The Study of the Genesis of Novel Mathematical
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E
BOOK REVIEW Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E. Rowe Einstein’s Italian modern Italy. Nor does the author shy away from topics Mathematicians: like how Ricci developed his absolute differential calculus Ricci, Levi-Civita, and the as a generalization of E. B. Christoffel’s (1829–1900) work Birth of General Relativity on quadratic differential forms or why it served as a key By Judith R. Goodstein tool for Einstein in his efforts to generalize the special theory of relativity in order to incorporate gravitation. In This delightful little book re- like manner, she describes how Levi-Civita was able to sulted from the author’s long- give a clear geometric interpretation of curvature effects standing enchantment with Tul- in Einstein’s theory by appealing to his concept of parallel lio Levi-Civita (1873–1941), his displacement of vectors (see below). For these and other mentor Gregorio Ricci Curbastro topics, Goodstein draws on and cites a great deal of the (1853–1925), and the special AMS, 2018, 211 pp. 211 AMS, 2018, vast secondary literature produced in recent decades by the world that these and other Ital- “Einstein industry,” in particular the ongoing project that ian mathematicians occupied and helped to shape. The has produced the first 15 volumes of The Collected Papers importance of their work for Einstein’s general theory of of Albert Einstein [CPAE 1–15, 1987–2018]. relativity is one of the more celebrated topics in the history Her account proceeds in three parts spread out over of modern mathematical physics; this is told, for example, twelve chapters, the first seven of which cover episodes in [Pais 1982], the standard biography of Einstein. -
Reason in Motion
Student Works 11-9-2018 Reason in Motion Luke Francis Embry-Riddle Aeronautical University, [email protected] Follow this and additional works at: https://commons.erau.edu/student-works Part of the Philosophy of Science Commons, and the The Sun and the Solar System Commons Scholarly Commons Citation Francis, L. (2018). Reason in Motion. , (). Retrieved from https://commons.erau.edu/student-works/82 This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Student Works by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Reason in Motion Luke Francis∗ Embry Riddle Aeronautical University Prescott, AZ 86301 (Dated: November 9, 2018) This essay will explain the historical models of the solar system, which was the known universe for most of human history. There is far more to each model than simply positioning different celestial bodies at the center of the system, and the stories of the astronomers who derived the controversial theories are not discussed often enough. The creation of these theories is part of a much broader revolution in scientific thought and marked the start of a series of observational discoveries that would change the the philosophy of science for centuries to come. I. STUDY PURPOSE Model. This was also influenced by metaphysical notions of human importance. In other words, man saw himself Although science and history are seen as two very sep- as the most important and the most divinely endowed arate fields of study, they depend greatly on each other. -
Archimedes of Syracuse
5 MARCH 2020 Engineering: Archimedes of Syracuse Professor Edith Hall Archimedes and Hiero II’s Syracuse Archimedes was and remains the most famous person from Syracuse, Sicily, in history. He belonged to the prosperous and sophisticated culture which the dominantly Greek population had built in the east of the island. The civilisation of the whole of ancient Sicily and South Italy was called by the Romans ‘Magna Graecia’ or ‘Great Greece’. The citis of Magna Graecia began to be annexed by the Roman Republic from 327 BCE, and most of Sicily was conquered by 272. But Syracuse, a large and magnificent kingdom, the size of Athens and a major player in the politics of the Mediterranean world throughout antiquity, succeeded in staying independent until 212. This was because its kings were allies of Rome in the face of the constant threat from Carthage. Archimedes was born into this free and vibrant port city in about 287 BCE, and as far as we know lived there all his life. When he was about twelve, the formidable Hiero II came to the throne, and there followed more than half a century of peace in the city, despite momentous power struggles going on as the Romans clashed with the Carthaginians and Greeks beyond Syracuse’s borders. Hiero encouraged arts and sciences, massively expanding the famous theatre. Archimedes’ background enabled him to fulfil his huge inborn intellectual talents to the full. His father was an astronomer named Pheidias. He was probably sent to study as a young man to Alexandria, home of the famous library, where he seems to have became close friend and correspondent of the great geographer and astonomer Eratosthenes, later to become Chief Librarian. -
The Birth of Hyperbolic Geometry Carl Friederich Gauss
The Birth of Hyperbolic Geometry Carl Friederich Gauss • There is some evidence to suggest that Gauss began studying the problem of the fifth postulate as early as 1789, when he was 12. We know in letters that he had done substantial work of the course of many years: Carl Friederich Gauss • “On the supposition that Euclidean geometry is not valid, it is easy to show that similar figures do not exist; in that case, the angles of an equilateral triangle vary with the side in which I see no absurdity at all. The angle is a function of the side and the sides are functions of the angle, a function which, of course, at the same time involves a constant length. It seems somewhat of a paradox to say that a constant length could be given a priori as it were, but in this again I see nothing inconsistent. Indeed it would be desirable that Euclidean geometry were not valid, for then we should possess a general a priori standard of measure.“ – Letter to Gerling, 1816 Carl Friederich Gauss • "I am convinced more and more that the necessary truth of our geometry cannot be demonstrated, at least not by the human intellect to the human understanding. Perhaps in another world, we may gain other insights into the nature of space which at present are unattainable to us. Until then we must consider geometry as of equal rank not with arithmetic, which is purely a priori, but with mechanics.“ –Letter to Olbers, 1817 Carl Friederich Gauss • " There is no doubt that it can be rigorously established that the sum of the angles of a rectilinear triangle cannot exceed 180°. -
Long Waves on the Seven Seas
4 Waves on Waves – Long Waves on the Seven Seas Anttiheikki Helenius Abstract Kondratieff waves are an interesting subject of study and describe present global economic developments. The Global Financial Crisis of 2009 and the present economic situation have parallels with the Great Depression of the 1930s. Twice-in-a-century events are occurring again. On the other hand, many important innovations have been introduced during the last decades. These innovations have changed people's lives in a revolution- ary manner and have contributed very positively to the global development. Study of the development of seafaring supports the claim of the existence of Kondratieff waves. Important innovations and milestones of development of seafaring coincided with the upswing phases of these waves. Moods of different eras manifest also in composition of shipping fleets and flotillas. One needs new creative approaches to solve global challenges. The study of long waves allows compelling insights and provides timeless wisdom for the study of economics. Keywords: Kondratieff waves, long waves, global financial crisis, maritime economics, economic forecasting, philosophy of science and economics, Schum- peterian economics, time preference of consumption, Hayekian economics, cruise industry. General Introduction to the Long Waves and to the Subject of This Article For my Doctoral thesis in Economics I studied the theory of Kondratieff waves. I used that theory in the practical context when analyzing the air transportation (Helenius 2003). A special vindication could be established for using a long waves approach for analyzing air transportation. Also I have used the long waves approach in recent conference papers (Idem 2009, 2010). -
General Disclaimer One Or More of the Following Statements May Affect
https://ntrs.nasa.gov/search.jsp?R=19710025504 2020-03-11T22:36:49+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) 6 X t B ICC"m date: July 16, 1971 955 L'Enfant Plaza North, S. W Washington, D. C. 20024 to Distribution B71 07023 from. J. W. Head suhiecf Derivation of Topographic Feature Names in the Apollo 15 Landing Region - Case 340 ABSTRACT The topographic features in the region of the Apollo 15 landing site (Figure 1) are named for a number of philosophers, explorers and scientists (astronomers in particular) representing periods throughout recorded history. It is of particular interest that several of the individuals were responsible for specific discoveries, observations, or inventions which considerably advanced the study and under- standing of the moon (for instance, Hadley designed the first large reflecting telescope; Beer published classic maps and explanations of the moon's surface). -
Lucan's Natural Questions: Landscape and Geography in the Bellum Civile Laura Zientek a Dissertation Submitted in Partial Fulf
Lucan’s Natural Questions: Landscape and Geography in the Bellum Civile Laura Zientek A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2014 Reading Committee: Catherine Connors, Chair Alain Gowing Stephen Hinds Program Authorized to Offer Degree: Classics © Copyright 2014 Laura Zientek University of Washington Abstract Lucan’s Natural Questions: Landscape and Geography in the Bellum Civile Laura Zientek Chair of the Supervisory Committee: Professor Catherine Connors Department of Classics This dissertation is an analysis of the role of landscape and the natural world in Lucan’s Bellum Civile. I investigate digressions and excurses on mountains, rivers, and certain myths associated aetiologically with the land, and demonstrate how Stoic physics and cosmology – in particular the concepts of cosmic (dis)order, collapse, and conflagration – play a role in the way Lucan writes about the landscape in the context of a civil war poem. Building on previous analyses of the Bellum Civile that provide background on its literary context (Ahl, 1976), on Lucan’s poetic technique (Masters, 1992), and on landscape in Roman literature (Spencer, 2010), I approach Lucan’s depiction of the natural world by focusing on the mutual effect of humanity and landscape on each other. Thus, hardships posed by the land against characters like Caesar and Cato, gloomy and threatening atmospheres, and dangerous or unusual weather phenomena all have places in my study. I also explore how Lucan’s landscapes engage with the tropes of the locus amoenus or horridus (Schiesaro, 2006) and elements of the sublime (Day, 2013). -
Riemann's Contribution to Differential Geometry
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematics 9 (1982) l-18 RIEMANN'S CONTRIBUTION TO DIFFERENTIAL GEOMETRY BY ESTHER PORTNOY UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61801 SUMMARIES In order to make a reasonable assessment of the significance of Riemann's role in the history of dif- ferential geometry, not unduly influenced by his rep- utation as a great mathematician, we must examine the contents of his geometric writings and consider the response of other mathematicians in the years immedi- ately following their publication. Pour juger adkquatement le role de Riemann dans le developpement de la geometric differentielle sans etre influence outre mesure par sa reputation de trks grand mathematicien, nous devons &udier le contenu de ses travaux en geometric et prendre en consideration les reactions des autres mathematiciens au tours de trois an&es qui suivirent leur publication. Urn Riemann's Einfluss auf die Entwicklung der Differentialgeometrie richtig einzuschZtzen, ohne sich von seinem Ruf als bedeutender Mathematiker iiberm;issig beeindrucken zu lassen, ist es notwendig den Inhalt seiner geometrischen Schriften und die Haltung zeitgen&sischer Mathematiker unmittelbar nach ihrer Verijffentlichung zu untersuchen. On June 10, 1854, Georg Friedrich Bernhard Riemann read his probationary lecture, "iber die Hypothesen welche der Geometrie zu Grunde liegen," before the Philosophical Faculty at Gdttingen ill. His biographer, Dedekind [1892, 5491, reported that Riemann had worked hard to make the lecture understandable to nonmathematicians in the audience, and that the result was a masterpiece of presentation, in which the ideas were set forth clearly without the aid of analytic techniques. -
Meet the Philosophers of Ancient Greece
Meet the Philosophers of Ancient Greece Everything You Always Wanted to Know About Ancient Greek Philosophy but didn’t Know Who to Ask Edited by Patricia F. O’Grady MEET THE PHILOSOPHERS OF ANCIENT GREECE Dedicated to the memory of Panagiotis, a humble man, who found pleasure when reading about the philosophers of Ancient Greece Meet the Philosophers of Ancient Greece Everything you always wanted to know about Ancient Greek philosophy but didn’t know who to ask Edited by PATRICIA F. O’GRADY Flinders University of South Australia © Patricia F. O’Grady 2005 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. Patricia F. O’Grady has asserted her right under the Copyright, Designs and Patents Act, 1988, to be identi.ed as the editor of this work. Published by Ashgate Publishing Limited Ashgate Publishing Company Wey Court East Suite 420 Union Road 101 Cherry Street Farnham Burlington Surrey, GU9 7PT VT 05401-4405 England USA Ashgate website: http://www.ashgate.com British Library Cataloguing in Publication Data Meet the philosophers of ancient Greece: everything you always wanted to know about ancient Greek philosophy but didn’t know who to ask 1. Philosophy, Ancient 2. Philosophers – Greece 3. Greece – Intellectual life – To 146 B.C. I. O’Grady, Patricia F. 180 Library of Congress Cataloging-in-Publication Data Meet the philosophers of ancient Greece: everything you always wanted to know about ancient Greek philosophy but didn’t know who to ask / Patricia F. -
GENERALIZED DEFORMATION-RATES in SECONDARY FLOWS of VISCOELASTIC FLUIDS BETWEEN ROTATING SPHERES Redacted for Privacy Kbstract Approved: M.N.L
AN ABSTRACT OF THE THESIS OF RONALD NORMAN KNOSHAUG for the MASTER OF ARTS (Name) (Degree) in MATHEMATICS presented on October 10, 1968 (Major) (Date) Title: GENERALIZED DEFORMATION-RATES IN SECONDARY FLOWS OF VISCOELASTIC FLUIDS BETWEEN ROTATING SPHERES Redacted for Privacy kbstract approved: M.N.L. Narasimhan By various experiments, it has been found that the re- sponse of real materials to external forces is, in general, nonlinear in character. In classical continuum mechanics, the use of ordinary measures of strain have forced the constitutive equations to take complex forms and since the orders of these measures are not fixed, many unknown re- sponse coefficients have to be introduced into the consti- tutive equations. In general, there is no basis of choos- ing these coefficients. Seth attempted to resolve this difficulty by introducing generalized measures in continuum mechanics and Narasimhan and Sra extended these measures in such a way as to adequately explain some rheological behav- ior of materials. The constitutive equation of Narasimhan and Sra essentially contains two terms and four rheological constants and, unlike some previous theories, it does not contain any unknown functions of the invariants of kine- matic matrices while at the same time explains many visco- elastic phenomena. In the present investigation, a theorem has been proved establishing certain criteria for fixing the orders of generalized measures suitably so as to predict different types of viscoelastic phenomena, such as dilatancy. We have found during the course of this investigation that the constitutive equation of Narasimhan and Sra does not ade- quately explain such physical phenomena as pseudoplasticity. -
Ships in the Eastern Mediterranean During the Hellenistic Period N ANTET EDITED by EMMANUEL NANTET with a PREFACE by ALAIN BRESSON (
E Sailing from Polis to Empire MMANUEL Ships in the Eastern Mediterranean during the Hellenistic Period N ANTET EDITED BY EMMANUEL NANTET WITH A PREFACE BY ALAIN BRESSON ( ED Sailing from Polis to Empire What can the architecture of ancient ships tell us about their capacity to carry cargo or to .) navigate certain trade routes? How do such insights inform our knowledge of the ancient S economies that depended on mari� me trade across the Mediterranean? These and similar ques� ons lie behind Sailing from Polis to Empire, a fascina� ng insight into the prac� cali� es of trading by boat in the ancient world. Allying modern scien� fi c knowledge with Hellenis� c sources, this interdisciplinary collec� on brings together experts in various fi elds of ship archaeology to shed new light on the role played by ships and AILING sailing in the exchange networks of the Mediterranean. Covering all parts of the Eastern Mediterranean, these outstanding contribu� ons delve into a broad array of data – literary, epigraphical, papyrological, iconographic and archaeological – to understand the trade FROM routes that connected the economies of individual ci� es and kingdoms. Unique in its interdisciplinary approach and focus on the Hellenis� c period, this collec� on P digs into the ques� ons that others don’t think to ask, and comes up with (some� mes OLIS surprising) answers. It will be of value to researchers in the fi elds of naval architecture, Classical and Hellenis� c history, social history and ancient geography, and to all those with TO an interest in the ancient world or the seafaring life. -
Revolution of Charged Particles in a Central Field of Attraction with Emission of Radiation
ISSN: 2639-0108 Research Article Advances in Theoretical & Computational Physics Revolution of Charged Particles in a Central Field of Attraction with Emission of Radiation Musa D Abdullahi *Corresponding author Musa D Abdullahi, Department of Electrical and Electronics Engineering, Department of Electrical and Electronics Engineering Kaduna Polytechnic, Kaduna, Nigeria. Submitted: 09 Jan 2020; Accepted: 20 Jan 2020; Published: 01 Feb 2020 Abstract A particle of mass nm, carrying the electronic charge -e, revolves in an orbit through angle ψ at distances nr from a center of force of attraction, with angular momenta nL perpendicular to the orbital plane, where n is an integer greater than 0, m the electronic mass and r1 is the radius of the first circular orbit. The equation of motion of the nth orbit of revolution is derived, revealing that an excited particle revolves in an unclosed elliptic orbit, with emission of radiation at the frequency of revolution, before settling down, after many cycles of ψ, in a stable circular orbit. In unipolar revolution, a radiating particle settles in a circular orbit of radius nr1 round a positively charged nucleus. In bipolar revolution, two radiating particles of the same mass nm and charges e and –e, settle in a circular stable orbit of radius ns1 round a common center of mass, where s1 is the radius of the first orbit. Discrete masses nm and angular momenta nL lead to quantization of the orbits outside Bohr’s quantum mechanics. The frequency of radiation in the bipolar revolution is found to be in conformity with the Balmer-Rydberg formula for the spectral lines of radiation from the atom hydrogen gas.