Fulu Biota, a New Exceptionally Preserved Cambrian Fossil Assemblage from the Longha Formation in Southeastern Yunnan

Total Page:16

File Type:pdf, Size:1020Kb

Fulu Biota, a New Exceptionally Preserved Cambrian Fossil Assemblage from the Longha Formation in Southeastern Yunnan Fulu biota, a new exceptionally preserved Cambrian fossil assemblage from the Longha Formation in southeastern Yunnan Shanchi Penga, b*, Xianfeng Yangc, Liu Yuc, Xuejin Zhua, b, Haijing Sund, Samuel Zamorae, Yingyan Maoa, and Yuchen Zhanga aState Key Laboratory of Palaeobiology and Stratigraphy (Chinese Academy of Sciences), Nanjing 210008, China bNanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China cYunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, ChinaeNational Maritime Museum of China, Tianjin 300467, China dNational Maritime Museum of China, Tianjin 300467, China eInstituto Geológico y Minero de España, C/ Manuel Lasala, 44 - 9º B, 50006 Zaragoza, Spain Abstract A new exceptionally preserved Cambrian biota, with fossils belonging to multiple phyla, has recently been found from the middle part of the Longha Formation, near Fulu Village, southeastern Yunnan, South China, and is named the Fulu biota. Groups recovered so far include polymerid trilobites, agnostoids, large bivalved arthropods, bradoriid arthropods, echinoderms, brachiopods, priapulids (worms), hyoliths, macroscopic algae, and trace fossils. The arthropods dominate and are highly diverse with echinoderms second in diversity. The associated agnostoids provide a precise late Guzhangian Age (late Miaolingian Epoch) for the biota, indicating that the biota occurs stratigraphically about halfway between the occurrences of the Kaili and the Guole biotas of South China, from both of which the new Fulu biota differs significantly in faunal components. Guzhangian biotas preserving poorly mineralized tissues and complete echinoderms were previously unknown in Gondwana until now, providing a unique window into life at this critical time interval. Keywords: Fulu biota; Fossils of multiple phyla; Longha Formation; Guzhangian; Yunnan, South China 1. Introduction We report the discovery of an important new fossil biota, the Fulu biota, that shows exceptional preservation of some invertebrate groups at a critical but poorly known time interval – the “late” Cambrian. It is also located in the southeastern corner of Yunnan Province at a much younger horizon than the famous Chengjiang and Guanshan biotas, both of which are in eastern Yunnan and are early Cambrian in age (Hou et al., 2004, 2017; Hu et al., 2013). Until the Fulu biota was discovered, there were only two of such biotas found from the upper half of the Cambrian of China, the Kaili biota from basal Miaolingian Series (Zhao, 2011) in eastern Guizhou Province and the Guole biota from middle Furongian Series in western Guangxi Province (Zhu et al., 2016), occuring at about 508 Ma and 491.5 Ma respectively. As the third exceptionally preserved biota from upper half of Cambrian in China, the Fulu biota which is from upper Guzhangian Stage at about 498.5 Ma in age, is sandwiched stratigraphically between the older Kaili biota and the younger Guole biota, close to the halfway, and therefore fills an important gap in the knowledge of Cambrian faunas (Fig.1). This deposit is also of comparable age to the important “orsten” fauna of Scandinavia, and the Weeks Formation of North America, providing an opportunity to compare contemporary faunas from different environments, paleocontinents, and styles of preservation. [Figure 1 is about here] Figure 1. Global and Chenese chronstratigraphic subdivisions of Cambrian System and stratigraphic positions of Cambrian major fossil Lagerstätten (solid stars) and the new Fulu lagerstätte (open star). Fm. = Formation; Sh. = Shale. 2. Locality and Geological Setting As a natural outcrop on the north side of the Y028 rural highway, the fossil site of the new exceptionally preserved Fulu biota lies about 1 km northwest of Fulu Village (Fig. 2D) or about 15 km southeast of the Tianpeng Township (Fig. 2C, D). From either Fulu or Tianpeng, the Y028 highway leads to the fossil locality. The Cambrian outcrop widely in Tianpeng-Fulu area, which lies at the southeastern corner of Yunnan Province, and exclusively consists of Cambrian formations belonging to upper half of the system, i.e. Miaolingian and Furongian series. No pre-Miaolingian succession are known from this area. The Tianpeng-Fulu area is regarded as one of the classical areas in Yunnan for the Cambrian stratigraphic studies, known as the Funing Stratigraphic Subregion of the Southeast Yunnan Startigraphic Region (Luo et al., 2009), and holds a number of lithostratigraphic unit stratotypes of formations that include, in ascending order, the Tianpeng, Longha, Tangjiaba, and Bocaitian formations. These formations formed the southwestern flank of an anticline, the Zhongzhai-Nanon Anticline near the Fulu Village, and are unconformably overlain by Devonian succession, including the Yujiang and Ping’en formations (Fig. 2D). [Figure 2 is about here] Figure 2. Maps showing the locations of Cambrian exceptionally preserved biotas in Yunnan and Guangxi provinces (A‒C) and the geology of Fulu area, Tianpeng, Funing, southeastern corner of Yunnan (D). The Fulu biota is from the middle part of the Longha Formation. Lithologically, this formation in the Tianpeng-Fulu area consists of carbonate successions with siliciclastic interbeds and is about 2000 meters thick. The formation is divided into three members (Yao et al., 2018). The lower Member exclusively consists of carbonate rocks, dominated in thin to thick-bedded dolomite and interbedded with dolomitic limestone and ribbon limestone. The middle and upper members consist of thin-bedded ribbon limestone, thin-bedded dolomitic limestone, and thin-bedded mudstone, interbedded with middle-thick bedded dolomite, and thin-bedded siltstone. Difference of those two members lies in that the middle Member bears mainly interbeds of dolomite and a few interbeds of mudstone and silty mudstone and the upper Member bears more interbeds of mudstone and silty mudstone but a few interbeds of dolomite. In general, the lithofacies indicate a continuously deepening depositional environment for the Longha Formation. 3. Material and methods All specimens were collected from a 2.5-m-thick interval of dark grey marl in the lower part of the Middle Member of the Longha Formation, which is usually weathered into yellow mudstone. Fossils from the mudstone preserve original profile with a more or less distortion and little compaction. A great number of echinoderms and arthropods are articulated. Most of specimens are photographed with digital camera Nikon D70, and a few of specimens are photographed under a Zeiss stereomicroscope (Model Axio Zoom V16) having a digital head (AxioCamMrM) and a circle light around the lens for providing uniform lighting. Images are processed by the functions of automatic color, contrast, and tonality of Adobe Photoshop CS6 software in order to show, as closely as possible, specimen’s natural color. 4. Fulu Biota The Fulu Biota is dominated by arthropods, of which the polymerid trilobites are abundant and the most diverse group with more than 14 genera. This fossil group is dominated particularly by damesellids (Bergeronites, Palaeadotes, Teinistion, Damesops, Blackwelderia etc., including a possible new damesellid genus) (Fig. 3A‒ E), forming a unique feature in faunal composition for Fulu biota as no damesellids are known from either the older Kaili or the younger Guole biotas. Other polymerids such as Paracoosia, Liostracina (Fig. 3N, O), Monkaspis and three small-sized forms including Torefera (Fig. 3F), an undetermined shumardiid (Fig. 3G) and an undetermined leiostigiid taxon, are common and are also unknown from the Kaili and Guole biotas. Trilobites from the Fulu biota are usually preserved articulated as complete exoskeletons, some of which have the hypostome attached in situ, impressed beneath the glabella (Fig. 3D, E). The complete exoskeleton is recorded for the first time for a number of described polymerid taxa, revealing their thoracic or thoracopygonal features and helping to clarify the concepts of some genera. For instance, Palaeadotes Öpik, 1967 and Bergeronites Sun in Guo, 1965 were considered to be synonymous by Lu and Zhu (1980). The new material of complete exoskeletons of both genera in Fulu biota (Fig. 3A, B) showed they are closely similar but certainly belong to different genera. Bergeronites has more anteriorly placed palpebral lobes and a proportionally smaller pygidium with narrower (tr., exsag.) pleural fields that bear entire pleural or interpleural furrows. In clear contrast, Palaeadotes has posteriorly placed palpebral lobes and a proportionally larger pygidium with broader (tr., exsag.) with pleural fields that bear incomplete pleural or interpleural furrows. In addition, Bergeronites is much smaller than Palaeadotes in size. When fully developed, the mature Palaeadotes reaches to about 90 mm in length but the maximum size of Bergeronites is only about 20 mm long. Cooper et al. (1996) further synonymized Bergeronites and Palaeadotes with Neodrepanura (then called Drepanura). However, Neodrepanura differs from Bergeronites and Palaeadotes greatly as it lacks general spine in cephalon and macropleual spines in thorax (Liu and Lei, 2011), supporting recognizing these are three as separate genera (Zhang and Jell, 1987; Peng et al., 2004). Except for a few new taxa, the polymerid trilobites of Fulu biota are known from formations of either the slope facies in South China or the platform facies in North China, providing new evidence for correlating Guzhangian succession of both regions. Agnostoids
Recommended publications
  • This Article Was Published in an Elsevier Journal. the Attached Copy
    This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Available online at www.sciencedirect.com Earth-Science Reviews 85 (2007) 47–81 www.elsevier.com/locate/earscirev A review of the Late Cambrian (Furongian) palaeogeography in the western Mediterranean region, NW Gondwana ⁎ J. Javier Álvaro a,b, , Annalisa Ferretti c, Cristina González-Gómez a, Enrico Serpagli d, M. Franco Tortello e, Marco Vecoli b, Daniel Vizcaïno f a Departamento Ciencias de la Tierra, Universidad de Zaragoza, 50009-Zaragoza, Spain b Laboratoire ‘Paléontologie et Paléogéographie du Paléozoïque’, UMR 8014 CNRS, Université de Lille I, 59655-Villeneuve d'Ascq, France c Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, largo S. Eufemia 19, 41100-Modena, Italy d Dipartimento del Museo di Paleobiologia e dell'Orto Botanico, Università di Modena e Reggio Emilia, Via Università 4, 41100-Modena, Italy e Departamento Paleozoología Invertebrados, Museo de Ciencias Naturales, Paseo del Bosque s/n°, 1900-La Plata, Argentina f 7 rue Jean-Baptiste Chardin, Maquens, 11090-Carcassonne, France Received 18 December 2006; accepted 25 June 2007 Available online 6 August 2007 Abstract The Cambrian–Ordovician transition of the western Mediterranean region (NW Gondwana) is characterized by the record of major erosive unconformities with gaps that range from a chronostratigraphic stage to a series.
    [Show full text]
  • Proposed Global Standard Stratotype-Section And
    PROPOSED GLOBAL STANDARD STRATOTYPE-SECTION AND POINT FOR THE DRUMIAN STAGE (CAMBRIAN) Prepared for the International Subcommission on Cambrian Stratigraphy by: Loren E. Babcock School of Earth Sciences The Ohio State University, 125 South Oval Mall Columbus, OH 43210, USA [email protected] Richard A. Robison Department of Geology, University of Kansas Lawrence, KS 66045, USA [email protected] Margaret N. Rees Department of Geoscience University of Nevada, Las Vegas Las Vegas, NV 89145, USA [email protected] Peng Shanchi Nanjing Institute of Geology and Palaeontology Chinese Academy of Sciences 39 East Beijing Road, Nanjing 210008, China [email protected] Matthew R. Saltzman School of Earth Sciences The Ohio State University, 125 South Oval Mall Columbus, OH 43210, USA [email protected] 31 July 2006 CONTENTS Introduction …………………………………………………………………………. 2 Proposal: Stratotype Ridge, Drum Mountains (Millard County, Utah, USA) as the GSSP for the base of the Drumian Stage ……………………………………………………. 3 1. Stratigraphic rank of the boundary …………………..…………………………… 3 2. Proposed GSSP – geography and physical geology ……………………………… 3 2.1. Geographic location …………………………………………………...….. 3 2.2. Geological location ………………..……………………...…………...….. 4 2.3. Location of level and specific point ……………………..……………...… 4 2.4. Stratigraphic completeness ………………...……………………………… 5 2.5. Thickness and stratigraphic extent …………………...……………...……. 5 2.6. Provisions for conservation, protection, and accessibility ……………..…. 5 3. Motivation for selection of the boundary level and of the potential stratotype section ………………………………………………………………………………. 6 3.1. Principal correlation event (marker) at GSSP level ………...…………..… 6 3.2. Potential stratotype section …………………………………………....….. 7 3.3. Demonstration of regional and global correlation ………………………... 8 3.3.1. Agnostoid trilobite biostratigraphy ………………………………… 9 3.3.2. Polymerid trilobite biostratigraphy …………....…………….…….
    [Show full text]
  • GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA
    Articles 8585 by Loren E. Babcock1, Richard A. Robison2, Margaret N. Rees3, Shanchi Peng4, and Matthew R. Saltzman1 The Global boundary Stratotype Section and Point (GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA 1 School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH 43210, USA. Email: [email protected] and [email protected] 2 Department of Geology, University of Kansas, Lawrence, KS 66045, USA. Email: [email protected] 3 Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV 89145, USA. Email: [email protected] 4 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. Email: [email protected] The Global boundary Stratotype Section and Point correlated with precision through all major Cambrian regions. (GSSP) for the base of the Drumian Stage (Cambrian Among the methods that should be considered in the selection of a GSSP (Remane et al., 1996), biostratigraphic, chemostratigraphic, Series 3) is defined at the base of a limestone (cal- paleogeographic, facies-relationship, and sequence-stratigraphic cisiltite) layer 62 m above the base of the Wheeler For- information is available (e.g., Randolph, 1973; White, 1973; McGee, mation in the Stratotype Ridge section, Drum Moun- 1978; Dommer, 1980; Grannis, 1982; Robison, 1982, 1999; Rowell et al. 1982; Rees 1986; Langenburg et al., 2002a, 2002b; Babcock et tains, Utah, USA. The GSSP level contains the lowest al., 2004; Zhu et al., 2006); that information is summarized here. occurrence of the cosmopolitan agnostoid trilobite Pty- Voting members of the International Subcommission on Cam- chagnostus atavus (base of the P.
    [Show full text]
  • The Subcommission on Cambrian Stratigraphy: the Status Quo Geologica Acta: an International Earth Science Journal, Vol
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España Shergold, J.H.; Geyer, G. The Subcommission on Cambrian Stratigraphy: the status quo Geologica Acta: an international earth science journal, vol. 1, núm. 1, 2003, pp. 5-9 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50510102 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.1, Nº1, 2003, 5-9 Available online at www.geologica-acta.com The Subcommission on Cambrian Stratigraphy: the status quo 2 J.H. SHERGOLD1 and G. GEYER 1 La Freunie, Benayes, 19510 Masseret, France E-mail: [email protected] 2 Institut für Paläontologie, Bayerische Julius-Maximilians-Universität Pleicherwald 1, D-97070 Würzburg, Germany. E-mail: [email protected] BRIEF HISTORY nous quantity of multidisciplinary stratigraphic informa- tion as a result of visiting candidate GSSPs in Australia, Following proposals accepted at the Norden Interna- Kazakhstan, China, Scandinavia, UK, Canada and USA. A tional Geological Congress (IGC) at Copenhagen in 1960, proposed GSSP for the base of the Ordovician System, the Subcommission on Cambrian Stratigraphy (SCS) was hence top of the Cambrian, is at Green Point, in the lower established in 1961 with the late Sir James Stubblefield as Broom Point Member of the Green Point Formation, at the founding Chairman. One of the initial tasks of the Sub- first appearance of the conodont Iapetognathus fluctivagus commission was to define the Precambrian-Cambrian NICOLL, MILLER, NOWLAN, REPETSKI and ETHINGTON, 1999 boundary.
    [Show full text]
  • (Re)Proposal of Three Cambrian Subsystems and Their Geochronology
    Article 273 by Ed Landing1*, Gerd Geyer2, Mark D. Schmitz3, Thomas Wotte4, and Artem Kouchinsky5 (Re)proposal of three Cambrian Subsystems and their Geochronology 1 New York State Museum, 222 Madison Avenue, Albany, NY, USA; *Corresponding author, E-mail: [email protected] 2 Lehrstuhl für Geodynamik und Geomaterialforschung, Institut für Geographie und Geologie, Bayerische Julius-Maximilians Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany 3 Department of Geosciences, Boise State University, 1910 University Drive, Boise, Idaho 83725, USA 4 Department of Palaeontology, TU Bergakademie Freiberg, Bernhard-von-Cotta-Straße, D-09599 Freiberg, Germany 5 Department of Palaeontology, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden (Received: April 29, 2020; Revised accepted: September 24, 2020) https://doi.org/10.18814/epiiugs/2020/020088 The Cambrian is anomalous among geological systems 2018). Following work by the International Subcommission on Cam- as many reports divide it into three divisions of indetermi- brian Stratigraphy (ISCS), these key biotic developments can be related nate rank. This use of “lower”, “middle”, and “upper” has to the chronostratigraphic subdivision of the Cambrian System into been a convenient way to subdivide the Cambrian despite four global series and ten stages (e.g., Babcock, 2005; Babcock and agreement it consists of four global series. Traditional divi- Peng, 2007) complemented by an increasingly precise U-Pb (numeri- sions of the system into regional series (Lower, Middle, cal) geochronology (Fig. 1). This decision at the 2004 ISCS meeting Upper) reflected local biotic developments not interpro- meant that the traditional subdivisions of the Cambrian into regional “Lower,” “Middle,” and “Upper” series (discussed below) were no lon- vincially correlatable with any precision.
    [Show full text]
  • ICS Annual Report 2015
    1 INTERNATIONAL UNION OF GEOLOGICAL SCIENCES Chair INTERNATIONAL COMMISSION ON STRATIGRAPHY Chair Prof. Stanley FINNEY, Department of Geological Sciences, California State University at Long Beach, Long Beach, CA 90840, USA TEL: 1-562-985-8637 (office); FAX: 1-562-985-8638; E-mail: [email protected] Vice Chair Prof. Shanchi PENG, Nanjing Institute of Geology & Palaeontology, Chinese Academy of Sciences, 39 East Beijing St., Nanjing 210008, China TEL and FAX: 86-25-8328 2135; E-mail: [email protected] Secretary General Dr. Paul R. BOWN, Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK TEL: 44-0-20-7504-2431 office; FAX 44-0-20-7388-7614; E-mail: [email protected] ANNUAL REPORT 2015 1. TITLE OF CONSTITUENT BODY International Commission on Stratigraphy (ICS) Summary and compilation of subcommission reports submitted jointly by: Chair: Prof. Stanley C Finney Department of Geological Sciences, California State University at Long Beach, Long Beach, CA 90840, USA Tel: 1-562-985-8637; Fax: 1-562-985-8638; E-mail: [email protected] Secretary General: Dr. Paul R Bown Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK Tel: +44(0)20-7679-2431; E-mail: [email protected] 2. OVERALL OBJECTIVES, AND FIT WITHIN IUGS SCIENCE POLICY Objectives The International Commission on Stratigraphy (ICS) is a body of expert stratigraphers founded for the purpose of promoting and coordinating long-term international cooperation and establishing standards in stratigraphy. Its principal objectives are: (a) Establishment and publication of a standard global stratigraphic time scale and the preparation and publication of global correlation charts, with explanatory notes.
    [Show full text]
  • Polymerid Trilobites from the Cambrian of Northwestern Hunan, China
    POLYMERID TRILOBITES FROM THE CAMBRIAN OF NORTHWESTERN HUNAN, CHINA Volume 1 Corynexochida, Lichida, and Asaphida PENG Shanchi Loren E. BABCOCK LIN Huanling Science Press Beijing · i· Responsible Editresses: HU Xiaochun and LIN Caihua POLYMERID TRILOBITES FROM THE CAMBRIAN OF NORTHWESTERN HUNAN, CHINA Volume 1 Corynexochida, Lichida, and Asaphida PENG Shanchi, Loren E. BABCOCK, and LIN Huanling Copyright © 2004 by Science Press Published by Science Press http://www. sciencep. com 16 Donghuangchenggen North Street Beijing 100717 P. R. China Printed in Beijing, 2004 Reprinted in Beijing, 2006 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner. ISBN 7-03-014905-X/Q· 1538 · ii· LIST OF AUTHORS PENG Shanchi Nanjing Institute of Geology and Palaeontology Chinese Academy of Sciences 39 East Beijing Road Nanjing 210008, China Loren E. BABCOCK Department of Geological Sciences The Ohio State University 275 Mendenhall Laboratory 125 South Oval Mall Columbus, Ohio 43210, USA LIN Huanling Nanjing Institute of Geology and Palaeontology Chinese Academy of Sciences 39 East Beijing Road Nanjing 210008, China · iii· This research was funded by National Natural Science Foundation of China (49070077, 40072003, 40023002, 40332018) Chinese Academy of Sciences (KZCX2-SW-129) Ministry of Technology and Science of China (2001 DEB20056, G2000077700) National Geographic Society (No. 5819-96; 7151-01) State Key Laboratory of Paleobiology and Stratigraphy (No. 933114) State Education Commission of China The Ohio State University US National Science Foundation (EAR 9405990, 9526709, 0073089, 0106883, EAR OPP-0346829) · iv· FOREWORD China is richly endowed with Cambrian strata yielding some of the best-preserved fossils known anywhere in the world.
    [Show full text]
  • Research on the Development Pattern of Sports Tourism in 18-Hole
    Advances in Computer Science Research, volume 83 8th International Conference on Social Network, Communication and Education (SNCE 2018) Research on the Development Pattern of Sports Tourism in 18-hole Village under the Accurate Poverty Alleviation Lizhong Wen College of Sports and Science, Jishou University, Jishou, Hunan 416000 [email protected] Keywords: Precise Poverty Alleviation 18-hole Village Sports Tourism Development Mode Abstract. In the new situation, precision poverty alleviation has become the core project of national poverty alleviation strategy and an effective way to promote the all-round and coordinated development of rural economy. The poverty alleviation of rural tourism is the most important part of the poverty alleviation. With the guidance of the concept of precise poverty alleviation, the 18-hole Village in Huayuan County of Hunan Province has scientifically developed sports tourism resources from multiple perspectives, giving full play to the advantages of the existing regional sports culture and natural tourism resources, vigorously developing the sports tourism industry, and comprehensively promoting the new rural construction process. Introduction With the continuous development of tourism, the development of sports tourism industry has become the focus of the party and state. In the context of precision poverty alleviation, the importance of regional sports tourism development further appears. Based on the concept of precise poverty alleviation and in light of its own different aspects, the 18-hole Village started to develop the sports tourism resources efficiently. On the basis of displaying the regional characteristics, it promoted the steady development of the regional economy, realized the goal of getting rid of poverty and eventually moving towards a well-off society.
    [Show full text]
  • (GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA
    84 by Loren E. Babcock1, Richard A. Robison2, Margaret N. Rees3, Shanchi Peng4, and Matthew R. Saltzman1 The Global boundary Stratotype Section and Point (GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA 1 School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH 43210, USA. Email: [email protected] and [email protected] 2 Department of Geology, University of Kansas, Lawrence, KS 66045, USA. Email: [email protected] 3 Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV 89145, USA. Email: [email protected] 4 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. Email: [email protected] The Global boundary Stratotype Section and Point correlated with precision through all major Cambrian regions. (GSSP) for the base of the Drumian Stage (Cambrian Among the methods that should be considered in the selection of a GSSP (Remane et al., 1996), biostratigraphic, chemostratigraphic, Series 3) is defined at the base of a limestone (cal- paleogeographic, facies-relationship, and sequence-stratigraphic cisiltite) layer 62 m above the base of the Wheeler For- information is available (e.g., Randolph, 1973; White, 1973; McGee, mation in the Stratotype Ridge section, Drum Moun- 1978; Dommer, 1980; Grannis, 1982; Robison, 1982, 1999; Rowell et al. 1982; Rees 1986; Langenburg et al., 2002a, 2002b; Babcock et tains, Utah, USA. The GSSP level contains the lowest al., 2004; Zhu et al., 2006); that information is summarized here. occurrence of the cosmopolitan agnostoid trilobite Pty- Voting members of the International Subcommission on Cam- chagnostus atavus (base of the P.
    [Show full text]
  • The SPICE Carbon Isotope Excursion in Siberia: a Combined Study of The
    Geol. Mag. 145 (5), 2008, pp. 609–622. c 2008 Cambridge University Press 609 doi:10.1017/S0016756808004913 Printed in the United Kingdom The SPICE carbon isotope excursion in Siberia: a combined study of the upper Middle Cambrian–lowermost Ordovician Kulyumbe River section, northwestern Siberian Platform ARTEM KOUCHINSKY*†, STEFAN BENGTSON*, YVES GALLET‡, IGOR KOROVNIKOV§, VLADIMIR PAVLOV¶, BRUCE RUNNEGAR, GRAHAM SHIELDS#, JAN VEIZER**, EDWARD YOUNG & KAREN ZIEGLER *Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden ‡Equipe´ de Paleomagn´ etisme,´ UMR CNRS 7154, Institut de Physique du Globe de Paris, France §Institute of Petroleum Geology and Geophysics, Siberian Branch of Russian Academy of Sciences, Academician Koptyug Avenue, 3, 630090 Novosibirsk, Russia ¶Institute of Physics of the Earth, Bol’shaya Gruzinskaya 10, Moscow 123995, Russia Department of Earth and Space Sciences, University of California Los Angeles, CA 90095-1567, USA #Geologisch-Palaontologisches¨ Institut, Westfalische¨ Wilhelms-Universitat,¨ Correnstr. 24, 48149 Munster,¨ Germany **Ottawa-Carleton Geoscience Centre, University of Ottawa, Ottawa, ON K1N 6N5, Canada (Received 2 April 2007; accepted 14 January 2008; First published online 23 May 2008) Abstract – An integrated, high-resolution chemostratigraphic (C, O and Sr isotopes) and magnetostratigraphic study through the upper Middle Cambrian–lowermost Ordovician shallow- marine carbonates of the northwestern margin of the Siberian Platform is reported. The interval was analysed at the Kulyumbe section, which is exposed along the Kulyumbe River, an eastern tributary of the Enisej River. It comprises the upper Ust’-Brus, Labaz, Orakta, Kulyumbe, Ujgur and lower Iltyk formations and includes the Steptoean positive carbon isotopic excursion (SPICE) studied here in detail from upper Cambrian carbonates of the Siberian Platform for the first time.
    [Show full text]
  • Research Reviews Geology As A
    CONTRIBUTIONS to SCIENCE, 5 (1): 41–51 (2009) Institut d’Estudis Catalans, Barcelona DOI: 10.2436/20.7010.01.58 ISSN: 1575-6343 research reviews www.cat-science.cat Geology as a “local” science Salvador Reguant* Department of Stratigraphy, Paleontology and Marine Geosciences, Faculty of Geology, University of Barcelona Member of the Science and Technology Section of the IEC Resum. Entendre i descriure la història de la Terra és un dels Abstract. Understanding and describing Earth’s history is one objectius finals de la geologia. La part de la geologia anomena- of geology’s goals. Stratigraphy, the field of geology compris- da estratigrafia ha treballat sempre, i ho continua fent, buscant ing our knowledge of the history of Earth and the life on the els llocs adients per a definir el millor coneixement que tenim planet, has always searched for the places that best reveal the de cada lapse de temps històric, tal com el podem «llegir» ana- passing of historical time, such as it can be “read” by analyzing litzant el registre rocós assequible als humans en superfície o the rock record. In geology, such places establish a compul- per sondatges. La major part de successions estratigràfiques sory reference, as almost always reflected in the nomenclature que s’han fet servir per a definir les unitats han estat publicades employed. Most of the stratigraphic successions employed to ja en el segle xix (les més antigues aquí citades són del 1832). define the units were described in the 19th century (the oldest Per contra, les anàlisis més detallades de l’escala cronostrati- ones cited here are from 1832).
    [Show full text]
  • Proposed Global Standard Stratotype-Section and Point
    PROPOSED GLOBAL STANDARD STRATOTYPE-SECTION AND POINT FOR THE PAIBIAN STAGE AND FURONGIAN SERIES (UPPER CAMBRIAN) Prepared on behalf of the International Subcommission on Cambrian Stratigraphy for the International Commission on Stratigraphy by: Peng Shanchi, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China, [email protected] Loren E. Babcock, Department of Geological Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH 43210, USA, [email protected] Richard A. Robison, Department of Geology, University of Kansas, Lawrence, KS 66045, USA, [email protected] Lin Huanling, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China Margaret N. Rees, Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV 89145, USA, [email protected] Matthew R. Saltzman, Department of Geological Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH 43210, USA, [email protected] CONTENTS Introduction Proposal: Paibi (Hunan Province, China) as the GSSP for the base of the Paibian Stage (base of the Furongian Series) 1. Stratigraphic rank of the boundary 1.A. Paibian Stage and Furongian Series: new names and historical review 2. Proposed GSSP – geography and physical geology 2.A. Geographic location 2.B. Geological location 2.C. Location of level and specific point 2.D. Stratigraphic completeness 2.E. Thickness and stratigraphic extent 2.F. Provisions for conservation, protection, and accessibility 3. Motivation for selection of the boundary level and of the stratotype section 3.A. Principal correlation event (marker) at GSSP level 3.B.
    [Show full text]