Nisan 2010.CDR
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix K. Survey and Manage Species Persistence Evaluation
Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site. -
Major Clades of Agaricales: a Multilocus Phylogenetic Overview
Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J. -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
Phd. Thesis Sana Jabeen.Pdf
ECTOMYCORRHIZAL FUNGAL COMMUNITIES ASSOCIATED WITH HIMALAYAN CEDAR FROM PAKISTAN A dissertation submitted to the University of the Punjab in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BOTANY by SANA JABEEN DEPARTMENT OF BOTANY UNIVERSITY OF THE PUNJAB LAHORE, PAKISTAN JUNE 2016 TABLE OF CONTENTS CONTENTS PAGE NO. Summary i Dedication iii Acknowledgements iv CHAPTER 1 Introduction 1 CHAPTER 2 Literature review 5 Aims and objectives 11 CHAPTER 3 Materials and methods 12 3.1. Sampling site description 12 3.2. Sampling strategy 14 3.3. Sampling of sporocarps 14 3.4. Sampling and preservation of fruit bodies 14 3.5. Morphological studies of fruit bodies 14 3.6. Sampling of morphotypes 15 3.7. Soil sampling and analysis 15 3.8. Cleaning, morphotyping and storage of ectomycorrhizae 15 3.9. Morphological studies of ectomycorrhizae 16 3.10. Molecular studies 16 3.10.1. DNA extraction 16 3.10.2. Polymerase chain reaction (PCR) 17 3.10.3. Sequence assembly and data mining 18 3.10.4. Multiple alignments and phylogenetic analysis 18 3.11. Climatic data collection 19 3.12. Statistical analysis 19 CHAPTER 4 Results 22 4.1. Characterization of above ground ectomycorrhizal fungi 22 4.2. Identification of ectomycorrhizal host 184 4.3. Characterization of non ectomycorrhizal fruit bodies 186 4.4. Characterization of saprobic fungi found from fruit bodies 188 4.5. Characterization of below ground ectomycorrhizal fungi 189 4.6. Characterization of below ground non ectomycorrhizal fungi 193 4.7. Identification of host taxa from ectomycorrhizal morphotypes 195 4.8. -
November 2014
MushRumors The Newsletter of the Northwest Mushroomers Association Volume 25, Issue 4 December 2014 After Arid Start, 2014 Mushroom Season Flourishes It All Came Together By Chuck Nafziger It all came together for the 2014 Wild Mushroom Show; an October with the perfect amount of rain for abundant mushrooms, an enthusiastic volunteer base, a Photo by Vince Biciunas great show publicity team, a warm sunny show day, and an increased public interest in foraging. Nadine Lihach, who took care of the admissions, reports that we blew away last year's record attendance by about 140 people. Add to that all the volunteers who put the show together, and we had well over 900 people involved. That's a huge event for our club. Nadine said, "... this was a record year at the entry gate: 862 attendees (includes children). Our previous high was in 2013: 723 attendees. Success is more measured in the happiness index of those attending, and many people stopped by on their way out to thank us for the wonderful show. Kids—and there were many—were especially delighted, and I'm sure there were some future mycophiles and mycologists in Sunday's crowd. The mushroom display A stunning entry display greets visitors arriving at the show. by the door was effective, as always, at luring people in. You could actually see the kids' eyes getting bigger as they surveyed the weird mushrooms, and twice during the day kids ran back to our table to tell us that they had spotted the mushroom fairy. There were many repeat adult visitors, too, often bearing mushrooms for identification. -
Effect of Deadwood on Ectomycorrhizal Colonisation of Old
Article Effect of Deadwood on Ectomycorrhizal Colonisation of Old-Growth Oak Forests Jacek Olchowik 1,* , Dorota Hilszcza ´nska 2 , Roman Mariusz Bzdyk 2, Marcin Studnicki 3 , Tadeusz Malewski 4 and Zbigniew Borowski 2 1 Department of Plant Pathology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland 2 Department of Forest Ecology, Forest Research Institute, Braci Le´snej3, S˛ekocinStary, 05-090 Raszyn, Poland; [email protected] (D.H.); [email protected] (R.M.B.); [email protected] (Z.B.) 3 Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; [email protected] 4 Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Science, Wilcza 64, 00-679 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-790-581-350 Received: 30 April 2019; Accepted: 30 May 2019; Published: 31 May 2019 Abstract: Although the importance of coarse woody debris (CWD) for species diversity is recognized, the effects of coarse woody debris decay class on species composition have received little attention. We examined how the species composition of ectomycorrhizal fungi (ECM) changes with CWD decay. We describe ectomycorrhizal root tips and the diversity of mycorrhizal fungal species at three English oak (Quercus robur L.) sites. DNA barcoding revealed a total of 17 ECM fungal species. The highest degree of mycorrhizal colonization was found in CWDadvanced (27.2%) and CWDearly (27.1%). Based on exploration types, ectomycorrhizae were classified with respect to ecologically relevant soil features. -
Two New Genus Records for Turkish Mycota
MYCOTAXON Volume 111, pp. 477–480 January–March 2010 Two new genus records for Turkish mycota Yusuf Uzun1, Kenan Demirel1, Abdullah Kaya2* & Fahrettin Gücin3 *[email protected] 1Yüzüncü Yıl University, Science & Arts Faculty TR 65080, Van Turkey 2Adıyaman University, Education Faculty TR 02040, Adıyaman Turkey 3Fatih University Science & Arts Faculty TR 34500, Istanbul Turkey Abstract — The genera Geopyxis (Pyronemataceae) and Asterophora (Lyophyllaceae) are recorded from Turkey for the first time, based on collections of Geopyxis carbonaria and Asterophora lycoperdoides. Short descriptions and photographs of the taxa are provided. Key words —Ascomycota, Basidiomycota, biodiversity, macrofungi Introduction Geopyxis carbonaria (Pyronemataceae) is an abundant post-fire discomycete in coniferous forests. This fleshy mushroom has a complex life cycle and is mycorrhizal on deep roots of members of the Pinaceae, and fruits only when the trees die (Vrålstad et al. 1998). Since it often fruits prolifically after wildfires, it has also been considered to be a possible indicator of imminent morel fruiting (Obst & Brown 2000). Asterophora lycoperdoides (Lyophyllaceae) is a relatively rare basidiomycete that parasitizes other mushrooms in the family Russulaceae, especially Russula nigricans and Russula densifolia. It usually fruits after the host has blackened and begun to decay (Kuo 2006). The fungus generally reproduces asexually by brown powdery chlamydospores formed on the cap surface; its gills, which are often absent or deformed, produce sexual basidiospores only infrequently (Roody 2003). According to checklists (Sesli & Denchev 2009) and recently published data (Solak et al. 2009, Kaya 2009), neither of the above taxa have previously been recorded from Turkey. The study aims to contribute to the macromycota of Turkey. -
Major Clades of Agaricales: a Multilocus Phylogenetic Overview
Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153 Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J. -
Publication 26. Biological Series 5 the AGARICACEAE of MICHIGAN
MICHIGAN GEOLOGICAL AND BIOLOGICAL SURVEY tubaeformis Fr. ........................................18 umbonatus Fr. .........................................19 Publication 26. Biological Series 5 aurantiacus Fr..........................................19 THE AGARICACEAE OF MICHIGAN Marasmieae .......................................................19 BY Trogia Fr.........................................................19 C. H. KAUFFMAN crispa Fr...................................................19 VOL. I alni Pk......................................................20 Schizophyllum Fr............................................20 TEXT commune Fr. ...........................................20 PUBLISHED AS A PART OF THE ANNUAL REPORT OF THE Panus Fr.........................................................20 BOARD OF GEOLOGICAL AND BIOLOGICAL SURVEY FOR Key to the species.......................................21 1918. Panus strigosus B. & C. .................................21 rudis Fr. ...................................................21 LANSING, MICHIGAN WYNKOOP HALLENBECK CRAWFORD CO., STATE PRINTERS torulosus Fr..............................................22 1918 stipticus Fr. ..............................................22 angustatus Berk.......................................22 salicinus Pk..............................................23 Contents Lentinus Fr. ....................................................23 Key to the species.......................................23 Letters of Transmittal, R. C. Allen, A. G. Ruthven. ...... 4 -
Phylogenetic Placement of Paratrichaptum and Reconsideration of Gloeophyllales
VOLUME 5 JUNE 2020 Fungal Systematics and Evolution PAGES 119–129 doi.org/10.3114/fuse.2020.05.07 Phylogenetic placement of Paratrichaptum and reconsideration of Gloeophyllales C.-C. Chen1, B. Cao2, T. Hattori3, B.-K. Cui4, C.-Y. Chen1, S.-H. Wu1,5* 1Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan 2State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China 3Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan 4Institute of Microbiology, Beijing Forestry University, Beijing 100083, China 5Department of Biology, National Museum of Natural Science, Taichung 40453, Taiwan *Corresponding author: [email protected] Key words: Abstract: Paratrichaptum accuratum is a large conspicuous polypore fungus growing on dead or living brown rot angiosperm trees in subtropical-boreal areas of China, Indonesia, Japan, and Taiwan. The present study places eastern and southeastern Asia P. accuratum in the family Gloeophyllaceae that belongs to the order Gloeophyllales within Agaricomycetes systematics (Basidiomycota), based on evidence derived from morphological and ecological characteristics, and taxonomy phylogenetic analyses of sequences of nuclear rDNA regions (5.8S, nuc 18S, nuc 28S) and protein-coding wood-inhabiting fungi genes (rpb1, rpb2, and tef1). The analyses presented in this study also give strong support for including Jaapia new taxa in Gloeophyllaceae and Gloeophyllales. Thus, the names Jaapiaceae and Jaapiales are considered here as synonyms of Gloeophyllaceae and Gloeophyllales. Since Paratrichaptum represents the earliest diverging lineage in Gloeophyllales, pileate basidiocarps and brown rot appear to be ancestral states of Gloeophyllales. Paratrichaptum accuratum may represent a relic species, according to its phylogenetic position, peculiar distribution pattern and rare occurrence. -
Problems Met Epitheta. the Yellow Species Stipe and Pileus
PERSOONIA Published by the Rijksherbarium, Leiden Volume Part 137-160 13, 2, pp. (1986) Notes on Hygrophoraceae—VIII. Taxonomic and nomenclatural notes on some taxa of Hygrocybe Eef Arnolds Taxonomic status and nomenclature of several European taxa ofHygrocybe are discussed. It is argued why some new combinations, made in a previous paper (Arnolds, 1985b) were proposed. Three new taxa are described to replace incorrect names: Hygrocybe cystidiata Arnolds (= H. obrussea sensu Kühner), H. lepida Arnolds (= H. cantharellus sensu auct.) and H. conica var. conicopalus- tris (R. Haller ex) Arnolds (= H. conicopalustris R. Haller, nom. inval.). Three new combinations are proposed: Hygrocybe miniata (Fr.: Fr.) Kumm. var. mollis (B. & Br.) Arnolds, H. virginea (Wulf.: Fr.) Orton & Watl. var. fuscescens (Bres.) Arnolds and H. persistens (Britz.) Sing. var. cuspidata (Peck) Arnolds. The following names are reduced to synonyms of older or sanctioned names: Hygro- phorus quietus Kühner = Agaricus obrusseus Fr.: Fr.; Agaricus tristis Pers. = A. conicus Schaeff.: Fr.; Hygrocybe euroflavescens Kühner = Hygrophorus flaves- cens C. H. Kauffm.; Mycena acutoconica F. Clem. = Hygrophorus persistens (Britz.) Britz.; Hygrocybe aurantiolutescens P. D. Orton = Hygrophorus cuspi- datus Peck; Hygrocybe pseudocuspidata Kühner = Hygrophorus cuspidatus Peck; Hygrocybe moseri M. Bon = Agaricus miniatus Fr.: Fr.; Hygrophorus strangulatus P. D. Orton = Agaricus miniatus Fr.: Fr.; Hygrophorus squamulosus Ellis & Ev. = Agaricus miniatus Fr.: Fr.; Hygrocybe vitellinoides M. Bon = Aga- ricus ceraceus Fr.: Fr.; Hygrocybe subceracea Murrill =AgaricusceraceusFr.: Fr.; Hygrophorus niveus (Fr.) Fr. = Agaricus virgineus Wulf.: Fr. Descriptive notes are given on the holotypes of Hygrocybe vitellinoides M. Bon, H. moseri M. Bon, Hygrophorus strangulatus P. D. Orton and Hygrocybe aurantiolutescens P. -
Československá Vědecká Společnost Pro Mykologii
ČESKOSLOVENSKÁ VĚDECKÁ SPOLEČNOST PRO MYKOLOGII I ' ’ Íí‘2 ' . / ' ’"* • ($?' \ í * í* 1 ■'*'"'* ,’ ’ ' r ‘ t% "V* ‘ ' ' •’ '■■’ ; • 29 4 ACADBMIA/PKAIIA LISTOPAD ' v: 1975 ČESKA MYKOLOGIE Časopis Cs. vědecké společnosti pro mykologii pro šíření znalosti hub po stránce vědecké i praktické Roíník 29 Číslo 4 Listopad 1975 Vydává Čs. vědecká společnost pro mykologii v Nakladatelství Československé akademie věd Vedoucí redaktor: doc. dr. Zdeněk Urban, kandidát biologických věd Redakční rada: ak ad em ik Ctibor Blattný, doktor zemědělských věd, univ. proí. Karel Cejp, doktor biologických věd, dr. Petr Fragner, M UDr. Josef Herink, dr. FrantiSek Kotlaba, kandidát biologických věd, inž. Karel Kříž, prom. biol. Zdeněk Pouzar. Výkonný redaktor: dr. Mirko Svrček, kandidát biologických věd Příspěvky zasílejte na adresu výkonného redaktora: 115 79 Praha 1, Václavské nám . 68, Národní muzeum, telefon 26 94 51—59, lin k a 49. 3. sešit vyšel 25. září 1975 OBSAH Z. Urban: Československá mykologie za 30 le t ................................................................ 193 B. H. Petersen: Poznámky o liškovitých houbách. VI. Nové druhy Crate- rellus a infragenerické přeřazení. (S barevnou tabulí č. 88) ....................................... 199 J. K u t h a n : Mřížovka červená — Clathrus ruber Mich. ex Pers. v Českoslo vensku ..........................................................................................................................................205 T. B. Bandre a B. V. Patil: Studie skvrnitosti listů Embelia robusta Boxb. v Indii