at University College London George Campbell De Morgan organised the first meeting, and his father, Augustus De Morgan became the 1st President 1865 First minute book list of the 27 original members 1866 LMS moves to Old Burlington House, Piccadilly J.J. Sylvester, 2nd President of the Society. 1866 Julius Plûcker Thomas Hirst Plûcker Collection of boxwood models of quartic surfaces given to Thomas Archer Hirst, Vice- President of LMS, and donated to the Society 1870 Move to Asiatic Society, 22 Albemarle Street William Spottiswoode, President 1874 Donation of £1,000 from John William Strutt (Lord Rayleigh) Generous donation enabled the Society to publish volumes of the Proceedings of the London Mathematical Society. J.W. Strutt (Lord Rayleigh), LMS President 1876-78 1881 First women members Charlotte Angas Scott and Christine Ladd 1884 First De Morgan medal awarded to Arthur Cayley 1885 Sophie Bryant First woman to have a paper published in LMS Proceedings 1916 Return to Burlington House the home of LMS until 1998 1937 ACE ’s Automatic Turing LMS Proceedings, 1937 Computing Engine, published Alan Turing’s first paper 1950 On Computable Numbers 1947 Death of G.H. -
The Smith Family…
BRIGHAM YOUNG UNIVERSITY PROVO. UTAH Digitized by the Internet Archive in 2010 with funding from Brigham Young University http://www.archive.org/details/smithfamilybeingOOread ^5 .9* THE SMITH FAMILY BEING A POPULAR ACCOUNT OF MOST BRANCHES OF THE NAME—HOWEVER SPELT—FROM THE FOURTEENTH CENTURY DOWNWARDS, WITH NUMEROUS PEDIGREES NOW PUBLISHED FOR THE FIRST TIME COMPTON READE, M.A. MAGDALEN COLLEGE, OXFORD \ RECTOR OP KZNCHESTER AND VICAR Or BRIDGE 50LLARS. AUTHOR OP "A RECORD OP THE REDEt," " UH8RA CCELI, " CHARLES READS, D.C.L. I A MEMOIR," ETC ETC *w POPULAR EDITION LONDON ELLIOT STOCK 62 PATERNOSTER ROW, E.C. 1904 OLD 8. LEE LIBRARY 6KIGHAM YOUNG UNIVERSITY PROVO UTAH TO GEORGE W. MARSHALL, ESQ., LL.D. ROUGE CROIX PURSUIVANT-AT-ARM3, LORD OF THE MANOR AND PATRON OP SARNESFIELD, THE ABLEST AND MOST COURTEOUS OP LIVING GENEALOGISTS WITH THE CORDIAL ACKNOWLEDGMENTS OP THE COMPILER CONTENTS CHAPTER I. MEDLEVAL SMITHS 1 II. THE HERALDS' VISITATIONS 9 III. THE ELKINGTON LINE . 46 IV. THE WEST COUNTRY SMITHS—THE SMITH- MARRIOTTS, BARTS 53 V. THE CARRINGTONS AND CARINGTONS—EARL CARRINGTON — LORD PAUNCEFOTE — SMYTHES, BARTS. —BROMLEYS, BARTS., ETC 66 96 VI. ENGLISH PEDIGREES . vii. English pedigrees—continued 123 VIII. SCOTTISH PEDIGREES 176 IX IRISH PEDIGREES 182 X. CELEBRITIES OF THE NAME 200 265 INDEX (1) TO PEDIGREES .... INDEX (2) OF PRINCIPAL NAMES AND PLACES 268 PREFACE I lay claim to be the first to produce a popular work of genealogy. By "popular" I mean one that rises superior to the limits of class or caste, and presents the lineage of the fanner or trades- man side by side with that of the nobleman or squire. -
Early History of the Riemann Hypothesis in Positive Characteristic
The Legacy of Bernhard Riemann c Higher Education Press After One Hundred and Fifty Years and International Press ALM 35, pp. 595–631 Beijing–Boston Early History of the Riemann Hypothesis in Positive Characteristic Frans Oort∗ , Norbert Schappacher† Abstract The classical Riemann Hypothesis RH is among the most prominent unsolved prob- lems in modern mathematics. The development of Number Theory in the 19th century spawned an arithmetic theory of polynomials over finite fields in which an analogue of the Riemann Hypothesis suggested itself. We describe the history of this topic essentially between 1920 and 1940. This includes the proof of the ana- logue of the Riemann Hyothesis for elliptic curves over a finite field, and various ideas about how to generalize this to curves of higher genus. The 1930ies were also a period of conflicting views about the right method to approach this problem. The later history, from the proof by Weil of the Riemann Hypothesis in charac- teristic p for all algebraic curves over a finite field, to the Weil conjectures, proofs by Grothendieck, Deligne and many others, as well as developments up to now are described in the second part of this diptych: [44]. 2000 Mathematics Subject Classification: 14G15, 11M99, 14H52. Keywords and Phrases: Riemann Hypothesis, rational points over a finite field. Contents 1 From Richard Dedekind to Emil Artin 597 2 Some formulas for zeta functions. The Riemann Hypothesis in characteristic p 600 3 F.K. Schmidt 603 ∗Department of Mathematics, Utrecht University, Princetonplein 5, 3584 CC -
Generalization of Euler and Ramanujan's Partition Function
Asian Journal of Applied Science and Engineering, Volume 4, No 3/2015 ISSN 2305-915X(p); 2307-9584(e) Generalization of Euler and Ramanujan’s Partition Function Haradhan Kumar Mohajan* Assistant Professor, Faculty of Business Studies, Premier University, Chittagong, BANGLADESH ARTICLE INFO ABSTRACT th The theory of partitions has interested some of the best minds since the 18 Receiv ed: Sep 06, 2015 century. In 1742, Leonhard Euler established the generating f unction of P(n). Accepted: Nov 06, 2015 Godf rey Harold Hardy said that Sriniv asa Ramanujan was the f irst, and up to Published: Nov 12, 2015 now the only , mathematician to discover any such properties of P(n). In 1981, S. Barnard and J.M. Child stated that the diff erent ty pes of partitions of n in sy mbolic f orm. In this paper, diff erent ty pes of partitions of n are also explained with sy mbolic f orm. In 1952, E. Grosswald quoted that the linear Diophantine equation has distinct solutions; the set of solution is the number of partitions of n. This paper prov es theorem 1 with the help of certain restrictions. In 1965, *Corresponding Contact Godf rey Harold Hardy and E. M. Wright stated that the ‘Conv ergence Theorem’ Email: conv erges inside the unit circle. Theorem 2 has been prov ed here with easier [email protected] mathematical calculations. In 1853, British mathematician Norman Macleod Ferrers explained a partition graphically by an array of dots or nodes. In this paper, graphic representation of partitions, conjugate partitions and self - conjugate partitions are described with the help of examples. -
Rudi Mathematici
Rudi Mathematici Y2K Rudi Mathematici Gennaio 2000 52 1 S (1803) Guglielmo LIBRI Carucci dalla Somaja Olimpiadi Matematiche (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE P1 (1912) Boris GNEDENKO 2 D (1822) Rudolf Julius Emmanuel CLAUSIUS Due matematici "A" e "B" si sono inventati una (1905) Lev Genrichovich SHNIRELMAN versione particolarmente complessa del "testa o (1938) Anatoly SAMOILENKO croce": viene scritta alla lavagna una matrice 1 3 L (1917) Yuri Alexeievich MITROPOLSHY quadrata con elementi interi casuali; il gioco (1643) Isaac NEWTON consiste poi nel calcolare il determinante: 4 M (1838) Marie Ennemond Camille JORDAN 5 M Se il determinante e` pari, vince "A". (1871) Federigo ENRIQUES (1871) Gino FANO Se il determinante e` dispari, vince "B". (1807) Jozeph Mitza PETZVAL 6 G (1841) Rudolf STURM La probabilita` che un numero sia pari e` 0.5, (1871) Felix Edouard Justin Emile BOREL 7 V ma... Quali sono le probabilita` di vittoria di "A"? (1907) Raymond Edward Alan Christopher PALEY (1888) Richard COURANT P2 8 S (1924) Paul Moritz COHN (1942) Stephen William HAWKING Dimostrare che qualsiasi numero primo (con (1864) Vladimir Adreievich STELKOV l'eccezione di 2 e 5) ha un'infinita` di multipli 9 D nella forma 11....1 2 10 L (1875) Issai SCHUR (1905) Ruth MOUFANG "Die Energie der Welt ist konstant. Die Entroopie 11 M (1545) Guidobaldo DEL MONTE der Welt strebt einem Maximum zu" (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR Rudolph CLAUSIUS 12 M (1906) Kurt August HIRSCH " I know not what I appear to the world, -
Arthur Cayley English Version
ARTHUR CAYLEY (August 16, 1821 – January 26, 1895) by HEINZ KLAUS STRICK, Germany Born in Richmond (Surrey), ARTHUR CAYLEY, the son of the English merchant HENRY CAYLEY, initially grew up in St Petersburg, Russia. When the family returned to England, he attended King's College in London. He entered Trinity College, Cambridge University at 17, graduated in mathematics at the age of 21 (as senior wrangler) and won the Smith's Prize, an award for students who have shown exceptional performance throughout their studies. During his studies, he published three articles in the Cambridge Mathematical Journal. In the two years after the bachelor's degree, during which he supervised new students as a tutor, there were another 28 contributions. After passing his master's degree, he decided to become a lawyer in order to earn a better living. In the following five years he worked for a well-known London notary before he was admitted to the bar in 1849. During this time he met JAMES JOSEPH SYLVESTER, who had the same interests as him. The two became friends; their conversations were always and almost exclusively about mathematical topics. CAYLEY worked as a lawyer for 14 years – and published over 250 scientific papers during this time, before he was appointed to the SADLEIRian Chair, a chair for pure mathematics at the University of Cambridge, in 1863. Although he now had only a fraction of the income he previously had as a lawyer, he was happy with the work he was able to do until his death in 1895. In total, he published 967 articles that dealt with topics from all current research areas of mathematics, and including one textbook (on JACOBI's elliptical functions). -
RM Calendar 2017
Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed.