Effects of Chilling Temperature on the Survival of Escherichia Coli In

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Chilling Temperature on the Survival of Escherichia Coli In Effects of cold temperature and water activity stress on the physiology of Escherichia coli in relation to carcasses Chawalit Kocharunchitt Bachelor of Biotechnology with Honours Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy University of Tasmania June, 2012 DECLARATION OF ORIGINALITY I hereby declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution and, to the best of my knowledge and belief, contains no copy of material previously published or written by another person, except where due reference is made in the test of the thesis. This thesis does not contain any material that infringes copyright. Chawalit Kocharunchitt June, 2012 i STATEMENT ON ACCESS TO THE THESIS I understand that the University of Tasmania will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere. This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. Chawalit Kocharunchitt June, 2012 STATEMENT ON PUBLISHED WORK The publisher of the paper comprising Chapter 2 hold the copyright for that content, and access to the material should be sought from the respective journal. The remaining non published content of the thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. Chawalit Kocharunchitt June, 2012 ii STATEMENT ON THE CONTRIBUTION OF OTHERS I acknowledge the works done in collaboration with the Commonwealth Scientific and Industrial Research Organization (CSIRO) Food and Nutritional Sciences (North Ryde, Australia). The major contribution of Dr. Thea King from (CSIRO) Food and Nutritional Sciences toward the transcriptomic works, including the analysis of transcriptomic data and the interpretation based on them is acknowledged. I also acknowledge the technical support provided by Mr. Edwin Lowe from Central Science Laboratory (University of Tasmania, Hobart, Australia) for the proteomic works. Finally, I acknowledge the assistance of Dr. Olivia McQuestin from the Department of Health and Human Services (Hobart, Australia) with general laboratory works. Chawalit Kocharunchitt June, 2012 iii STATEMENT OF CO-AUTHORSHIP This thesis includes work, which has been published or submitted for publication in a peer-reviewed journal. More details for each chapter are described in the section of “Publications Arising from the Thesis”. Proportionate co-author contributions were as follows: Chapters 2-4 Chawalit Kocharunchitt (30%), Thea King (30%), Kari Gobius (10%), John P. Bowman (10%), Tom Ross (20%) Chapter 5 Chawalit Kocharunchitt (60%), John P. Bowman (10%), Tom Ross (30%) Details of the Authors roles: Mr. Chawalit Kocharunchitt (candidate) made key contribution to most part of the research, data analysis, interpretation of results, and led the preparation and refinement of initial and successive manuscripts. Dr. Thea King from CSIRO Food and Nutritional Sciences (Australia) contributed to data analysis, interpretation of some results and development of the manuscripts. Dr. Kari Gobius from CSIRO Food and Nutritional Sciences (Australia) provided general guidance Assoc. Prof. John P. Bowman from Food Safety Centre, University of Tasmania (Australia) provided directional advice as supervisor, and contributed to the idea and manuscript preparation. iv Assoc. Prof. Tom Ross from Food Safety Centre, University of Tasmania (Australia) provided directional advice as supervisor, and contributed to the experimental design, implementation of the research program and manuscript preparation. We the undersigned agree with the above stated “proportion of work undertaken” for each of the above published or submitted peer-reviewed manuscripts contributing to this thesis: (Assoc. Prof. Tom Ross) (Prof. Holger Meinke) Supervisor Head of School School of Agricultural Science School of Agricultural Science University of Tasmania University of Tasmania June, 2012 v ACKNOWLEDGEMENTS I would like to express my gratitude to the following people for their contributions to this project and to whom I am most grateful. My academic supervisors, Assoc. Prof. Tom Ross and Assoc. Prof. John Bowman for their guidance, support and assistance during supervision of this project. The University of Tasmania and the Meat and Livestock Australia (MLA) for generous financial support. Dr. Thea King, Mr. Edwin Lowe, Dr. Kari Gobius, Dr. Olivia McQuestin, Dr. David Ratkowsky and Prof. Tom McMeekin for their advice and help during this project. Dr. Carlton Gyles from the University of Guelph (Guelph, Canada) for supplying Escherichia coli O157:H7 strain Sakai to be used in this project. Dr. Lyndal Mellefont, Mrs. Lauri Parkinson, Mr. Andrew Measham and friends within the School of Agricultural Science for their friendship, advice and help during this research. My family in Thailand, as well as my wife (Ji Li) and son (Jacob Kocharunchitt) for giving me with constant support and encouragement over the course of this work. vi ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) has emerged as an important food-borne pathogen of considerable public health concern. The majority of food-borne illnesses caused by EHEC, particularly serotype O157:H7, appear to be associated with undercooked meat and meat products. Although several intervention strategies are already in use to control carcass contamination, no single intervention is 100% effective in eliminating E. coli from carcasses. This indicates the need for developing an effective intervention. The Australian meat industry has a particular interest in evaluating the potential effect of combined cold and osmotic stresses on E. coli, as occurs during carcass chilling. To this end, the present thesis aims to provide a comprehensive understanding of the growth kinetics and cellular responses of E. coli O157:H7 strain Sakai subjected to conditions relevant to low temperature and water activity conditions experienced during meat carcass chilling in Australia where cold air chilling, rather than spray chilling, is routinely employed and leads to a temporary reduction in temperature as well as reduction in water activity during chilling. Despite that those temperature and water activity conditions are not lethal to E. coli, other studies have reported a decline in E. coli viability during cold air carcass chilling that could be exploited to deliberately reduce the prevalence of E. coli on meat. An initial study employed an integrated transcriptomic and ‘shotgun’ proteomic approach (using cDNA microarray and 2D-LC/MS/MS analysis, respectively), to characterize the genome and proteome profiles of E. coli under steady-state conditions of cold temperature and water activity stress. Expression profiles of E. coli during exponential growth at 25°C aw 0.985, 14°C aw 0.985, vii 25°C aw 0.967, and 14°C aw 0.967 was compared to that of a reference culture (35°C aw 0.993). Gene expression and protein abundance profiles of E. coli were more strongly affected by low water activity (aw 0.967) than by low temperature (14°C). Predefined group enrichment analysis revealed that the universal response of E. coli to all low temperature and/or low water activity conditions included activation of the master stress response regulator RpoS and the Rcs phosphorelay system involved in the biosynthesis of the exopolysacharide colanic acid, as well as down-regulation of elements involved in chemotaxis and motility. Characterizing the physiology of E. coli under chilling and water activity stresses provided a baseline of knowledge to better interpret, and potentially exploit, this pathogen’s responses to dynamic environmental conditions that occur during carcass chilling. To gain deeper insight into the potential mechanisms controlling population responses of E. coli under dynamic low temperature and water activity conditions, a series of studies were undertaken to investigate the growth kinetics and time-dependent changes in its global expression upon a sudden downshift in temperature or water activity. Growth response of E. coli to a temperature downshift below 25°C was assessed. All downshifts induced a lag phase of growth before cells resumed growth at a rate typical for the temperature experienced. By contrast, shifting E. coli to low water activity (below aw 0.985) caused an apparent loss, then recovery, of culturability. Exponential growth then resumed at a rate under characteristic for the water activity imposed. In transcriptomic and proteomic studies, E. coli responded to cold shock (from 35°C to 14°C) and hyperosmotic shock (from aw 0.993 to aw 0.967) by changing expression of genes and proteins involved in several functional groups and metabolic pathways. A number of these changes were found to be common for both cold and osmotic stresses, viii although stress-specific responses were also observed. The adaptive strategies adopted by cells generally included accumulation of compatible solutes and modification of the cell envelope composition. Growth at cold temperature and low water activity, however, appeared to up- regulate additional elements, which are involved in the biosynthesis of specific amino acids. The present findings also highlighted the robust ability of E. coli to activate multiple stress responses by transiently inducing the activity of RpoE regulon to repair protein misfolding and aid the proper folding of newly synthesized proteins in cell envelope, while simultaneously
Recommended publications
  • Inactivation Mechanisms of Alternative Food Processes on Escherichia Coli O157:H7
    INACTIVATION MECHANISMS OF ALTERNATIVE FOOD PROCESSES ON ESCHERICHIA COLI O157:H7 DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Aaron S. Malone, M.S. ***** The Ohio State University 2009 Dissertation Committee: Approved by Professor Ahmed E. Yousef, Adviser Professor Polly D. Courtney ___________________________________ Professor Tina M. Henkin Adviser Food Science and Nutrition Professor Robert Munson ABSTRACT Application of high pressure (HP) in food processing results in a high quality and safe product with minimal impact on its nutritional and organoleptic attributes. This novel technology is currently being utilized within the food industry and much research is being conducted to optimize the technology while confirming its efficacy. Escherichia coli O157:H7 is a well studied foodborne pathogen capable of causing diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. The importance of eliminating E. coli O157:H7 from food systems, especially considering its high degree of virulence and resistance to environmental stresses, substantiates the need to understand the physiological resistance of this foodborne pathogen to emerging food preservation methods. The purpose of this study is to elucidate the physiological mechanisms of processing resistance of E. coli O157:H7. Therefore, resistance of E. coli to HP and other alternative food processing technologies, such as pulsed electric field, gamma radiation, ultraviolet radiation, antibiotics, and combination treatments involving food- grade additives, were studied. Inactivation mechanisms were investigated using molecular biology techniques including DNA microarrays and knockout mutants, and quantitative viability assessment methods. The results of this research highlighted the importance of one of the most speculated concepts in microbial inactivation mechanisms, the disruption of intracellular ii redox homeostasis.
    [Show full text]
  • Cold Shock Response in Mammalian Cells
    J. Mol. Microbiol. Biotechnol. (1999) 1(2): 243-255. Cold Shock ResponseJMMB in Mammalian Symposium Cells 243 Cold Shock Response in Mammalian Cells Jun Fujita* Less is known about the cold shock responses. In microorganisms, cold stress induces the synthesis of Department of Clinical Molecular Biology, several cold-shock proteins (Jones and Inouye, 1994). A Faculty of Medicine, Kyoto University, Kyoto, Japan variety of plant genes are known to be induced by cold stress, and are thought to be involved in the stress tolerance of the plant (Shinozaki and Yamaguchi-Shinozaki, 1996; Abstract Hughes et al., 1999). The response to cold stress in mammals, however, has attracted little attention except in Compared to bacteria and plants, the cold shock a few areas such as adaptive thermogenesis, cold response has attracted little attention in mammals tolerance, and storage of cells and organs. Recently, except in some areas such as adaptive thermogenesis, hypothermia is gaining popularity in emergency clinics as cold tolerance, storage of cells and organs, and a novel therapeutic modality for brain damages. In addition, recently, treatment of brain damage and protein low temperature cultivation has been dicussed as a method production. At the cellular level, some responses of to improve heterologous protein production in mammalian mammalian cells are similar to microorganisms; cold cells (Giard et al., 1982). stress changes the lipid composition of cellular Adaptive thermogenesis refers to a component of membranes, and suppresses the rate of protein energy expenditure, which is separable from physical synthesis and cell proliferation. Although previous activity. It can be elevated in response to changing studies have mostly dealt with temperatures below environmental conditions, most notably cold exposure and 20°C, mild hypothermia (32°C) can change the cell’s overfeeding.
    [Show full text]
  • ADDENDUM SHEET America's Boating Course
    ADDENDUM SHEET SM America’s Boating Course - 2001 Edition Homeland Security Measures Boaters must be aware of rules and guidelines regarding homeland security measures. The following are steps that boaters should take to protect our country and are a direct result of the terrorist attacks of 11 September 2001. Keep your distance from all military vessels, cruise lines, or commercial shipping: • All vessels must proceed at a no-wake speed when within a Protection Zone (which extends 500 yards around U.S. naval vessels). • Non-military vessels are not allowed to enter within 100 yards of a U.S. naval vessel, whether underway or moored, unless authorized by an official patrol. The patrol may be either Coast Guard or Navy. • Violating the Naval Vessel Protection Zone is a felony offense, punishable by up to six years imprisonment and / or up to $250,000 in fines. Observe and avoid all security zones. Avoid commercial port operation areas. Avoid restricted areas near: • Dams • Naval ship yards • Power plants • Dry docks Do not stop or anchor beneath bridges or in channels. Keep your boat locked when not using it, including while at temporary docks, such as yacht clubs, restaurants, marinas, shopping, etc. When storing your boat disable the engine. If on a trailer, immobilize it so it cannot be moved. Keep a sharp eye out for anything that looks peculiar or out of the ordinary, and report it to the Coast Guard, port or marine security. When boating within a foreign country make certain that you check-in with the foreign country’s Customs Service upon entering the country and with the USA Customs Service and/or Immigration and Naturalization Service upon returning.
    [Show full text]
  • Autonomic Conflict: a Different Way to Die During Cold Water Immersion
    J Physiol 590.14 (2012) pp 3219–3230 3219 TOPICAL REVIEW ‘Autonomic conflict’: a different way to die during cold water immersion? Michael J. Shattock1 and Michael J. Tipton2 1Cardiovascular Division, King’s College London, London, UK 2Extreme Environments Laboratory, Department of Sports and Exercise Science, University of Portsmouth, Portsmouth, UK Abstract Cold water submersion can induce a high incidence of cardiac arrhythmias in healthy volunteers. Submersion and the release of breath holding can activate two powerful and antagonistic responses: the ‘cold shock response’ and the ‘diving response’.The former involves the activation of a sympathetically driven tachycardia while the latter promotes a parasympathetically mediated bradycardia. We propose that the strong and simultaneous activation of the two limbs of the autonomic nervous system (‘autonomic conflict’) may account for these arrhythmias and may, in some vulnerable individuals, be responsible for deaths that have previously wrongly been ascribed to drowning or hypothermia. In this review, we consider the evidence supporting this claim and also hypothesise that other environmental triggers may induce autonomic conflict and this may be more widely responsible for sudden death in individuals with other predisposing conditions. (Received 6 February 2012; accepted after revision 27 April 2012; first published online 30 April 2012) Corresponding author M. Shattock: Cardiovascular Division, King’s College London, The Rayne Institute, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK. Email: [email protected] Introduction: do all drowning victims drown? on average, we lose about one child a week. Historically, death in cold water was generally ascribed to hypothermia; In most countries of the world, immersion represents the more recently, description of the initial ‘cold shock’ second most common cause of accidental death in children response (Tipton, 1989b) to immersion and other factors and the third in adults (Bierens et al.
    [Show full text]
  • Adaptation of the Cold Shock Response and Cooling Rates On
    International Journal of Aquatic Research and Education Volume 9 | Number 2 Article 6 5-1-2015 Adaptation of the Cold Shock Response and Cooling Rates on Swimming Following Repeated Cold Water Immersions in a Group of Children Aged 10 – 12 years Flora Bird Queen's Hospital, [email protected] Jim House University of Portsmouth Michael J. Tipton University of Portsmouth Follow this and additional works at: http://scholarworks.bgsu.edu/ijare Recommended Citation Bird, Flora; House, Jim; and Tipton, Michael J. (2015) "Adaptation of the Cold Shock Response and Cooling Rates on Swimming Following Repeated Cold Water Immersions in a Group of Children Aged 10 – 12 years," International Journal of Aquatic Research and Education: Vol. 9: No. 2, Article 6. Available at: http://scholarworks.bgsu.edu/ijare/vol9/iss2/6 This Research Article is brought to you for free and open access by ScholarWorks@BGSU. It has been accepted for inclusion in International Journal of Aquatic Research and Education by an authorized administrator of ScholarWorks@BGSU. Bird et al.: Adaptation of the Cold Shock Response and Cooling Rates on Swimmi International Journal of Aquatic Research and Education, 2015, 9, 149 -161 http://dx.doi.org/10.1123/ijare.2014-0081 © 2015 Human Kinetics, Inc. ORIGINAL RESEARCH Adaptation of the Cold Shock Response and Cooling Rates on Swimming Following Repeated Cold Water Immersions in a Group of Children Aged 10–12 Years Flora Bird Queen’s Hospital James R. House and Michael J. Tipton University of Portsmouth Habituation of the cold shock response and adaptation in deep body cooling with prolonged cold water immersion is well documented in adults.
    [Show full text]
  • Bacterial Chromosome Organisation and Transcription
    Bacterial Chromosome Organisation and Transcription by Laura Sellars A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences The University of Birmingham April 2014 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract The bacterial chromosome has to be condensed to fit inside the cell, forming a compact structure called the nucleoid, which is confined to a particular region of the cell without constriction by a membrane. Originally, the nucleoid was thought to be packed into the cell in a disordered way, unlike the highly organised chromatin of eukaryotic cells. More recently, the bacterial nucleoid has been shown to be far more structured than previously thought, with DNA present in topologically distinct loops, which are then arranged into macrodomains. Some of the proteins involved in structuring the E. coli chromosome are also known to have important roles in regulating transcription, and at least one transcription factor is known to cause distant DNA sites to cluster upon binding. These factors lead to the idea that chromosome structure could be affected by local gene expression.
    [Show full text]
  • Supplementary Material
    Lacoux et al. Dynamics of transcription initiation and RNA processing Supplementary Material Dynamic insights on transcription initiation and RNA processing during bacterial adaptation Caroline Lacoux1,#, Aymeric Fouquier d’Hérouël2, Françoise Wessner- Le Bohec1, Nicolas Innocenti1,3,#, Chantal Bohn4, Sean P. Kennedy5,#, Tatiana Rochat6, Rémy A. Bonnin4,#, Pascale Serror1, Erik Aurell3,7, Philippe Bouloc4 and Francis Repoila1,* Email adresses: CL: [email protected], AFD: [email protected], FW: [email protected], NI: [email protected], CB: [email protected], SPK: [email protected], TR: [email protected], RB: [email protected], PS: [email protected], EA: [email protected], PB: [email protected], FR: [email protected] Corresponding author : [email protected] Running head: Dynamics of transcription initiation and RNA processing This file contains: Section S1: Dynamics of RNA levels in response to σE induction (Contains Figures S1 and S2). Section S2: Assignment of 5’ RNA ends. Section S3: Figure S3. Patterns of changes in TIF at σE-TSSs assigned as UNDs or PSSs in this study. Figure S4. Examples of changes in TIF at σE-independent TSSs Section S4: RNA dynamics at the bepA-yfgD operon (Contains Figures S5) References 1 Lacoux et al. Dynamics of transcription initiation and RNA processing Section S1: Dynamics of RNA levels in response to σE induction Global view of the evolving transcriptome Our experimental system consisted of a plasmid (pZE21-rpoE) that harbor the σE encoding sequence under control of the inducible promoter PLtetO-1 in E. coli K12 strain MG1655 (Fig.
    [Show full text]
  • Influence of Glucose Availability and CRP Acetylation on The
    ORIGINAL RESEARCH published: 23 May 2018 doi: 10.3389/fmicb.2018.00941 Influence of Glucose Availability and CRP Acetylation on the Genome-Wide Transcriptional Response of Escherichia coli: Assessment by an Optimized Factorial Microarray Analysis Daniel V. Guebel 1 and Néstor V. Torres 2* 1 Biotechnology Counselling Services, Buenos Aires, Argentina, 2 Systems Biology and Mathematical Modelling Group, Department of Biochemistry, Microbiology, Cellular Biology and Genetics, Institute of Biomedical Technologies, Center for Biomedical Research of the Canary Islands, University of La Laguna, San Cristóbal de La Laguna, Spain Background: While in eukaryotes acetylation/deacetylation regulation exerts multiple Edited by: pleiotropic effects, in Escherichia coli it seems to be more limited and less known. Hence, Marie-Joelle Virolle, we aimed to progress in the characterization of this regulation by dealing with three Centre National de la Recherche convergent aspects: the effector enzymes involved, the master regulator CRP, and the Scientifique (CNRS), France dependence on glucose availability. Reviewed by: Abhijit Shukla, Methods: The transcriptional response of E. coli BW25113 was analyzed across 14 Memorial Sloan Kettering Cancer Center, United States relevant scenarios. These conditions arise when the wild type and four isogenic mutants Feng Jiang, (defective in deacetylase CobB, defective in N(ε)-lysine acetyl transferase PatZ, Q- and Chinese Academy of Medical R-type mutants of protein CRP) are studied under three levels of glucose availability Sciences, China (glucose-limited chemostat and glucose-excess or glucose-exhausted in batch culture). *Correspondence: acetylated Néstor V. Torres The Q-type emulates a permanent stage of CRP , whereas the R-type emulates [email protected] a permanent stage of CRPdeacetylated.
    [Show full text]
  • A Quantitative Proteomics Investigation of Cold Adaptation in the Marine Bacterium, Sphingopyxis Alaskensis
    A quantitative proteomics investigation of cold adaptation in the marine bacterium, Sphingopyxis alaskensis Thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy (Ph.D.) Lily L. J. Ting School of Biotechnology and Biomolecular Sciences University of New South Wales January 2010 COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only). I have either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.' Signed ……………………………………………........................... 21st April, 2010 Date ……………………………………………........................... AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format.’ Signed ……………………………………………........................... 21st April, 2010 Date ……………………………………………..........................
    [Show full text]
  • Identification and Characterisation of Cell Division Proteins in Staphylococcus Aureus
    Identification and Characterisation of Cell Division Proteins in Staphylococcus aureus By Azhar F. Kabli MSc (University of Sheffield) A thesis submitted for the degree of Doctor of Philosophy December 2013 Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN i Summary Cell division is a vital process that is required for bacterial proliferation and is thus an important target for the development of new antimicrobial agents. Bacterial cell division has mainly been studied in rod-shaped microorganisms, where a complex macromolecular machine, termed the divisome, mediates the division process. Cell division requires the coordination of components from the cytoplasm, through the membrane, to the cell wall where synthesis of new peptidoglycan takes place. Escherichia coli and Bacillus subtilis divisomes involve multiple essential components, mostly of unknown function. Staphylococcus aureus is a coccus that divides by binary fission in three orthogonal planes. The cell division machinery of S. aureus has been initially mapped as it is a clinically significant pathogen that poses a serious threat to public health due to resistance to current antibiotics. Indeed, the search for new drug targets against S. aureus is crucial. In this study, S. aureus cell division components DivIC and FtsL were identified as members of a novel class of cell wall-binding proteins, and their affinity for the cell wall was shown to be enhanced by the presence of wall teichoic acids. A GFP fusion analysis and immunolocalisation experiments demonstrated that DivIC and FtsL may transiently localise to the division site and their localisation patterns suggest that they may identify previous or potential planes of division by recognising specific forms of peptidoglycan architecture.
    [Show full text]
  • I. Freezing Lactic Acid Bacteria
    Study of the cryopreservation-related stresses in the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus through a global and multi-scale approach Julie Meneghel To cite this version: Julie Meneghel. Study of the cryopreservation-related stresses in the lactic acid bacterium Lacto- bacillus delbrueckii subsp. bulgaricus through a global and multi-scale approach. Biotechnology. Université Paris Saclay (COmUE), 2017. English. NNT : 2017SACLA030. tel-02965060 HAL Id: tel-02965060 https://tel.archives-ouvertes.fr/tel-02965060 Submitted on 13 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Study of the cryopreservation- related stresses in the lactic acid bacterium Lactobacillus delbrueckii 2017SACLA030 : subsp. bulgaricus through a global NNT and multi-scale approach Thèse de doctorat de l'Université Paris-Saclay préparée à l’Institut des sciences et industries du vivant et de l'environnement (AgroParisTech) École doctorale n°581 Agriculture, alimentation, biologie, environnement et santé (ABIES) Spécialité de doctorat: Sciences
    [Show full text]
  • Recent Developments in Bacterial Cold-Shock Response
    Curr. Issues Mol. Biol. (2004) 6: 125-136. Bacterial Cold-ShockOnline journal Response at www.cimb.org 125 Recent Developments in Bacterial Cold-Shock Response Sangita Phadtare* recently. A major reason why heat shock is extensively studied is because it causes well-defi ned damage to the Department of Biochemistry, Robert Wood Johnson cells, i.e. unfolding or denaturation of proteins. Heat- Medical School, 675 Hoes Lane, Piscataway, New Jersey shock-induced proteins, chaperones, assist in protein 08854, USA folding. In contrast, cold shock does not cause such well-defi ned cellular damage. Cold-shock response is classically exhibited when an exponentially growing Abstract culture is shifted from its optimum growth temperature to a lower temperature. In case of majority of bacteria such In response to temperature downshift, a number as Escherichia coli, upon temperature downshift, there is a of changes occur in cellular physiology such as, transient arrest of cell growth, during which general protein (i) decrease in membrane fl uidity, (ii) stabilization synthesis is severely inhibited. However, synthesis of a of secondary structures of nucleic acids leading number of proteins, called cold-shock proteins, is induced to reduced efficiency of mRNA translation and under these conditions. Eventually, the synthesis of these transcription, (iii) ineffi cient folding of some proteins, proteins decreases, cells become acclimated to low and (iv) hampered ribosome function. Cold-shock temperature and growth resumes (Jones et al., 1987). The response and adaptation has been quite extensively effect of cold shock is seen at multiple levels such as; (i) studied in Escherichia coli and Bacillus subtilis.
    [Show full text]