Volatile Arsenic in Aquatic Environments

Total Page:16

File Type:pdf, Size:1020Kb

Volatile Arsenic in Aquatic Environments VOLATILE ARSENIC IN AQUATIC ENVIRONMENTS Der Fakultät für Geowissenschaften, Geotechnik und Bergbau der Technischen Universität Bergakademie Freiberg eingereichte DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium Dr. rer. nat. vorgelegt von Dipl. Geol. Britta Planer-Friedrich geboren am 15.09.1975 in Gunzenhausen Freiberg, den 27.08.2004 III ABSTRACT To understand the behavior of metals and metalloids in the environment, speciation is one of the most important requirements because occurrence, sorption, mobility, potential assimilation, and toxicity depend significantly on the individual species. The release of As to groundwater in Bang- ladesh by reduction of As(V) to As(III) is a well-known example for the complexity and possible consequences of species conversions. Yet, inorganic As(III) and As(V) are not the only important As species. Trivalent and pentavalent organic (methylated) species act as connecting links for the transfer between hydrosphere and biosphere. The most reduced forms of organic and inorganic As species are volatile and, thus, enable transport from the hydrosphere to the atmosphere. They are also the most toxic As species known. Their accidental release has been documented as early as in the mid of the 19th century. Species-selective determination methods, however, have not been in- troduced until the early 1970s with the invention of the hydride generation technique. Arsenic bio- methylation pathways in different organisms have been investigated, but reports about the occur- rence of dissolved methylated and especially volatile As species in aquatic environments are still rare. Quantification has seldom been achieved and several compounds such as volatile sulfur- or chloroarsines have not even been qualitatively identified in nature, yet. A major requirement for identifying volatile As compounds in the environment is a simple stan- dardized sampling procedure that guarantees long-term stability of the sample. In the present re- search work a robust method for in-situ sampling of volatile metallics from aqueous environments was developed. Efficient gas-water separation is achieved with a PTFE membrane (porosity 0.1 µm) inside a PTFE collector cell that can be placed at the sediment-water interface or in the aque- ous body itself. Vacuum up to -500 mbar can be applied to force the gases to a trapping system of either liquid or solid sorbents. As liquid sorbent a 1:100 diluted NaOCl solution in a PTFE bottle is used. PTFE rings in the oxidizing bottle increase the reaction surface and thus trapping efficiency that was 84% ± 6.6 for As in the laboratory. The build-up of a high pressure from the intense gas evolution during hydride generation might be responsible for the loss of some volatile As, espe- cially at the beginning of the reaction. Quantitative evaluation of volatile metallics concentrations is achieved by referring the trapped mass in the oxidizing solution [µg] to the replaced vacuum volume [m3]. Besides this fast screening method on total volatile metallics concentrations, two species-selective sampling techniques were investigated for As. Solid phase micro extraction (SPME) fibers enabled the detection of more volatile As species in lower concentrations than solid sorbent tubes. For SPME fibers, selective sorption was observed dependent on the volatile As species. Volatile chloro-arsines (CH3)AsCl2 and (CH3)2AsCl with larger molecular weights were sorbed on polydi- methylsiloxane fibers whereas polydimethylsiloxane fibers with Carboxen and divinylbenzene coating proved best for MMA, DMA, and TMA. The fibers with only Carboxen coating showed by far the largest peak areas of all fibers for DMA, TMA, and (CH3)2AsCl. The most effective sorp- tion material in sorption tubes was also Carboxen but only TMA and traces of (CH3)2AsCl were detected. Probably the selected Carboxen type (CAR 564) is not the optimum fit yet. The volatile IV As species were stable on the SPME fibers for at least 3 days when wrapped in aluminum foil and stored at 4°C in the refrigerator. Quantification could not be achieved mainly because of unknown sorption affinities of the individual arsines, non-availability of calibration standards, and potential competitive sorption with other, unknown gases. As an example for an aqueous environment predestined for the release of volatile metallics Yellow- stone National Park was investigated. It is located over the largest continental hot spot world wide and contains more than 10,000 geothermal features. After the first detection of volatile As during a reconnaissance study in 2002, 5 study areas (Nymph Lake, Hazle Lake, Ragged Hills, Gibbon Gey- ser Basin, and Lower Geyser Basin) were sampled for their water and gas chemistry. Sulfate- dominated waters with low pH and As concentrations between 20 and 2,000 µg/L were differenti- ated from chloride-dominated waters with near neutral pH and As concentrations between 1,050 and 11,000 µg/L. The precipitation of As minerals was thermodynamically calculated for Hazle Lake (orpiment supersaturation) and actually observed for a low temperature hot spring at Ragged Hills (precipitation of an amorphous Fe, S, and As rich material). Volatile As was found in all samples besides volatile Al, B, Ba, Cu, Fe, K, Li, Si, Sr, Zn, and S. By species-selective sampling on SPME fibers, four volatile As species were detected: (CH3)3As, (CH3)AsCl2, (CH3)2AsCl, and (CH3)2AsSCH3. The latter three were all found for the first time in a natural environment. Modeling of the gaseous As species proved impossible because of a lack of thermodynamic constants for the species detected. The volatile inorganic As, As-S, As-F, and As- Cl species for which thermodynamic data were available showed negligible partial pressures of <10-11 Vol%. Total concentrations in the trapping solution from passive, diffusion based sampling were converted to concentrations in gas phase using Fick´s first law. Medium concentrations were 18 mg/m3 for sulfate-dominated waters and 50 mg/m3 for the chloride-dominated ones. Concentra- tions from active gas sampling by pumping were lower (20-100 µg/m3) but are supposed to be sub- ject to significant dilution by withdrawing ambient air from over-pumping. The detected concentra- tions are significantly increased compared to the acute toxicity limit for 1 hour exposure (160 3 µg/m ) with respect to AsH3. However AsH3 is probably not the predominant volatile species. Even though concentrations decrease rapidly with increasing distance from a geothermal feature animals grazing and warming up at hot springs might be exposed to significant amounts of volatile metal- lics, particularly As. Further research on volatile metallics in aquatic environments should focus on quantification of individual volatile species, on their chemical or microbial origin, their distribution, and their toxic- ity potential. V ZUSAMMENFASSUNG Um das Verhalten von Metallen und Metalloiden in der Umwelt zu verstehen, ist die Speziierung eine der wichtigsten Anforderungen, da Vorkommen, Mobilität, mögliche Assimilation und Toxizi- tät entscheidend von den jeweiligen Spezies abhängen. Die Freisetzung von As ins Grundwasser in Bangladesh durch Reduktion von As(V) zu As(III) ist ein gut bekanntes Beispiel für die Komplexi- tät und möglichen Konsequenzen von Speziesumwandlungen. Doch anorganisches As(III) und As(V) sind nicht die einzigen wichtigen As Spezies. Dreiwertige und fünfwertige organische (me- thylierte) Spezies stellen das Bindeglied für den Transfer zwischen Hydro- und Biosphäre dar. Die reduziertesten Formen von organischem und anorganischem As sind flüchtig und ermöglichen somit einen Transport von der Hydro- in die Atmosphäre. Sie sind auch die As Spezies mit der höchsten bekannten Toxizität. Ihre unbeabsichtigte Freisetzung wurde bereits im 19. Jahrhundert dokumentiert. Speziesselektive Bestimmungsmethoden wurden jedoch erst in den frühen 1970ern mit der Erfindung der Hydridgenerierungstechnik eingeführt. Biomethylierungspfade von Arsen in verschiedenen Organismen wurden untersucht, aber Berichte über das Vorkommen von gelösten methylierten und vor allem flüchtigen As Spezies in der Hydrosphäre sind immer noch rar. Eine Quantifizierung wurde selten erreicht und verschiedene Verbindungen, wie z.B. volatile Schwefel- und Chlorarsine, wurden bisher nicht einmal qualitativ in der Natur nachgewiesen. Eine wesentliche Anforderung für den Nachweis von flüchtigen As Verbindungen in der Umwelt ist ein einfaches standardisiertes Verfahren, das eine Langzeitstabilität der Probe garantiert. In der vorliegenden Forschungsarbeit wurde eine robuste Methode für die in-situ Probenahme volatiler Metall(oid)e in wässrigen Medien entwickelt. Eine effiziente Gas-Wasser Trennung wird erreicht über eine PTFE Membran (Porosität = 0.1 µm) in einer PTFE Sammelzelle, die an der Grenz- schicht Wasser-Sediment oder im Wasserkörper selbst eingebaut werden kann. Ein Vakuum bis zu -500 mbar kann angelegt werden, um die Gase in eine Sorptionslösung oder auf einen Feststoffsor- benten zu überführen. Als Sorptionslösung wird eine 1:100 verdünnte NaOCl Lösung in einer PTFE Flasche verwendet. PTFE Ringe in der Oxidationsflasche erhöhen die Reaktionsfläche und somit die Sorptionseffizienz, die im Labor für As bei 84% ± 6.6 lag. Der große Druckaufbau infol- ge intensiver Gasentwicklung während der Hydridgenerierung ist vermutlich verantwortlich für einen Teil des Verlusts an volatilem As, vor allem zu Beginn der Reaktion. Eine quantitative Be- stimmung der Konzentrationen an
Recommended publications
  • Warfare Agents for Modeling Airborne Dispersion in and Around Buildings
    LBNL-45475 ERNEST ORLANDO LAWRENCE BERKELEY NATIn NAL LABORATORY Databaseof Physical,Chemicaland ToxicologicalPropertiesof Chemical and Biological(CB)WarfitreAgentsfor ModelingAirborneDispersionIn and AroundBuildings TracyThatcher,RichSextro,andDonErmak Environmental Energy Technologies Division DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of Catifomia, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of anY information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommend at i on, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced
    [Show full text]
  • United States Patent Office
    Patented Mar. 12, 1946 2,396.465 UNITED STATES PATENT OFFICE PREPARATION OF SODUMARSENTE Erroll Hay Karr, Tacoma, Wash, assignor to The Pennsylvania Salt Manufacturing Company, Philadelphia, Pa, a corporation of Pennsyl vania No Drawing. Application October 12, 1943, Serial No. 506,00 3 Claims. (C. 23-53) This invention relates to the production of metal arsenites from alkali metal hydroxide and high arsenic content water soluble, alkali metal arsenic trioxide without the necessity of using arsenites, and more particularly, it relates to an the alkali metal hydroxide in powder form. improved method of causing a controlled reac Another object of the invention is to provide tion between an alkali metal hydroxide and a cheap and easily performed process for the arsenic trioxide to obtain a granular product in preparation of alkali metal arsenites from con a one-step operation. centrated solutions of caustic alkali and pow It is known that solid sodium arsenite can be dered arsenic trioxide in standard mixing equip prepared by mixing together powdered Solid ment. caustic soda and arsenic oxide in a heap and O An additional object of the invention is to pro initiating the reaction by adding a small quan vide a process for obtaining alkali metal arsenites tity of water. Ullmann's Encyclopedia der Techn. in granular form from concentrated solutions of Chemie., volume I, page 588. This method will caustic alkali and powdered arsenic trioxide. yield a solid material but it is attended by sev A further object of the invention is to provide eral disadvantages. 5 a process for the preparation of granular alkali .
    [Show full text]
  • Medicine with Deeper, More Biochemical Conception Of
    Edinburgh Medical Journal May 1951 APPLICATIONS of chemical defence research IN MEDICINET? By Professor R. A. PETERS to be invited It is a great responsibility, as well as a great honour, to Cameron lecturers give this lecture ; and I expect that with other I this ancient seat of share a sense of awe upon standing here in is learning. For me it is an awe tinged with much feeling (it possible that this is partly because some forebears of my mother came from near to recent of the this ; it is in part due the perusal city) perhaps " address here Froude in on the Times of John Knox, given by 1865 " " entitled Influence of the Reformation upon the Scottish Character ; this address drives home to the Sassenach the sterner stuff of which all of us in the the Scots are made ; but I really think it is more that as south, even if we come as I do from a Medical School as ancient the Hospital of St Bartholomew, know full well that Edinburgh stands high indeed in the world of Medical Schools as Scotland itself stands in the world of intellect. Elsewhere I have discussed fully the historical background of our for me back researches upon Chemical Defence substances, which go to World War I.23 Again in my Dixon lecture,24 I have indicated some of the interest for pharmacology. The outlook for medicine has not the been reviewed so far. Therefore I propose to-day to discuss of British influence upon the future of therapeutics of the discovery anti-lewisite and of some of the other researches upon war gas but substances ; and to consider not only the leads towards therapy, the possible newer trends given to medicine itself.
    [Show full text]
  • Decision-Making in Chemical Warfare Agent (CWA) Response There Is a Lot of Fear Associated with Chemical Will Act Accordingly
    Application Note: 102 Decision-Making in Chemical Warfare Agent (CWA) Response There is a lot of fear associated with Chemical will act accordingly. If the first responders Warfare Agents (CWAs). The misnomer over-react and immediately jump into full “Nerve Gas” quickly brings horrible images to encapsulation protection it could panic the the minds of many civilians. But if we lay aside public and cause unnecessary worry and the politics and fear, CWA detection should even injury. treated like other gas/vapor detection challenges. It should be a collaborative Over Protection Can Be Dangerous process encompassing physical clues, threat to the Responder scenario, biological clues, and a variety of Heat stress is the number one injury in sensing technologies. No one clue or HazMat response and immediately jumping technology is always correct. Experience and into full Level A encapsulation is a good way the use of multiple clues and technologies are of overheating oneself. Level A the keys to successful CWA response. encapsulation also makes one much more Understanding what the clues are and how to susceptible to slip, trip and fall injuries. layer them to make a decision is critical to Finally, over protection makes it harder to get successful CWA response. things done. When properly used, detection allows responders to respond at lower levels Why is Gas Detection Important? of Personal Protective Equipment (PPE) to Responders cannot rely on their senses for provide the highest levels of safety to decision-making. Without effectively knowing themselves and to the community that they how to use detection techniques responders protect.
    [Show full text]
  • Warning: the Following Lecture Contains Graphic Images
    What the новичок (Novichok)? Why Chemical Warfare Agents Are More Relevant Than Ever Matt Sztajnkrycer, MD PHD Professor of Emergency Medicine, Mayo Clinic Medical Toxicologist, Minnesota Poison Control System Medical Director, RFD Chemical Assessment Team @NoobieMatt #ITLS2018 Disclosures In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards, the American Nurses Credentialing Center’s Commission (ANCC) and the Commission on Accreditation for Pre-Hospital Continuing Education (CAPCE), states presenters must disclose the existence of significant financial interests in or relationships with manufacturers or commercial products that may have a direct interest in the subject matter of the presentation, and relationships with the commercial supporter of this CME activity. The presenter does not consider that it will influence their presentation. Dr. Sztajnkrycer does not have a significant financial relationship to report. Dr. Sztajnkrycer is on the Editorial Board of International Trauma Life Support. Specific CW Agents Classes of Chemical Agents: The Big 5 The “A” List Pulmonary Agents Phosgene Oxime, Chlorine Vesicants Mustard, Phosgene Blood Agents CN Nerve Agents G, V, Novel, T Incapacitating Agents Thinking Outside the Box - An Abbreviated List Ammonia Fluorine Chlorine Acrylonitrile Hydrogen Sulfide Phosphine Methyl Isocyanate Dibotane Hydrogen Selenide Allyl Alcohol Sulfur Dioxide TDI Acrolein Nitric Acid Arsine Hydrazine Compound 1080/1081 Nitrogen Dioxide Tetramine (TETS) Ethylene Oxide Chlorine Leaks Phosphine Chlorine Common Toxic Industrial Chemical (“TIC”). Why use it in war/terror? Chlorine Density of 3.21 g/L. Heavier than air (1.28 g/L) sinks. Concentrates in low-lying areas. Like basements and underground bunkers. Reacts with water: Hypochlorous acid (HClO) Hydrochloric acid (HCl).
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Chemical, Radiological and Nuclear Medical Countermeasures
    Chemical, Radiological and Nuclear Medical Countermeasures Ron Manning,g, Ph.D. Chief, Chemical, Radiological and Nuclear Division of CBRN Countermeasures June 7, 2011 Roadmap • Rad Nuc Background and the threat • Rad Nuc Scenario considerations and Reqquirements development • Areas of Rad Nuc Programmatic Interest • Rad Nuc Portfolio Strategy • Special Considerations for Development Efforts • Solicitations in Fed Biz Ops • The Chemical Threat • Vesicants • Chem Special Instructions • Continuing Challenges • Interagency Partnering • BARDA funding 11 Rad Nuc Background •The detonation of an Improvised Nuclear Device (IND) has the potential to produce a large number of victims with multiple and mixed injuries •Exposure to radiation induces dose-dependent injury to cells and tissue through a cascade of molecular and biochemical changes that lead to cell death or disruption 98-- 7- 6 5- 4- Dangerous Fallout 3- ground-zero 2- --1- 0- Light Damage Miles from 1 kT Moderate Damage 0.1 kT 10 kT MdiMedium Severe Damage Small Large •Acute Radiation Syndrome (ARS) is the medical consequence of approximately 2 Gy exposure •The symptoms and progressionprogression of radiation injuryinjury occur even after the radiation exposure has ceased and there is a continuity of medical consequences from the ARS to the Delayed Effects of the Acute Exposure (DEARE) to chronic radiation damage 2 IND Scenarios and Requirements Development • Hundreds of IND scenarios ─ Developed with modeling and working groups with subject matter experts ─ Several cities modeled ─ Several radiation yields ─ 12 months (Jan - Dec): (e.g. Monthly winds and weather affect the fallout pattern)pattern) • Requirements established from modeling scenarios • Fulfillment of requirements ─ Acquisition of products via Project BioShield contracts ─ Development of products via Advanced Research and Development contracts ─ Review portfolio as requirements change • Requirements are reviewed on a regular basis and do change over time.
    [Show full text]
  • War Gases .Pdf
    yh&% .*i From the collection of the m Prejinger h v Jjibrary San Francisco, California 2007 THE WAR GASES WAR GASES Their Identification and Decontamination BY MORRIS B. JACOBS, Ph.D. Food, Drug and Insecticide Admin. U. S. Dept. of Agr. 1927 Chemist Department of Health, City of New York, 1928. Formerly, Lt. U. S. Chemical Warfare Service Reserve INTERSCIENCE PUBLISHERS, INC. NEW YORK, N. Y.-1942 Copyright, 1942, by INTERSCIENCE PUBLISHERS, INC. 215 Fourth Avenue, New York, N. Y. Printed in U. S. A. by WAVERLY PRESS, BALTIMORE, MD. PREFACE Relatively little has been written in the United States of America on the subject of passive defense, or as we would put it, civilian defense against poison gas. One of the very first steps in defense of this nature is a system for the detection, the sampling and the identification of the chemical war- fare agents, and the decontamination of areas and materials polluted by them. It is the aim of this book to present these subjects so that the informa- tion given will be useful to the gas identification officer, the war gas chemist, the decontamination officer, and the health officer. While this book was written primarily for the aforementioned officers, Chapters I, II, III, part of IV and VII should prove of value to the air raid warden and, in general, to all persons dealing with the above mentioned phases of gas defense. It is written so that it can be used for the training of gas identifi- cation officers, as a manual by chemists and decontamination officers, and as a source of information on the analytical chemistry of the war gases.
    [Show full text]
  • Step-By-Step Guide to Better Laboratory Management Practices
    Step-by-Step Guide to Better Laboratory Management Practices Prepared by The Washington State Department of Ecology Hazardous Waste and Toxics Reduction Program Publication No. 97- 431 Revised January 2003 Printed on recycled paper For additional copies of this document, contact: Department of Ecology Publications Distribution Center PO Box 47600 Olympia, WA 98504-7600 (360) 407-7472 or 1 (800) 633-7585 or contact your regional office: Department of Ecology’s Regional Offices (425) 649-7000 (509) 575-2490 (509) 329-3400 (360) 407-6300 The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran’s status, Vietnam Era veteran’s status or sexual orientation. If you have special accommodation needs, or require this document in an alternate format, contact the Hazardous Waste and Toxics Reduction Program at (360)407-6700 (voice) or 711 or (800) 833-6388 (TTY). Table of Contents Introduction ....................................................................................................................................iii Section 1 Laboratory Hazardous Waste Management ...........................................................1 Designating Dangerous Waste................................................................................................1 Counting Wastes .......................................................................................................................8 Treatment by Generator...........................................................................................................12
    [Show full text]
  • V(A). CHEMICAL SAFETY -- GENERAL PRINCIPLES ______
    V(a). CHEMICAL SAFETY -- GENERAL PRINCIPLES ___________________________________________________________________ Chapter V, Chemical Safety, provides guidelines for the safe handling of hazardous laboratory chemicals. The OSHA Laboratory Standard defines a "hazardous chemical" as one that exhibits physical or health hazards as follows. "Physical Hazard" - a chemical for which there is scientifically valid evidence that it is a combustible liquid, a compressed gas, explosive, flammable, an organic peroxide, an oxidizer, pyrophoric, unstable (reactive) or water reactive. "Health Hazard" - a chemical for which there is statistically significant evidence based on at least one study conducted in accordance with established scientific principles that acute or chronic health effects may occur...includes ...carcinogens, toxic or highly toxic agents, reproductive toxins, irritants, corrosives, sensitizers, hepatotoxins, nephrotoxins, neurotoxins, agents which act on the hematopoietic (blood) system, and agents which damage the lung, skin, eyes, or mucous membranes. Determination of the hazard of a chemical is the responsibility of the manufacturer of the chemical. Information on the hazards of a particular chemical can be found on the label, the manufacturer's Safety Data Sheet (SDS), and in reference publications listed in the Bibliography. SDS are available on-line at https://www.mtholyoke.edu/ehs/msds. The term "chemical" is used interchangeably with "hazardous chemical" throughout the text. Both refer to those chemicals defined as hazardous by OSHA as described above. The requirements outlined in Chapter V apply to the laboratory use of chemicals that could result in chemical exposure under routine or emergency situations. They do not apply to the use of chemicals when no exposure is possible. For example, the use of lead shielding for radiation protection does not result in lead exposure and, consequently, the requirements for handling lead as a reproductive toxin in V (j) do not apply.
    [Show full text]
  • Speciation of Volatile Arsenic at Geothermal Features in Yellowstone National Park
    Geochimica et Cosmochimica Acta 70 (2006) 2480–2491 www.elsevier.com/locate/gca Speciation of volatile arsenic at geothermal features in Yellowstone National Park Britta Planer-Friedrich a,*, Corinne Lehr b,c,Jo¨rg Matschullat d, Broder J. Merkel a, Darrell Kirk Nordstrom e, Mark W. Sandstrom f a Technische Universita¨t Bergakademie Freiberg, Department of Geology, 09599 Freiberg, Germany b Montana State University, Thermal Biology Institute Bozeman, MT 59717, USA c California Polytechnic State University, Department of Chemistry and Biochemistry, San Luis Obispo, CA 93407, USA d Technische Universita¨t Bergakademie Freiberg, Department of Mineralogy, 09599 Freiberg, Germany e US Geological Survey, 3215 Marine St, Boulder, CO 80303, USA f US Geological Survey, National Water Quality Laboratory, Denver, CO 80225-004, USA Received 2 September 2005; accepted in revised form 7 February 2006 Abstract Geothermal features in the Yellowstone National Park contain up to several milligram per liter of aqueous arsenic. Part of this arsenic is volatilized and released into the atmosphere. Total volatile arsenic concentrations of 0.5–200 mg/m3 at the surface of the hot springs were found to exceed the previously assumed nanogram per cubic meter range of background concentrations by orders of magnitude. Speciation of the volatile arsenic was performed using solid-phase micro-extraction fibers with analysis by GC–MS. The arsenic species most frequently identified in the samples is (CH3)2AsCl, followed by (CH3)3As, (CH3)2AsSCH3, and CH3AsCl2 in decreasing order of frequency. This report contains the first documented occurrence of chloro- and thioarsines in a natural environment. Toxicity, mobility, and degradation products are unknown.
    [Show full text]
  • Inorganic Arsenic Compounds Other Than Arsine Health and Safety Guide
    OS INTERNATiONAL I'ROGRAMME ON CHEMICAL SAFETY Health and Safety Guide No. 70 INORGANIC ARSENIC COMPOUNDS OTHER THAN ARSINE HEALTH AND SAFETY GUIDE i - I 04 R. Q) UNEP UNITED NATIONS INTERNATIONAL ENVIRONMENT I'R( )GRAMME LABOUR ORGANISATION k\s' I V WORLD HEALTH ORGANIZATION WORLD HEALTH ORGANIZATION, GENEVA 1992 IPcs Other H EA LTH AND SAFETY GUIDES available: Aerytonitrile 41. Clii rdeon 2. Kekvau 42. Vatiadiuni 3 . I Bula not 43 Di meLhyI ftirmatnide 4 2-Buta101 44 1-Dryliniot 5. 2.4- Diehlorpheiioxv- 45 . Ac rylzi mule acetic Acid (2.4-D) 46. Barium 6. NIcihylene Chhride 47. Airaziiie 7 . ie,i-Buia nol 48. Benlm'.ie 8. Ep Ichioroli) Olin 49. Cap a 64 P. ls.ihutaiiol 50. Captaii I o. feiddin oeth N lene Si. Parai.tuat II. Tetradi ion 51 Diquat 12. Te nacelle 53. Alpha- and Betal-lexachloro- 13 Clils,i (lane cyclohexanes 14 1 kpia Idor 54. Liiidaiic IS. Propylene oxide 55. 1 .2-Diciilroetiiane Ethylene Oxide 5t. Hydrazine Eiulosiillaii 57. F-orivaldehydc IS. Die h lorvos 55. MLhyI Isobu I V I kcloiic IV. Pculaehloro1heiiol 59. fl-Flexaric 20. Diiiiethoaie 61), Endrin 2 1 . A iii in and Dick) 0in 6 I . I sh IIZiLI1 22. Cyperniellirin 62. Nicki. Nickel Caution I. and some 23. Quiiiloieiic Nickel Compounds 24. Alkthrins 03. Hexachlorocyclopeuladiene 25. Rsiiiethii ins 64. Aidicaib 26. Pyr rot ii,id inc Alkaloids 65. Fe nitrolhioit 27. Magnetic Fields hib. Triclilorlon 28. Phosphine 67. Acroleiii 29. Diiiiethyl Sull'ite 68. Polychlurinated hiphenyls (PCBs) and 30. Dc lianteth nil polyc h In ruiated letlilienyls (fs) 31.
    [Show full text]