Curriculum: Biology and Marine Ecology)

Total Page:16

File Type:pdf, Size:1020Kb

Curriculum: Biology and Marine Ecology) UNIVERSITÀ POLITECNICA DELLE MARCHE Department of Life and Environmental Sciences PhD course Life and Environmental Science (curriculum: Biology and Marine Ecology) Fatty acids as biomarkers of the influence of biological and environmental factors on marine organisms PhD student: Tutor: Matteo Antonucci Cristina Truzzi Academic Year 2017/2018 Index 1 Introduction .............................................................................................................. 1 2 Lipids ........................................................................................................................ 3 2.1 Lipids classification ............................................................................................ 3 2.1.1 Acylglycerols ........................................................................................... 3 2.1.2 Phospholipids .......................................................................................... 4 2.1.3 Sphingolipids ........................................................................................... 5 2.1.4 Glycolipids ............................................................................................... 5 2.1.5 Steroids ................................................................................................... 5 2.1.6 Waxes ..................................................................................................... 6 2.2 Fatty acids .......................................................................................................... 6 2.2.1 Nomenclature .......................................................................................... 7 2.2.2 Classification ........................................................................................... 7 2.2.3 Properties ................................................................................................ 8 2.2.4 Metabolism .............................................................................................. 9 2.2.4.1 De novo synthesis of fatty acids ............................................... 9 2.2.4.2 Catabolism ................................................................................ 9 2.3 Membrane, fatty acids and temperature .......................................................... 10 2.3.1 Lipid bilayer ........................................................................................... 11 2.3.2 Effects of temperature on biological membranes .................................. 11 2.3.3 Thermal perturbation of membrane structure and function .................... 11 2.3.4 Membrane remodeling: the basis of thermal adaptation ........................ 12 3 Fishes ..................................................................................................................... 14 3.1 Distribution and morphology of teleostei .......................................................... 14 3.2 Muscle ............................................................................................................. 14 3.3 Liver ................................................................................................................. 15 3.4 Gills .................................................................................................................. 17 3.5 Lipids in fish ..................................................................................................... 18 3.6 Metabolism of fatty acids in fish ....................................................................... 19 3.7 Lipid digestion and absorption in fish ............................................................... 20 3.8 Role of fatty acids in fish .................................................................................. 22 3.9 Antarctic fishes ................................................................................................. 23 3.9.1 Warm acclimation response in Antarctic fishes ..................................... 24 i 4 Fatty acids as biomarkers ...................................................................................... 26 5 Quantification of fatty acids in the muscle of Antarctic fish Trematomus bernacchii by gas chromatography-mass spectrometry: Optimization of the analytical methodology ........................................................................................................... 29 5.1 Abstract ............................................................................................................ 29 5.2 Introduction ...................................................................................................... 29 5.3 Material and methods ...................................................................................... 32 5.3.1 Sample collection .................................................................................. 32 5.3.2 Extraction of lipids ................................................................................. 32 5.3.3 Preparation of fatty acid methyl esters (FAMEs) .................................... 33 5.3.4 Instrumentation and analytical conditions .............................................. 33 5.3.5 Method performance ............................................................................. 34 5.3.6 Statistical analysis ................................................................................. 35 5.4 Results and discussion .................................................................................... 35 5.4.1 Lyophilization step ................................................................................. 35 5.4.2 Optimization of GC-MS method ............................................................. 35 5.4.3 Performance data .................................................................................. 36 5.4.4 Fatty acid quantification ......................................................................... 37 5.5 Conclusions ..................................................................................................... 39 5.6 Acknowledgements .......................................................................................... 40 5.7 Figures, Tables and Supplementary materials ................................................. 41 5.8 References ........................................................................................................ 53 6 Heat shock influences the fatty acid composition of the muscle of the Antarctic fish Trematomus bernacchii ............................................................................................................. 59 6.1 Abstract ............................................................................................................ 59 6.2 Introduction ...................................................................................................... 59 6.3 Material and methods ...................................................................................... 61 6.3.1 Chemicals .............................................................................................. 62 6.3.2 Sample collection and experimental design .......................................... 62 6.3.3 Lipid extraction and fatty acid analysis .................................................. 62 6.3.4 Statistical analysis ................................................................................. 63 6.4 Results ............................................................................................................. 64 6.4.1 Lipid content .......................................................................................... 64 6.4.2 FAs composition .................................................................................... 64 ii 6.5 Discussion ........................................................................................................ 66 6.6 Conclusions ..................................................................................................... 68 6.7 Acknowledgements .......................................................................................... 69 6.8 Figures, Tables and Supplementary materials ................................................. 70 6.9 References ........................................................................................................ 76 7 Gas chromatography–mass spectrometry analysis on effects of thermal shock on the fatty acid composition of the gills of the Antarctic teleost, Trematomus bernacchii ............................................................................................................... 84 7.1 Abstract ............................................................................................................ 84 7.2 Introduction ...................................................................................................... 85 7.3 Material and methods ...................................................................................... 88 7.3.1 Chemicals .............................................................................................. 88 7.3.2 Sample collection and experimental design .......................................... 88 7.3.3 Ethics ..................................................................................................... 89 7.3.4 Lipid extraction and fatty acid analysis .................................................. 89 7.3.5 Statistical analysis ................................................................................. 90 7.4 Results and discussion ...................................................................................
Recommended publications
  • Proceedings of the 76Th National Conference of the Unione Zoologica Italiana
    Quaderni del Centro Studi Alpino – IV th Proceedings of the 76 National Conference of the Unione Zoologica Italiana A cura di Marzio Zapparoli, Maria Cristina Belardinelli Università degli Studi della Tuscia 2015 Quaderni del Centro Studi Alpino – IV Unione Zoologica Italiana 76th National Conference Proceedings Viterbo, 15-18 September 2015 a cura di Marzio Zapparoli, Maria Cristina Belardinelli Università degli Studi della Tuscia 2015 1 Università degli Studi della Tuscia Centro Studi Alpino Via Rovigo 7, 38050 Pieve Tesino (TN) Sede Amministrativa c/o Dipartimento per l’Innovazione nei sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia Via San Camillo de Lellis, s.n.c. 01100 Viterbo (VT) Consiglio del Centro Luigi Portoghesi (Presidente) Gian Maria Di Nocera Maria Gabriella Dionisi Giovanni Fiorentino Anna Scoppola Laura Selbmann Alessandro Sorrentino ISBN: 978 - 88 - 903595 - 4 - 5 Viterbo 2015 2 76th National Conference of the Unione Zoologica Italiana Università degli Studi della Tuscia Viterbo, 15-18 September 2015 Organizing Committee Anna Maria Fausto (President), Carlo Belfiore, Francesco Buonocore, Romolo Fochetti, Massimo Mazzini, Simona Picchietti, Nicla Romano, Giuseppe Scapigliati, Marzio Zapparoli Scientific Committee Elvira De Matthaeis (UZI President), Sapienza, Università di Roma Roberto Bertolani (UZI Secretary-Treasurer), Università di Modena e Reggio Emilia Carlo Belfiore, Università della Tuscia, Viterbo Giovanni Bernardini, Università dell’Insubria, Varese Ferdinando Boero, Università del Salento,
    [Show full text]
  • Foraging Behaviour of Female Weddell Seals (Leptonychotes Weddellii) During Lactation: New Insights from Dietary Biomarkers
    Foraging behaviour of female Weddell seals (Leptonychotes weddellii) during lactation: new insights from dietary biomarkers A thesis submitted in partial fulfilment of the requirements for the degree in Doctor of Philosophy in Antarctic Studies by Crystal C. Lenky November 2012 Acknowledgements Only one name appears on the cover of a thesis, but there are many people involved in its creation. First and foremost, I thank my supervisors for their endless encouragement, knowledge and insightful conversations throughout this journey. I thank Dr Regina Eisert for instilling in me an appreciation of the analytical method and her expertise on data analysis; Dr Victoria Metcalf for her friendship, enthusiasm and advice on all aspects of life; Dr Michael Lever for his wealth of knowledge on betaines and for providing me with lab and office space after the February 22 earthquake; Dr Olav Oftedal for his expertise in nutrition and guidance on scientific writing; Dr Marie Squire for her guidance on the NMR assays, and Professor Bryan Storey for providing me with a great working environment. Funding for this thesis was provided by a National Science Foundation, Office of Polar Programs grant to Drs Regina Eisert and Olav Oftedal. Many people have also given their time and expertise in assisting me with fieldwork, laboratory and data analysis. I thank Dr Wendy Hood, Lisa Ware, Warren Lynch and Rich Joss for their assistance in the field and for making my time in Antarctica an enjoyable experience. Michael Jakubasz (Smithsonian National Zoological Park) provided invaluable assistance during my stay at the Nutrition Lab. I thank him for his guidance on the proximate composition assays and for sorting permits and shipping details.
    [Show full text]
  • Insertion Hot Spots of DIRS1 Retrotransposon and Chromosomal Diversifications Among the Antarctic Teleosts Nototheniidae
    International Journal of Molecular Sciences Article Insertion Hot Spots of DIRS1 Retrotransposon and Chromosomal Diversifications among the Antarctic Teleosts Nototheniidae Juliette Auvinet 1,* , Paula Graça 1, Laura Ghigliotti 2 , Eva Pisano 2, Agnès Dettaï 3, Catherine Ozouf-Costaz 1 and Dominique Higuet 1,3,* 1 Laboratoire Evolution Paris Seine, Sorbonne Université, CNRS, Univ Antilles, Institut de Biologie Paris Seine (IBPS), F-75005 Paris, France; [email protected] (P.G.); [email protected] (C.O.-C.) 2 Istituto per lo Studio degli Impatti Antropici e la Sostenibilità in Ambiente Marino (IAS), National Research Council (CNR), 16149 Genoa, Italy; [email protected] (L.G.); [email protected] (E.P.) 3 Institut de Systématique, Evolution, Biodiversité (ISYEB), Museum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 57, rue Cuvier, 75005 Paris, France; [email protected] * Correspondence: [email protected] (J.A.); [email protected] (D.H.) Received: 28 December 2018; Accepted: 3 February 2019; Published: 6 February 2019 Abstract: By their faculty to transpose, transposable elements are known to play a key role in eukaryote genomes, impacting both their structuration and remodeling. Their integration in targeted sites may lead to recombination mechanisms involved in chromosomal rearrangements. The Antarctic fish family Nototheniidae went through several waves of species radiations. It is a suitable model to study transposable element (TE)-mediated mechanisms associated to genome and chromosomal diversifications. After the characterization of Gypsy (GyNoto), Copia (CoNoto), and DIRS1 (YNoto) retrotransposons in the genomes of Nototheniidae (diversity, distribution, conservation), we focused on their chromosome location with an emphasis on the three identified nototheniid radiations (the Trematomus, the plunderfishes, and the icefishes).
    [Show full text]
  • Mucosal Health in Aquaculture Page Left Intentionally Blank Mucosal Health in Aquaculture
    Mucosal Health in Aquaculture Page left intentionally blank Mucosal Health in Aquaculture Edited by Benjamin H. Beck Stuttgart National Aquaculture Research Center, Stuttgart, Arkansas, USA Eric Peatman School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Alabama, USA AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK OXFORD • PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE SYDNEY • TOKYO Academic Press is an Imprint of Elsevier Academic Press is an imprint of Elsevier 125, London Wall, EC2Y 5AS, UK 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA 225 Wyman Street, Waltham, MA 02451, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Copyright © 2015 Elsevier Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively, visit the Science and Technology Books website at www.elsevierdirect.com/rights for further information. Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.
    [Show full text]
  • Induction of Heat Shock Proteins in Cold- Adapted and Cold
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarWorks@UA INDUCTION OF HEAT SHOCK PROTEINS IN COLD- ADAPTED AND COLD- ACCLIMATED FISHES By Laura Elizabeth Teigen Dr. Kristin O'Brien Advisory Committee Chair Dr. Diane Wagner Chair, Department of Biology and Wildlife APPROVED: ;t.-/ INDUCTION OF HEAT SHOCK PROTEINS IN COLD- ADAPTED AND COLD- ACCLIMATED FISHES A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Laura Elizabeth Teigen, B.A. Fairbanks, Alaska May 2014 v Abstract I examined the effects of oxidative stress and changes in temperature on heat shock protein (Hsp) levels in cold-adapted and cold-acclimated fishes. Adaptation of Antarctic notothenioids to cold temperature is correlated with high levels of Hsps, thought to minimize cold-induced protein denaturation. Hsp70 levels were measured in red- and white-blooded Antarctic notothenioid fishes exposed to their critical thermal maximum (CTMax), 4C warm acclimated, and notothenioids from different latitudes. I determined the effect of cold acclimation on Hsp levels and the role of sirtuins in regulating Hsp expression and changes in metabolism in threespine stickleback, Gasterosteus aculeatus, cold-acclimated to 8C. Levels of Hsps do not increase in Antarctic notothenioids exposed to their CTMax, and warm acclimation reduced levels of Hsp70. Hsp70 levels were higher in Antarctic notothenioids compared to a temperate notothenioid and higher in white-blooded notothenioids compared to red-blooded notothenioids, despite higher oxidative stress levels in red-blooded fish, suggesting Hsp70 does not mitigate oxidative stress.
    [Show full text]
  • Mitochondrial Phylogeny of Trematomid Fishes (Nototheniidae, Perciformes) and the Evolution of Antarctic Fish
    MOLECULAR PHYLOGENETICS AND EVOLUTION Vol. 5, No. 2, April, pp. 383±390, 1996 ARTICLE NO. 0033 Mitochondrial Phylogeny of Trematomid Fishes (Nototheniidae, Perciformes) and the Evolution of Antarctic Fish PETER A. RITCHIE,²,*,1,2 LUCA BARGELLONI,*,³ AXEL MEYER,*,§ JOHN A. TAYLOR,² JOHN A. MACDONALD,² AND DAVID M. LAMBERT²,2 ²School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; *Department of Ecology and Evolution and §Program in Genetics, State University of New York, Stony Brook, New York 11794-5245; and ³Dipartimento di Biologia, Universita di Padova, Via Trieste 75, 35121 Padua, Italy Received November 22, 1994; revised June 2, 1995 there is evidence that this may have occurred about The subfamily of ®shes Trematominae is endemic to 12±14 million years ago (MYA) (Eastman, 1993; the subzero waters of Antarctica and is part of the Bargelloni et al., 1994). larger notothenioid radiation. Partial mitochondrial There may have been a suite of factors which allowed sequences from the 12S and 16S ribosomal RNA (rRNA) the notothenioids, in particular, to evolve to such domi- genes and a phylogeny for 10 trematomid species are nance in the Southern Oceans. Several authors have presented. As has been previously suggested, two taxa, suggested that speciation within the group could have Trematomus scotti and T. newnesi, do not appear to be been the result of large-scale disruptions in the Antarc- part of the main trematomid radiation. The genus Pa- tic ecosystem during the Miocene (Clarke, 1983). The gothenia is nested within the genus Trematomus and isostatic pressure from the accumulation of ice during has evolved a unique cyropelagic existence, an associ- the early Miocene (25±15 MYA) left the continental ation with pack ice.
    [Show full text]
  • Juvenile Trematomus Bernacchii and Pagothenia Brachysoma (Pisces, Nototheniidae) Within Krill Concentrations Off Balleny Islands (Antarctic)*)
    POLISH POLAR RESEARCH (POL POLAR RES.) 4 1 4 57 - 69 1983 POLSKIE BADANIA POLARNE Wiesław ŚLÓSARCZYK Department of Ichthyology, Sea Fisheries Institute, al. Zjednocze- nia 1, 81-345 Gdynia, Poland Juvenile Trematomus bernacchii and Pagothenia brachysoma (Pisces, Nototheniidae) within krill concentrations off Balleny Islands (Antarctic)*) ABSTRACT: Juvenile fishes of the family Nototheniidae were recorded during fishing for krill eastwards of the Balleny Islands. The paper describes juveniles of the most abundant species. Trematomus bernacchii and Pagothenia brachysoma, their distribution and abundance. Also the correctness of assigning of some juveniles to the species T. bernacchii is discussed. Key words: Antarctic, juvenile nototheniid fish 1. Introduction Following DeWitt (1970) the dominant group of demersal Notothe- niidae of the Ross Sea are fishes belonging to the genus Trematomus. Among them T. bernacchii is considered as one of the most frequent and widely distributed species (Andrjasev 1964). Pagothenia brachysoma belongs to the cryopelagic fauna of that region (Andrjasev 1968, 1970 — cited as Trematomus brachysoma). The literature dealing with juvenile No- totheniidae of the Ross Sea is rather scarce. Some reference to the juveniles of species mentioned above is given by Miller (1961), Andrjasev (1967, 1970), DeWitt (1970), Andrjasev and Jakubowski (1971) and Baluśkin (1976a). Apart from the Ross Sea, only nine species, out of 51 Nototheniids living in the Antarctic, have been described in the developmental stages (Regan 1916, Everson 1968, Hureau 1970, Efremenko 1979). Investigations of juvenile ichthyofauna within the krill concentrations off the Balleny Islands were carried out in 1978, during the circumantarctic expedition of the r/v "Profesor Bogucki". One of the objectives of the study *) This work was performed as part of the problem MR-II-16 58 Wiesław Slósarczyk was to draw attention to the necessity of protecting juvenile fish under the conditions of a rapidly developing krill fishery.
    [Show full text]
  • Biogeographic Atlas of the Southern Ocean
    Census of Antarctic Marine Life SCAR-Marine Biodiversity Information Network BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN CHAPTER 7. BIOGEOGRAPHIC PATTERNS OF FISH. Duhamel G., Hulley P.-A, Causse R., Koubbi P., Vacchi M., Pruvost P., Vigetta S., Irisson J.-O., Mormède S., Belchier M., Dettai A., Detrich H.W., Gutt J., Jones C.D., Kock K.-H., Lopez Abellan L.J., Van de Putte A.P., 2014. In: De Broyer C., Koubbi P., Griffiths H.J., Raymond B., Udekem d’Acoz C. d’, et al. (eds.). Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp. 328-362. EDITED BY: Claude DE BROYER & Philippe KOUBBI (chief editors) with Huw GRIFFITHS, Ben RAYMOND, Cédric d’UDEKEM d’ACOZ, Anton VAN DE PUTTE, Bruno DANIS, Bruno DAVID, Susie GRANT, Julian GUTT, Christoph HELD, Graham HOSIE, Falk HUETTMANN, Alexandra POST & Yan ROPERT-COUDERT SCIENTIFIC COMMITTEE ON ANTARCTIC RESEARCH THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN The “Biogeographic Atlas of the Southern Ocean” is a legacy of the International Polar Year 2007-2009 (www.ipy.org) and of the Census of Marine Life 2000-2010 (www.coml.org), contributed by the Census of Antarctic Marine Life (www.caml.aq) and the SCAR Marine Biodiversity Information Network (www.scarmarbin.be; www.biodiversity.aq). The “Biogeographic Atlas” is a contribution to the SCAR programmes Ant-ECO (State of the Antarctic Ecosystem) and AnT-ERA (Antarctic Thresholds- Ecosys- tem Resilience and Adaptation) (www.scar.org/science-themes/ecosystems). Edited by: Claude De Broyer (Royal Belgian Institute
    [Show full text]
  • Endocrine Disrupting Effects of Copper and Cadmium in the Oocytes of the Antarctic Emerald Rockcod Trematomus Bernacchii
    Chemosphere 268 (2021) 129282 Contents lists available at ScienceDirect Chemosphere journal homepage: www.elsevier.com/locate/chemosphere Endocrine disrupting effects of copper and cadmium in the oocytes of the Antarctic Emerald rockcod Trematomus bernacchii * Chiara Maria Motta a, Palma Simoniello b, , Mariana Di Lorenzo a, Vincenzo Migliaccio c, Raffaele Panzuto a, Emanuela Califano a, Gianfranco Santovito d a Department of Biology, University of Naples Federico II, Naples, Italy b Department of Science and Technology, University of Naples Parthenope, Naples, Italy c Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, Fisciano, Italy d Department of Biology, University of Padova, Italy highlights Risks related to metal contamination in Antarctica. Effects of waterborne Cd and Cu on fish oogenesis. Oocyte degeneration and changes in glycan composition. Cd downregulation of alpha and beta estradiol receptors. Cd and Cu reduce fecundity in T. bernacchii by impairing stock recruitment. article info abstract Article history: Antarctica has long been considered a continent free from anthropic interference. Unfortunately, recent Received 5 October 2020 evidence indicate that metal contamination has gone so far and that its effects are still unknown. For this Received in revised form reason, in the present work, the potential endocrine disrupting effect of two highly polluting metals, 28 November 2020 copper and cadmium, were examined in the Antarctic teleost Trematomus bernacchii. After a 10 days Accepted 8 December 2020 waterborne exposure, ovarian metal uptake was determined by atomic absorption; in parallel, classical Available online 18 December 2020 histological approaches were adopted to determine the effects on oocyte morphology, carbohydrate Handling Editor: James Lazorchak composition and presence and localization of progesterone and estrogen receptors.
    [Show full text]
  • Variation of Body Proportions During the Period of Growth of Trematomus (Pisces; Nototheniidae*) Bernacchii Boul
    POLISH POLAR RESEARCH (POL. POLAR RES.) POLSKIE BADANIA POLARNE 3 1-2 69-79 1982 Ryszard J. WRÓBLEWSKI Department of Polar Research, Institute of Ecology, Polish Academy of Sciences, Dziekanów Leśny. Variation of body proportions during the period of growth of Trematomus (Pisces; Nototheniidae*) bernacchii Boul. ABSTRACT: It was demonstrated that in the fishes of the species Trema- tomus bernacchi, predominant in the regions of the USSR Antarctic Station Mirny (Davis Sea), body proportions changes along with the growth of these specimens. Measurements include 20 plastic features in 171 fishess (total length 110.2—265.0 mm). Statistically significant variations of eleven proportions of the body were stated during the growth of the fishes. Five other proportions changed in a degree of little statistical significance, whereas the last three of the body proportions did not change at all. KEY WORDS: Antarctic ichthyology, taxonomic measurements 1. Introduction Taxonomy of a number of the Antarctic species of fishes, also of the genus Trematomus, is based on the proportions of various parts of the body (DeWitt and Tyler 1960). A wide range of the values of these proportions — probably different in specimens of different size (different age) — may arouse some reservations. This is quite justifiable particularly in the case of none too well known species of the Antarctic ichthyofauna, since on the basis of different values of body proportions in young and adult specimens they could be mistakenly classified into separate systematic groups. The aim of these studies was to demonstrate whether and if so then to what degree the most frequently mesured taxonomic plastic features are changing along with the growth of Trematomus bernacchii Boul.
    [Show full text]
  • The Freshwater Fauna of the South Polar Region: a 140-Year Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Tasmania Open Access Repository Papers and Proceedings of the Royal Society of Tasmania, Volume 151, 2017 19 THE FRESHWATER FAUNA OF THE SOUTH POLAR REGION: A 140-YEAR REVIEW. by Herbert J.G. Dartnall (with one text-figure, one table and one appendix) Dartnall, H.J.G. 2017 (6:xii): The freshwater fauna of the South Polar Region: A 140-year review. Papers and Proceedings of the Royal Society of Tasmania 151: 19–57. https://doi.org/10.26749/rstpp.151.19 ISSN 0080-4703. Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109 Australia. E-mail: [email protected] The metazoan fauna of Antarctic and sub-Antarctic freshwaters is reviewed. Almost 400 species, notably rotifers, tardigrades and crustaceans have been identified. Sponges, molluscs, amphibians, reptiles and fishes are absent though salmonid fishes have been successfully introduced on some of the sub-Antarctic islands. Other alien introductions include insects (Chironomidae) and annelid worms (Oligochaeta). The fauna is predominately benthic in habitat and becomes increasingly depauperate at higher latitudes. Endemic species are known but only a few are widely distributed. Planktonic species are rare and only one parasitic species has been noted. Keywords: freshwater, fauna, Antarctica, sub-Antarctic Islands, maritime Antarctic, continental Antarctica. INTRODUCTION included in this definition. While these cool-temperate islands have a similar verdant vegetation and numerous The first collections of Antarctic freshwater invertebrates water bodies they are warmer and some are vegetated with were made during the “Transit of Venus” expeditions woody shrubs and trees.] of 1874 (Brady 1875, 1879, Studer 1878).
    [Show full text]
  • Parasitic Infection by Larval Helminths in Antarctic Fishes: Pathological Changes and Impact on the Host Body Condition Index
    Vol. 105: 139–148, 2013 DISEASES OF AQUATIC ORGANISMS Published July 22 doi: 10.3354/dao02626 Dis Aquat Org Parasitic infection by larval helminths in Antarctic fishes: pathological changes and impact on the host body condition index Mario Santoro1,2,*, Simonetta Mattiucci1, Thierry Work3, Roberta Cimmaruta2, Valentina Nardi1,2, Paolo Cipriani1, Bruno Bellisario2, Giuseppe Nascetti2 1Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro, 00185 Rome, Italy 2Department of Ecological and Biological Sciences, Tuscia University, Viale dell’Università sn 01100 Viterbo, Italy 3US Geological Survey, National Wildlife Health Center, Honolulu Field Station, PO Box 50167, Honolulu, Hawaii 96850, USA ABSTRACT: We examined pathological changes and relationship between body condition index (BCI) and parasitic infection in 5 species of fish, including 42 icefish Chionodraco hamatus (Chan- nichtyidae), 2 dragonfish Cygnodraco mawsoni (Bathydraconidae), 30 emerald rock cod Tremato- mus bernacchii, 46 striped rock cod T. hansoni and 9 dusty rock cod T. newnesi (Nototheniidae) from the Ross Sea, Antarctica. All parasites were identified by a combination of morphology and mtDNA cytochrome-oxidase-2 sequence (mtDNA cox2) analysis, except Contracaecum osculatum s.l., for which only the latter was used. Five larval taxa were associated with pathological changes including 2 sibling species (D and E) of the C. osculatum species complex and 3 cestodes including plerocercoids of a diphyllobothridean, and 2 tetraphyllidean forms including cercoids with monolocular and bilocular bothridia. The most heavily infected hosts were C. hamatus and C. mawsoni, with C. hamatus most often infected by C. osculatum sp. D and sp. E and diphylloboth- rideans, while C.
    [Show full text]