Mathematical Sciences Meetings and Conferences Section
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Analog of the Minimax Theorem for Vector Payoffs
Pacific Journal of Mathematics AN ANALOG OF THE MINIMAX THEOREM FOR VECTOR PAYOFFS DAVID BLACKWELL Vol. 6, No. 1 November 1956 AN ANALOG OF THE MINIMAX THEOREM FOR VECTOR PAYOFFS DAVID BLACKWELL 1. Introduction* The von Neumann minimax theorem [2] for finite games asserts that for every rxs matrix M=\\m(i, j)\\ with real elements there exist a number v and vectors P=(Pi, •••, Pr)f Q={QU •••> Qs)f Pi, Qj>β, such that i> 3) for all i, j. Thus in the (two-person, zero-sum) game with matrix Λf, player I has a strategy insuring an expected gain of at least v, and player II has a strategy insuring an expected loss of at most v. An alternative statement, which follows from the von Neumann theorem and an appropriate law of large numbers is that, for any ε>0, I can, in a long series of plays of the game with matrix M, guarantee, with probability approaching 1 as the number of plays becomes infinite, that his average actual gain per play exceeds v — ε and that II can similarly restrict his average actual loss to v-he. These facts are assertions about the extent to which each player can control the center of gravity of the actual payoffs in a long series of plays. In this paper we investigate the extent to which this center of gravity can be controlled by the players for the case of matrices M whose elements m(i9 j) are points of ΛΓ-space. Roughly, we seek to answer the following question. -
Blackwell, David; Diaconis, Persi a Non-Measurable Tail Set
Blackwell, David; Diaconis, Persi A non-measurable tail set. Statistics, probability and game theory, 1--5, IMS Lecture Notes Monogr. Ser., 30, Inst. Math. Statist., Hayward, CA, 1996. Blackwell, David Operator solution of infinite $G\sb \delta$ games of imperfect information. Probability, statistics, and mathematics, 83--87, Academic Press, Boston, MA, 1989. 60040 Blackwell, David; Mauldin, R. Daniel Ulam's redistribution of energy problem: collision transformations. Lett. Math. Phys. 10 (1985), no. 2-3, 149--153. Blackwell, David; Dubins, Lester E. An extension of Skorohod's almost sure representation theorem. Proc. Amer. Math. Soc. 89 (1983), no. 4, 691--692. 60B10 Blackwell, David; Maitra, Ashok Factorization of probability measures and absolutely measurable sets. Proc. Amer. Math. Soc. 92 (1984), no. 2, 251--254. Blackwell, David; Girshick, M. A. Theory of games and statistical decisions. Reprint of the 1954 edition. Dover Publications, Inc., New York, 1979. xi+355 pp. ISBN: 0-486-63831-6 90D35 (62Cxx) Blackwell, David On stationary policies. With discussion. J. Roy. Statist. Soc. Ser. 133 (1970), no. 1, 33--37. 90C40 Blackwell, David The stochastic processes of Borel gambling and dynamic programming. Ann. Statist. 4 (1976), no. 2, 370--374. Blackwell, David; Dubins, Lester E. On existence and non-existence of proper, regular, conditional distributions. Ann. Probability 3 (1975), no. 5, 741--752. Blackwell, David; MacQueen, James B. Ferguson distributions via Pólya urn schemes. Ann. Statist. 1 (1973), 353--355. Blackwell, David; Freedman, David On the amount of variance needed to escape from a strip. Ann. Probability 1 (1973), 772--787. Blackwell, David Discreteness of Ferguson selections. -
Donald Knuth Fletcher Jones Professor of Computer Science, Emeritus Curriculum Vitae Available Online
Donald Knuth Fletcher Jones Professor of Computer Science, Emeritus Curriculum Vitae available Online Bio BIO Donald Ervin Knuth is an American computer scientist, mathematician, and Professor Emeritus at Stanford University. He is the author of the multi-volume work The Art of Computer Programming and has been called the "father" of the analysis of algorithms. He contributed to the development of the rigorous analysis of the computational complexity of algorithms and systematized formal mathematical techniques for it. In the process he also popularized the asymptotic notation. In addition to fundamental contributions in several branches of theoretical computer science, Knuth is the creator of the TeX computer typesetting system, the related METAFONT font definition language and rendering system, and the Computer Modern family of typefaces. As a writer and scholar,[4] Knuth created the WEB and CWEB computer programming systems designed to encourage and facilitate literate programming, and designed the MIX/MMIX instruction set architectures. As a member of the academic and scientific community, Knuth is strongly opposed to the policy of granting software patents. He has expressed his disagreement directly to the patent offices of the United States and Europe. (via Wikipedia) ACADEMIC APPOINTMENTS • Professor Emeritus, Computer Science HONORS AND AWARDS • Grace Murray Hopper Award, ACM (1971) • Member, American Academy of Arts and Sciences (1973) • Turing Award, ACM (1974) • Lester R Ford Award, Mathematical Association of America (1975) • Member, National Academy of Sciences (1975) 5 OF 44 PROFESSIONAL EDUCATION • PhD, California Institute of Technology , Mathematics (1963) PATENTS • Donald Knuth, Stephen N Schiller. "United States Patent 5,305,118 Methods of controlling dot size in digital half toning with multi-cell threshold arrays", Adobe Systems, Apr 19, 1994 • Donald Knuth, LeRoy R Guck, Lawrence G Hanson. -
Modified Moments for Indefinite Weight Functions [2Mm] (A Tribute
Modified Moments for Indefinite Weight Functions (a Tribute to a Fruitful Collaboration with Gene H. Golub) Martin H. Gutknecht Seminar for Applied Mathematics ETH Zurich Remembering Gene Golub Around the World Leuven, February 29, 2008 Martin H. Gutknecht Modified Moments for Indefinite Weight Functions My education in numerical analysis at ETH Zurich My teachers of numerical analysis: Eduard Stiefel [1909–1978] (first, basic NA course, 1964) Peter Läuchli [b. 1928] (ALGOL, 1965) Hans-Rudolf Schwarz [b. 1930] (numerical linear algebra, 1966) Heinz Rutishauser [1917–1970] (follow-up numerical analysis course; “selected chapters of NM” [several courses]; computer hands-on training) Peter Henrici [1923–1987] (computational complex analysis [many courses]) The best of all worlds? Martin H. Gutknecht Modified Moments for Indefinite Weight Functions My education in numerical analysis (cont’d) What did I learn? Gauss elimination, simplex alg., interpolation, quadrature, conjugate gradients, ODEs, FDM for PDEs, ... qd algorithm [often], LR algorithm, continued fractions, ... many topics in computational complex analysis, e.g., numerical conformal mapping What did I miss to learn? (numerical linear algebra only) QR algorithm nonsymmetric eigenvalue problems SVD (theory, algorithms, applications) Lanczos algorithm (sym., nonsym.) Padé approximation, rational interpolation Martin H. Gutknecht Modified Moments for Indefinite Weight Functions My first encounters with Gene H. Golub Gene’s first two talks at ETH Zurich (probably) 4 June 1971: “Some modified eigenvalue problems” 28 Nov. 1974: “The block Lanczos algorithm” Gene was one of many famous visitors Peter Henrici attracted. Fall 1974: GHG on sabbatical at ETH Zurich. I had just finished editing the “Lectures of Numerical Mathematics” of Heinz Rutishauser (1917–1970). -
Notices of the American Mathematical Society
Notices of the American Mathematical Society April 1981, Issue 209 Volume 28, Number 3, Pages 217- 296 Providence, Rhode Island USA ISSN 0002-9920 CALENDAR OF AMS MEETINGS THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· 'an Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet· lng. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the offi'e of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Soc:iety in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab· strKts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information consult the meeting announcement and the list of organizers of special sessions. -
Mathematicians Fleeing from Nazi Germany
Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D. -
Academic and Professional Publishing Catalogue
Services for Booksellers Make use of the wide range of services which Cambridge offers: NewNEW! Batch Academic and Professional http://www.batch.co.uk • Standard batch service is free of charge for Booksellers Publishing Catalogue • Make a single payment for all your suppliers, saving time, bank and postage charges • See invoices on the batch system before delivery arrives New books • No more copy invoices- view invoices online and print your own • Advanced notification that deliveries are on the way • Make claims online, saving telephone calls, faxes and e-mails Bookseller website http://www.booksellers.cambridge.org • Secure online ordering • Manage your account settings and dues / backorders • Price and Availability checks and data downloads • New Title Information and Bestseller lists • Contacts and further information • Coming soon: Hotline and E-mail alerting PubEasy http://www.PubEasy.com • Cambridge is now a PubEasy affiliate! • Online ordering across multiple publishers • Online real time price and availability checks • Dues management Datashop and Catalogshop http://datashop.cambridge.org • Free, online data delivery • Define your own reports and update them online • File Formats from simple text price and availability to Onix • Delivery by e-mail or FTP • Automatic updates daily, weekly, monthly, yearly • Download all Cambridge publicity material in PDF and other formats from Catalogshop www.cambridge.org/booksellers Cambridge University Press The Edinburgh Building www.cambridge.org/booksellers JANUARY–JUNE 2006 Cambridge CB2 -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
Book of Open Problems Presented at MTNS 2002
2002 MTNS Problem Book Open Problems on the Mathematical Theory of Systems August 12-16, 2002 Editors Vincent D. Blondel Alexander Megretski Associate Editors Roger Brockett Jean-Michel Coron Miroslav Krstic Anders Rantzer Joachim Rosenthal Eduardo D. Sontag M. Vidyasagar Jan C. Willems Some of the problems appearing in this booklet will appear in a more extensive forthcoming book on open problems in systems theory. For more information about this future book, please consult the website http://www.inma.ucl.ac.be/~blondel/op/ We wish the reader much enjoyment and stimulation in reading the problems in this booklet. The editors ii Program and table of contents Monday August 12. Co-chairs: Vincent Blondel, Roger Brockett. 8:00 PM Linear Systems 75 State and first order representations 1 Jan C. Willems 1 59 The elusive iff test for time-controllability of behaviours 4 Amol J. Sasane 4 58 Schur Extremal Problems 7 Lev Sakhnovich 7 69 Regular feedback implementability of linear differential behaviors 9 H.L. Trentelman 9 36 What is the characteristic polynomial of a signal flow graph? 13 Andrew D. Lewis 13 35 Bases for Lie algebras and a continuous CBH formula 16 Matthias Kawski 16 10 Vector-valued quadratic forms in control theory 20 Francesco Bullo, Jorge Cort´es,Andrew D. Lewis, Sonia Mart´ınez 20 8:48 PM Stochastic Systems 4 On error of estimation and minimum of cost for wide band noise driven systems 24 Agamirza E. Bashirov 24 25 Aspects of Fisher geometry for stochastic linear systems 27 Bernard Hanzon, Ralf Peeters 27 iii 9:00 PM Nonlinear Systems 81 Dynamics of Principal and Minor Component Flows 31 U. -
Program Committee ICM 2010 Hendrik W. Lenstra (Chair), Universiteit Leiden, Netherlands Assistant to the Chair: Jeanine Daems, Universiteit Leiden,Netherlands Louis H
Program Committee ICM 2010 Hendrik W. Lenstra (chair), Universiteit Leiden, Netherlands assistant to the chair: Jeanine Daems, Universiteit Leiden,Netherlands Louis H. Y. Chen, National University of Singapore, Singapore Dusa McDuff, Barnard College, Columbia University, New York,U.S.A. Etienne´ Ghys, CNRS – Ecole´ Normale Sup´erieure de Lyon, France Ta-Tsien Li, Fudan University, Shanghai, China Jos´eAntonio de la Pe˜na, Universidad Nacional Aut´onoma deM´exico,Mexico Alfio Quarteroni, Ecole´ Polytechnique F´ed´erale de Lausanne, Switzerland and Politecnico di Milano, Italy S. Ramanan, Chennai Mathematical Institute, India Terence Tao, University of California, Los Angeles, U. S. A. Eva´ Tardos, Cornell University, Ithaca, U. S. A. Anatoly Vershik, St. Petersburg branch of Steklov Mathematical Institute, St. Petersburg, Russia Panel 1, Logic and foundations Core members: Theodore Slaman (University of California, Berkeley, U. S. A.) (chair) Alain Louveau (Universit´ede Paris VI, France) Additional members : Ehud Hrushovski (Hebrew University, Jerusalem, Israel) Alex Wilkie (University of Manchester, U. K.) W. Hugh Woodin (University of California, Berkeley, U. S. A.) Panel 2, Algebra Core members: R. Parimala (Emory University, Atlanta, U. S. A.) (chair) Vladimir L. Popov (Steklov Institute, Moscow, Russia) Raphael Rouquier (University of Oxford, U. K.) Additional members : David Eisenbud (University of California, Berkeley, U. S. A.) Maxim Kontsevich (Institut des Hautes Etudes´ Scientifiques, Bures-sur-Yvette, France) Gunter Malle (Universit¨at -
Weak KAM Theory: the Connection Between Aubry-Mather Theory and Viscosity Solutions of the Hamilton-Jacobi Equation
Weak KAM Theory: the connection between Aubry-Mather theory and viscosity solutions of the Hamilton-Jacobi equation Albert Fathi Abstract. The goal of this lecture is to explain to the general mathematical audience the connection that was discovered in the last 20 or so years between the Aubry-Mather theory of Lagrangian systems, due independently to Aubry and Mather in low dimension, and to Mather in higher dimension, and the theory of viscosity solutions of the Hamilton-Jacobi equation, due to Crandall and Lions, and more precisely the existence of global viscosity solutions due to Lions, Papanicolaou, and Varhadan. Mathematics Subject Classification (2010). Primary 37J50, 35F21; Secondary 70H20. Keywords. Lagrangian, Hamiltonian, Hamilton-Jacobi, Aubry-Mather, weak KAM. 1. Introduction This lecture is not intended for specialists, but rather for the general mathematical audience. Lagrangian Dynamical Systems have their origin in classical physics, especially in celestial mechanics. The Hamilton-Jacobi method is a way to obtain trajectories of a Lagrangian system through solutions of the Hamilton-Jacobi equation. However, solutions of this equa- tion easily develop singularities. Therefore for a long time, only local results were obtained. Since the 1950’s, several major developments both on the dynamical side, and the PDE side have taken place. In the 1980’s, on the dynamical side there was the famous Aubry-Mather theory for twist maps, discovered independently by S. Aubry [2] and J.N. Mather [20], and its generalization to higher dimension by J.N. Mather [21, 22] in the framework of classical Lagrangian systems. On the PDE side, there was the viscosity theory of the Hamilton-Jacobi equation, due to M. -
Biography Five Related and Significant Publications
GUY BLELLOCH Professor Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 [email protected], http://www.cs.cmu.edu/~guyb Biography Guy E. Blelloch received his B.S. and B.A. from Swarthmore College in 1983, and his M.S. and PhD from MIT in 1986, and 1988, respectively. Since then he has been on the faculty at Carnegie Mellon University, where he is now an Associate Professor. During the academic year 1997-1998 he was a visiting professor at U.C. Berkeley. He held the Finmeccanica Faculty Chair from 1991–1995 and received an NSF Young Investigator Award in 1992. He has been program chair for the ACM Symposium on Parallel Algorithms and Architectures, program co-chair for the IEEE International Parallel Processing Symposium, is on the editorial board of JACM, and has served on a dozen or so program committees. His research interests are in parallel programming languages and parallel algorithms, and in the interaction of the two. He has developed the NESL programming language under an ARPA contract and an NSF NYI award. His work on parallel algorithms includes work on sorting, computational geometry, and several pointer-based algorithms, including algorithms for list-ranking, set-operations, and graph connectivity. Five Related and Significant Publications 1. Guy Blelloch, Jonathan Hardwick, Gary L. Miller, and Dafna Talmor. Design and Implementation of a Practical Parallel Delaunay Algorithm. Algorithmica, 24(3/4), pp. 243–269, 1999. 2. Guy Blelloch, Phil Gibbons and Yossi Matias. Efficient Scheduling for Languages with Fine-Grained Parallelism. Journal of the ACM, 46(2), pp.